1
|
Cannea FB, Diana D, Rossino R, Padiglia A. ECPUB5 Polyubiquitin Gene in Euphorbia characias: Molecular Characterization and Seasonal Expression Analysis. Genes (Basel) 2024; 15:957. [PMID: 39062736 PMCID: PMC11275293 DOI: 10.3390/genes15070957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The spurge Euphorbia characias is known for its latex, which is rich in antioxidant enzymes and anti-phytopathogen molecules. In this study, we identified a novel polyubiquitin protein in the latex and leaves, leading to the first molecular characterization of its coding gene and expressed protein in E. characias. Using consensus-degenerate hybrid oligonucleotide primers (CODEHOP) and rapid amplification of cDNA ends (5'/3'-RACE), we reconstructed the entire open reading frame (ORF) and noncoding regions. Our analysis revealed that the polyubiquitin gene encodes five tandemly repeated sequences, each coding for a ubiquitin monomer with amino acid variations in four of the five repeats. In silico studies have suggested functional differences among monomers. Gene expression peaked during the summer, correlating with high temperatures and suggesting a role in heat stress response. Western blotting confirmed the presence of polyubiquitin in the latex and leaf tissues, indicating active ubiquitination processes. These findings enhance our understanding of polyubiquitin's regulatory mechanisms and functions in E. characias, highlighting its unique structural and functional features.
Collapse
Affiliation(s)
- Faustina Barbara Cannea
- Biomedical Section, Department of Life and Environmental Sciences (DiSVA), Cittadella Universitaria di Monserrato, University of Cagliari, 09042 Cagliari, Italy;
| | - Daniela Diana
- Department of Medical Sciences and Public Health (DSMSP), AOU Presidio Microcitemico, University of Cagliari, 09121 Cagliari, Italy; (D.D.); (R.R.)
| | - Rossano Rossino
- Department of Medical Sciences and Public Health (DSMSP), AOU Presidio Microcitemico, University of Cagliari, 09121 Cagliari, Italy; (D.D.); (R.R.)
| | - Alessandra Padiglia
- Biomedical Section, Department of Life and Environmental Sciences (DiSVA), Cittadella Universitaria di Monserrato, University of Cagliari, 09042 Cagliari, Italy;
| |
Collapse
|
2
|
Sandoval A, Duran P, Corzo-López A, Fernández-Gallardo M, Muñoz-Herrera D, Leyva-Leyva M, González-Ramírez R, Felix R. The role of voltage-gated calcium channels in the pathogenesis of Parkinson's disease. Int J Neurosci 2024; 134:452-461. [PMID: 35993158 DOI: 10.1080/00207454.2022.2115905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/07/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
Aim: Voltage-gated calcium (CaV) channels play an essential role in maintaining calcium homeostasis and regulating numerous physiological processes in neurons. Therefore, dysregulation of calcium signaling is relevant in many neurological disorders, including Parkinson's disease (PD). This review aims to introduce the role of CaV channels in PD and discuss some novel aspects of channel regulation and its impact on the molecular pathophysiology of the disease. Methods: an exhaustive search of the literature in the field was carried out using the PubMed database of The National Center for Biotechnology Information. Systematic searches were performed from the initial date of publication to May 2022. Results: Although α-synuclein aggregates are the main feature of PD, L-type calcium (CaV1) channels seem to play an essential role in the pathogenesis of PD. Changes in the functional expression of CaV1.3 channels alter Calcium homeostasis and contribute to the degeneration of dopaminergic neurons. Furthermore, recent studies suggest that CaV channel trafficking towards the cell membrane depends on the activity of the ubiquitin-proteasome system (UPS). In PD, there is an increase in the expression of L-type channels associated with a decrease in the expression of Parkin, an E3 enzyme of the UPS. Therefore, a link between Parkin and CaV channels could play a fundamental role in the pathogenesis of PD and, as such, could be a potentially attractive target for therapeutic intervention. Conclusion: The study of alterations in the functional expression of CaV channels will provide a framework to understand better the neurodegenerative processes that occur in PD and a possible path toward identifying new therapeutic targets to treat this condition.
Collapse
Affiliation(s)
- Alejandro Sandoval
- School of Medicine FES Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla, Mexico
| | - Paz Duran
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Alejandra Corzo-López
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | | | - David Muñoz-Herrera
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Margarita Leyva-Leyva
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Ricardo González-Ramírez
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Ricardo Felix
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| |
Collapse
|
3
|
Mito S, Cheng B, Garcia BA, Yee Ooi X, Gonzalez D, Ruiz TC, Elisarraras FX, Tsin A. SAR study of niclosamide derivatives for neuroprotective function in SH-SY5Y neuroblastoma. Bioorg Med Chem Lett 2023; 96:129498. [PMID: 37804994 DOI: 10.1016/j.bmcl.2023.129498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/06/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Neurodegenerative disease is a debilitating and incurable condition that affects millions of people around the world. The loss of functions or malfunctions of neural cells are the causes of mortality. A proteosome inhibitor, MG132, is well known to cause neurodegeneration in vitro when model neuronal-derived cell lines are exposed to it. Niclosamide, an anthelmintic drug, which has been used to treat tapeworm infections for more than 50 years, has recently attracted renewed attention in drug repurposing because it has been found to be a good candidate in many drug development screenings. We recently found that all markers of MG132-induced neuronal cell toxicity, including the accumulation of ubiquitinated proteins, were prevented by the presence of niclosamide. In addition, niclosamide was shown to enhance autophagy induced by MG132. There results suggested that niclosamide could act as a neuroprotective agent. In the present study, niclosamide derivatives were synthesized, and the structure-activity relationship (SAR) were determined with respect to protein ubiquitination induced by MG132 and effect on cell survival signaling pathways for neuroprotective function. Our results indicate that phenol OH plays a significant role in neuroprotective activity while the niclosamide derivatives without Cl (5- or 2'-Cl) showed almost the same neuroprotective effect. 4'-NO2 can be replaced by N3 or CF3 whereas NH2 significantly decreased activity. These findings provide guidance for the development of new niclosamide analogues against neurodegenerative diseases including Parkinson's disease.
Collapse
Affiliation(s)
- Shizue Mito
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; Department of Medical Education, School of Medicine, The University of Texas Rio Grande Valley, Edinburg 78541, USA.
| | - Benxu Cheng
- Department of Neuroscience, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Benjamin A Garcia
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Xin Yee Ooi
- Department of Neuroscience, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Daniela Gonzalez
- Department of Neuroscience, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Tess C Ruiz
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Francisco X Elisarraras
- Department of Neuroscience, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Andrew Tsin
- Department of Neuroscience, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
4
|
Fujii T, Matsuda Y. Novel formats of antibody conjugates: recent advances in payload diversity, conjugation, and linker chemistry. Expert Opin Biol Ther 2023; 23:1053-1065. [PMID: 37953519 DOI: 10.1080/14712598.2023.2276873] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
INTRODUCTION In the field of bioconjugates, the focus on antibody - drug conjugates (ADCs) with novel payloads beyond the traditional categories of potent cytotoxic agents is increasing. These innovative ADCs exhibit various molecular formats, ranging from small-molecule payloads, such as immune agonists and proteolytic agents, to macromolecular payloads, such as oligonucleotides and proteins. AREAS COVERED This review offers an in-depth exploration of unconventional strategies for designing conjugates with novel mechanisms of action and notable examples of approaches that show promising prospects. Representative examples of novel format payloads and their classification, attributes, and appropriate conjugation techniques are discussed in detail. EXPERT OPINION The existing basic technologies used to manufacture ADCs can be directly applied to synthesize novel formatted conjugates. However, a wide variety of new payloads require the creation of customized technologies adapted to the unique characteristics of these payloads. Consequently, fundamental technologies, such as conjugation methods aimed at achieving high drug - antibody ratios and developing stable crosslinkers, are likely to become increasingly important research areas in the future.
Collapse
|
5
|
Han D, Wang L, Jiang S, Yang Q. The ubiquitin-proteasome system in breast cancer. Trends Mol Med 2023:S1471-4914(23)00096-5. [PMID: 37328395 DOI: 10.1016/j.molmed.2023.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 06/18/2023]
Abstract
Ubiquitin-proteasome system (UPS) is a selective proteolytic system that is associated with the expression or function of target proteins and participates in various physiological and pathological processes of breast cancer. Inhibitors targeting the 26S proteasome in combination with other drugs have shown promising therapeutic effects in the clinical treatment of breast cancer. Moreover, several inhibitors/stimulators targeting other UPS components are also effective in preclinical studies, but have not yet been applied in the clinical treatment of breast cancer. Therefore, it is vital to comprehensively understand the functions of ubiquitination in breast cancer and to identify potential tumor promoters or tumor suppressors among UPS family members, with the aim of developing more effective and specific inhibitors/stimulators targeting specific components of this system.
Collapse
Affiliation(s)
- Dianwen Han
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Lijuan Wang
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Shan Jiang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Research Institute of Breast Cancer, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
6
|
Bisphenol-A (BPA) Impairs Hippocampal Neurogenesis via Inhibiting Regulation of the Ubiquitin Proteasomal System. Mol Neurobiol 2023; 60:3277-3298. [PMID: 36828952 DOI: 10.1007/s12035-023-03249-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/24/2023] [Indexed: 02/26/2023]
Abstract
The ubiquitin-proteasome system (UPS) controls protein homeostasis to maintain cell functionality and survival. Neurogenesis relies on proteasome function, and a defective proteasome system during brain development leads to neurological disorders. An endocrine-disrupting xenoestrogen bisphenol-A (BPA) used in plastic products adversely affects human health and causes neurotoxicity. Previously, we reported that BPA reduces neural stem cells (NSCs) proliferation and differentiation, impairs myelination and mitochondrial protein import, and causes excessive mitochondrial fragmentation leading to cognitive impairments in rats. Herein, we examined the effect(s) of prenatal BPA exposure on UPS functions during NSCs proliferation and differentiation in the hippocampus. Rats were orally treated with 40 µg/kg body weight BPA during day 6 gestation to day 21 postnatal. BPA significantly reduced proteasome activity in a cellular extract of NSCs. Immunocytochemistry exhibited a significant reduction of 20S proteasome/Nestin+ and PSMB5/Nestin+ cells in NSCs culture. BPA decreased 20S/Tuj1+ and PSMB5/Tuj1+ cells, indicating disrupted UPS during neuronal differentiation. BPA reduced the expression of UPS genes, 20S, and PSMB5 protein levels and proteasome activity in the hippocampus. It significantly reduced overall protein synthesis by the loss of Nissl substances in the hippocampus. Pharmacological activation of UPS by a bioactive triterpenoid 18α-glycyrrhetinic acid (18α GA) caused increased proteasome activities, significantly increased neurosphere size and number, and enhanced NSCs proliferation in BPA exposed culture, while proteasome inhibition by MG132 further aggravates BPA-mediated effects. In silico studies demonstrated that BPA strongly binds to catalytic sites of UPS genes (PSMB5, TRIM11, Parkin, and PSMD4) which may result in UPS inactivation. These results suggest that BPA significantly reduces NSCs proliferation by impairing UPS, and UPS activation by 18α GA could suppress BPA-mediated neurotoxicity and exerts neuroprotection.
Collapse
|
7
|
Tsai KC, Zhang YX, Kao HY, Fung KM, Tseng TS. Pharmacophore-driven identification of human glutaminyl cyclase inhibitors from foods, plants and herbs unveils the bioactive property and potential of Azaleatin in the treatment of Alzheimer's disease. Food Funct 2022; 13:12632-12647. [PMID: 36416361 DOI: 10.1039/d2fo02507h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of disabilities in old age and a rapidly growing condition in the elderly population. AD brings significant burden and has a devastating impact on public health, society and the global economy. Thus, developing new therapeutics to combat AD is imperative. Human glutaminyl cyclase (hQC), which catalyzes the formation of neurotoxic pyroglutamate (pE)-modified β-amyloid (Aβ) peptides, is linked to the amyloidogenic process that leads to the initiation of AD. Hence, hQC is an essential target for developing anti-AD therapeutics. Here, we systematically screened and identified hQC inhibitors from natural products by pharmacophore-driven inhibitor screening coupled with biochemical and biophysical examinations. We employed receptor-ligand pharmacophore generation to build pharmacophore models and Phar-MERGE and Phar-SEN for inhibitor screening through ligand-pharmacophore mapping. About 11 and 24 hits identified from the Natural Product and Traditional Chinese Medicine databases, respectively, showed diverse hQC inhibitory abilities. Importantly, the inhibitors TCM1 (Azaleatin; IC50 = 1.1 μM) and TCM2 (Quercetin; IC50 = 4.3 μM) found in foods and plants exhibited strong inhibitory potency against hQC. Furthermore, the binding affinity and molecular interactions were analyzed by surface plasmon resonance (SPR) and molecular modeling/simulations to explore the possible modes of action of Azaleatin and Quercetin. Our study successfully screened and characterized the foundational biochemical and biophysical properties of Azaleatin and Quercetin toward targeting hQC, unveiling their bioactive potential in the treatment of AD.
Collapse
Affiliation(s)
- Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan. .,Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Xuan Zhang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.
| | - Hsiang-Yun Kao
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.
| | - Kit-Man Fung
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan. .,Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Tien-Sheng Tseng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
8
|
Aquilina-Reid C, Brennan S, Curry-Hyde A, Teunisse GM, Janitz M. Circular RNA Expression and Interaction Patterns Are Perturbed in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:ijms232314665. [PMID: 36498994 PMCID: PMC9739162 DOI: 10.3390/ijms232314665] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022] Open
Abstract
Circular RNAs (circRNAs) are a type of long noncoding RNA that are highly abundant and highly conserved throughout evolution and exhibit differential expression patterns in various tissue types in multiple diseases, including amyotrophic lateral sclerosis (ALS). The most well-known function of circRNAs is their ability to act as microRNA (miRNA) sponges. This entails circRNA binding to miRNA, which would otherwise target and degrade messenger RNA, thus affecting gene expression. This study analyzed ALS patient samples from three spinal cord regions to investigate circular transcriptome perturbation and circular RNA-microRNA-mRNA interactions. Using stringent statistical parameters, we identified 92 differentially expressed circRNAs across the spinal cord tissues with the aim of identifying specific circRNAs with biomarker potential. We also found evidence for differential expression of 37 linear RNAs possibly due to miRNA sequestration by circRNAs, thus revealing their potential as novel biomarkers and therapeutic candidates for ALS.
Collapse
Affiliation(s)
| | | | - Ashton Curry-Hyde
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany
- Correspondence: ; Tel.: +61-2-9065-1361
| |
Collapse
|
9
|
Lee KY. Common immunopathogenesis of central nervous system diseases: the protein-homeostasis-system hypothesis. Cell Biosci 2022; 12:184. [PMCID: PMC9668226 DOI: 10.1186/s13578-022-00920-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/30/2022] [Indexed: 11/17/2022] Open
Abstract
AbstractThere are hundreds of central nervous system (CNS) diseases, but there are few diseases for which the etiology or pathogenesis is understood as well as those of other organ-specific diseases. Cells in the CNS are selectively protected from external and internal insults by the blood–brain barrier. Thus, the neuroimmune system, including microglia and immune proteins, might control external or internal insults that the adaptive immune system cannot control or mitigate. The pathologic findings differ by disease and show a state of inflammation that reflects the relationship between etiological or inflammation-inducing substances and corresponding immune reactions. Current immunological concepts about infectious diseases and infection-associated immune-mediated diseases, including those in the CNS, can only partly explain the pathophysiology of disease because they are based on the idea that host cell injury is caused by pathogens. Because every disease involves etiological or triggering substances for disease-onset, the protein-homeostasis-system (PHS) hypothesis proposes that the immune systems in the host control those substances according to the size and biochemical properties of the substances. In this article, I propose a common immunopathogenesis of CNS diseases, including prion diseases, Alzheimer’s disease, and genetic diseases, through the PHS hypothesis.
Collapse
|
10
|
Hassan SSU, Samanta S, Dash R, Karpiński TM, Habibi E, Sadiq A, Ahmadi A, Bungau S. The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: Focus on the role of oxidative stress. Front Pharmacol 2022; 13:1015835. [PMID: 36299900 PMCID: PMC9589363 DOI: 10.3389/fphar.2022.1015835] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/08/2022] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress (OS) disrupts the chemical integrity of macromolecules and increases the risk of neurodegenerative diseases. Fisetin is a flavonoid that exhibits potent antioxidant properties and protects the cells against OS. We have viewed the NCBI database, PubMed, Science Direct (Elsevier), Springer-Nature, ResearchGate, and Google Scholar databases to search and collect relevant articles during the preparation of this review. The search keywords are OS, neurodegenerative diseases, fisetin, etc. High level of ROS in the brain tissue decreases ATP levels, and mitochondrial membrane potential and induces lipid peroxidation, chronic inflammation, DNA damage, and apoptosis. The subsequent results are various neuronal diseases. Fisetin is a polyphenolic compound, commonly present in dietary ingredients. The antioxidant properties of this flavonoid diminish oxidative stress, ROS production, neurotoxicity, neuro-inflammation, and neurological disorders. Moreover, it maintains the redox profiles, and mitochondrial functions and inhibits NO production. At the molecular level, fisetin regulates the activity of PI3K/Akt, Nrf2, NF-κB, protein kinase C, and MAPK pathways to prevent OS, inflammatory response, and cytotoxicity. The antioxidant properties of fisetin protect the neural cells from inflammation and apoptotic degeneration. Thus, it can be used in the prevention of neurodegenerative disorders.
Collapse
Affiliation(s)
- Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, West Bengal, India
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
| | - Tomasz M. Karpiński
- Department of Medical Microbiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Emran Habibi
- Department of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
11
|
K A, Mishra A, Singh S. Implications of intracellular protein degradation pathways in Parkinson's disease and therapeutics. J Neurosci Res 2022; 100:1834-1844. [PMID: 35819247 DOI: 10.1002/jnr.25101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/31/2022] [Accepted: 06/18/2022] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) pathology is the most common motor neurodegenerative disease that occurs due to the progressive degeneration of dopaminergic neurons of the nigrostriatal pathway of the brain. The histopathological hallmark of the disease is fibrillary aggregate called Lewy bodies which majorly contain α-synuclein, suggesting the critical implication of diminished protein degradation mechanisms in disease pathogenesis. This α-synuclein-containing Lewy bodies are evident in both experimental models as well as in postmortem PD brain and are speculated to be pathogenic but still, the lineal association between these aggregates and the complexity of disease pathology is not yet well established and needs further attention. However, it has been reported that α-synuclein aggregates have consorted with the declined proteasome and lysosome activities. Therefore, in this review, we reappraise intracellular protein degradation mechanisms during PD pathology. This article focused on the findings of the last two decades suggesting the implications of protein degradation mechanisms in disease pathogenesis and based on shreds of evidence, some of the approaches are also suggested which may be adopted to find out the novel therapeutic targets for the management of PD patients.
Collapse
Affiliation(s)
- Amrutha K
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Sarika Singh
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
12
|
Convergent Molecular Pathways in Type 2 Diabetes Mellitus and Parkinson’s Disease: Insights into Mechanisms and Pathological Consequences. Mol Neurobiol 2022; 59:4466-4487. [DOI: 10.1007/s12035-022-02867-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
|
13
|
Reis MC, Patrun J, Ackl N, Winter P, Scheifele M, Danek A, Nolte D. A Severe Dementia Syndrome Caused by Intron Retention and Cryptic Splice Site Activation in STUB1 and Exacerbated by TBP Repeat Expansions. Front Mol Neurosci 2022; 15:878236. [PMID: 35493319 PMCID: PMC9048483 DOI: 10.3389/fnmol.2022.878236] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
Heterozygous pathogenic variants in the STIP1 homologous and U-box containing protein 1 (STUB1) gene have been identified as causes of autosomal dominant inherited spinocerebellar ataxia type 48 (SCA48). SCA48 is characterized by an ataxic movement disorder that is often, but not always, accompanied by a cognitive affective syndrome. We report a severe early onset dementia syndrome that mimics frontotemporal dementia and is caused by the intronic splice donor variant c.524+1G>A in STUB1. Impaired splicing was demonstrated by RNA analysis and in minigene assays of mutated and wild-type constructs of STUB1. The most striking consequence of this splicing impairment was retention of intron 3 in STUB1, which led to an in-frame insertion of 63 amino acids (aa) (p.Arg175_Glu176ins63) into the highly conserved coiled-coil domain of its encoded protein, C-terminus of HSP70-interacting protein (CHIP). To a lesser extent, activation of two cryptic splice sites in intron 3 was observed. The almost exclusively used one, c.524+86, was not predicted by in silico programs. Variant c.524+86 caused a frameshift (p.Arg175fs*93) that resulted in a truncated protein and presumably impairs the C-terminal U-box of CHIP, which normally functions as an E3 ubiquitin ligase. The cryptic splice site c.524+99 was rarely used and led to an in-frame insertion of 33 aa (p.Arg175_Glu176ins33) that resulted in disruption of the coiled-coil domain, as has been previously postulated for complete intron 3 retention. We additionally detected repeat expansions in the range of reduced penetrance in the TATA box-binding protein (TBP) gene by excluding other genes associated with dementia syndromes. The repeat expansion was heterozygous in one patient but compound heterozygous in the more severely affected patient. Therefore, we concluded that the observed severe dementia syndrome has a digenic background, making STUB1 and TBP important candidate genes responsible for early onset dementia syndromes.
Collapse
Affiliation(s)
- Marlen Colleen Reis
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Julia Patrun
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Nibal Ackl
- Psychiatrische Dienste Thurgau, Münsterlingen, Switzerland
- Neurologische Klinik und Poliklinik, Klinikum der Universität München, Munich, Germany
| | - Pia Winter
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
| | | | - Adrian Danek
- Neurologische Klinik und Poliklinik, Klinikum der Universität München, Munich, Germany
| | - Dagmar Nolte
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
- *Correspondence: Dagmar Nolte,
| |
Collapse
|
14
|
Modulating the Ubiquitin–Proteasome System: A Therapeutic Strategy for Autoimmune Diseases. Cells 2022; 11:cells11071093. [PMID: 35406655 PMCID: PMC8997991 DOI: 10.3390/cells11071093] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune, neurodegenerative disease associated with the central nervous system (CNS). Autoimmunity is caused by an abnormal immune response to self-antigens, which results in chronic inflammation and tissue death. Ubiquitination is a post-translational modification in which ubiquitin molecules are attached to proteins by ubiquitinating enzymes, and then the modified proteins are degraded by the proteasome system. In addition to regulating proteasomal degradation of proteins, ubiquitination also regulates other cellular functions that are independent of proteasomal degradation. It plays a vital role in intracellular protein turnover and immune signaling and responses. The ubiquitin–proteasome system (UPS) is primarily responsible for the nonlysosomal proteolysis of intracellular proteins. The 26S proteasome is a multicatalytic adenosine-triphosphate-dependent protease that recognizes ubiquitin covalently attached to particular proteins and targets them for degradation. Damaged, oxidized, or misfolded proteins, as well as regulatory proteins that govern many essential cellular functions, are removed by this degradation pathway. When this system is affected, cellular homeostasis is altered, resulting in the induction of a range of diseases. This review discusses the biochemistry and molecular biology of the UPS, including its role in the development of MS and proteinopathies. Potential therapies and targets involving the UPS are also addressed.
Collapse
|
15
|
Srinivasan E, Ram V, Rajasekaran R. A review on Huntington protein Insight into protein aggregation and therapeutic interventions. Curr Drug Metab 2022; 23:260-282. [PMID: 35319359 DOI: 10.2174/1389200223666220321103942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 01/15/2022] [Indexed: 11/22/2022]
Abstract
Huntington disease (HD) is a distressing, innate neurodegenerative disease that descends from CAG repeat expansion in the huntingtin gene causing behavioral changes, motor dysfunction, and dementia in children and adults. Mutation in huntingtin (HTT) protein has been suggested to cause neuron loss in the cortex and striatum through various mechanisms including abnormal regulation of transcription, proteasomal dysfunction, post-translational modification, and other events, regulating toxicity. Pathogenesis of HD involves cleavage of the huntingtin protein followed by the neuronal accumulation of its aggregated form. Several research groups made possible efforts to reduce huntingtin gene expression, protein accumulation, and protein aggregation using inhibitors and molecular chaperones as developing drugs against HD. Herein, we review the mechanism proposed towards the formation of HTT protein aggregation and the impact of therapeutic strategies for the treatment of HD.
Collapse
Affiliation(s)
- E Srinivasan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore - 632014, Tamil Nadu, India
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai - 602105, Tamil Nadu, India
| | - Vavish Ram
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore - 632014, Tamil Nadu, India
| | - R Rajasekaran
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore - 632014, Tamil Nadu, India
| |
Collapse
|
16
|
WANG YL, YOU J, CAO JJ, LI W, JING LY, MEI QB, WU AG. Screening of the ubiquitin-proteasome system activators for anti-Alzheimer's disease by the high-content fluorescence imaging system. Chin J Nat Med 2022; 20:33-42. [DOI: 10.1016/s1875-5364(22)60152-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 12/12/2022]
|
17
|
UBQLN4 is activated by C/EBPβ and exerts oncogenic effects on colorectal cancer via the Wnt/β-catenin signaling pathway. Cell Death Dis 2021; 7:398. [PMID: 34930912 PMCID: PMC8688525 DOI: 10.1038/s41420-021-00795-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/24/2021] [Accepted: 12/10/2021] [Indexed: 01/17/2023]
Abstract
Ubiquilin 4 (UBQLN4) is an important member of the ubiquitin-like protein family. An increasing number of studies have shown that UBQLN4 is an important regulator of tumorigenesis. Nevertheless, the biological function and detailed mechanisms of UBQLN4 in colorectal cancer (CRC) development and progression remain unclear. Here, we identified UBQLN4 upregulation in CRC tissues and it is positively associated with CRC size, TNM stage, and lymphatic metastasis. Patients with high UBQLN4 expression had a poor prognosis. Functionally, overexpression of UBQLN4 significantly promoted CRC cell proliferation, migration, and invasion, while UBQLN4 silencing elicited the opposite effect. This result was consistent with the conclusion that UBQLN4 expression correlated positively with the CRC size and lymphatic metastasis. In vivo, UBQLN4 silencing also inhibited tumor growth. Mechanistically, using gene set enrichment analysis (GSEA) and western blot experiments, we identified that UBQLN4 activated the Wnt/β-catenin signaling pathway to upregulate β-catenin and c-Myc expression, thereby promoting CRC proliferation, migration and invasion. A rescue experiment further verified this conclusion. Dual luciferase reporter, real-time quantitative PCR (RT-qPCR), western blot and chromatin immunoprecipitation (ChIP) assays indicated that the transcription factor CCAAT/enhancer-binding protein beta (C/EBPβ) directly bound to the UBQLN4 core promoter region and activated its transcription, upregulating β-catenin and c-Myc expression to promote CRC progression. Thus, our findings suggest that UBQLN4 is a key oncogene in CRC and may be a promising target for the diagnosis and treatment of patients with CRC.
Collapse
|
18
|
George DE, Tepe JJ. Advances in Proteasome Enhancement by Small Molecules. Biomolecules 2021; 11:1789. [PMID: 34944433 PMCID: PMC8699248 DOI: 10.3390/biom11121789] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 01/11/2023] Open
Abstract
The proteasome system is a large and complex molecular machinery responsible for the degradation of misfolded, damaged, and redundant cellular proteins. When proteasome function is impaired, unwanted proteins accumulate, which can lead to several diseases including age-related and neurodegenerative diseases. Enhancing proteasome-mediated substrate degradation with small molecules may therefore be a valuable strategy for the treatment of various neurodegenerative diseases such as Parkinson's, Alzheimer's, and Huntington's diseases. In this review, we discuss the structure of proteasome and how proteasome's proteolytic activity is associated with aging and various neurodegenerative diseases. We also summarize various classes of compounds that are capable of enhancing, directly or indirectly, proteasome-mediated protein degradation.
Collapse
Affiliation(s)
| | - Jetze J. Tepe
- Department of Chemistry and Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
19
|
Gopalakrishnan S, Ismail A. Aromatic monophenols from cinnamon bark act as proteasome inhibitors by upregulating ER stress, suppressing FoxM1 expression, and inducing apoptosis in prostate cancer cells. Phytother Res 2021; 35:5781-5794. [PMID: 34363252 DOI: 10.1002/ptr.7236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/15/2021] [Accepted: 07/17/2021] [Indexed: 11/08/2022]
Abstract
Cinnamon contains bioactive substances with diverse medicinal properties. We investigated the anticancer potential of abundant monophenols from cinnamon, namely, cinnamaldehyde, cinnamic acid, and eugenol, by hypothesizing that they possess proteasome inhibitory activities capable of suppressing cancer cell proliferation and inducing apoptosis. This hypothesis was tested by evaluating proteasome inhibitory activities of the compounds, and assessing downstream molecular and cellular events that are known to be impacted by proteasome inhibitors. The cinnamon compounds inhibited the catalytic activities of the proteasome in prostate cancer cells, but not in normal cells. Treatment with cinnamon compounds or the synthetic proteasome inhibitor MG132 upregulated p27 and IkBα proteins, and downregulated FoxM1 and angiogenic markers. These molecular events were associated with the decreased proliferation of prostate cancer cells. Treatment with cinnamon compounds or MG132 upregulated the expression of genes associated with endoplasmic reticulum (ER) stress/unfolded protein response (BIP, PERK, CHOP, and XBP1(S)). Furthermore, cinnamon compounds or MG132 upregulated the expression of genes required for the assembly of the caspase-8 activation platform in autophagosomes (LC3B, ATG5, p62, and Beclin1). The autophagy inhibitor, 3-methyladenine, blocked the compounds-mediated activation of caspase-8 and its downstream target caspase-3. In conclusion, proteasome inhibition by aromatic monophenols from cinnamon inhibits proliferation and leads to the death of prostate cancer cells by autophagy-dependent apoptosis.
Collapse
Affiliation(s)
| | - Ayesha Ismail
- Department of Biochemistry, National Institute of Nutrition, Hyderabad, Telangana, India
| |
Collapse
|
20
|
Dash R, Jahan I, Ali MC, Mitra S, Munni YA, Timalsina B, Hannan MA, Moon IS. Potential roles of natural products in the targeting of proteinopathic neurodegenerative diseases. Neurochem Int 2021; 145:105011. [PMID: 33711400 DOI: 10.1016/j.neuint.2021.105011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
Defective proteostasis is associated with the gradual accumulations of misfolded proteins and is a hallmark of many age-associated neurodegenerative diseases. In the aged brain, maintenance of the proteostasis network presents a substantial challenge, and its loss contributes to the onset and progression of neurological diseases associated with cognitive decline due to the generation of toxic protein aggregates, a process termed 'proteinopathy'. Emerging evidence suggests that reversing proteinopathies by boosting proteostasis might provide an effective means of preventing neurodegeneration. From this perspective, phytochemicals may play significant roles as potent modulators of the proteostasis network, as previous reports have suggested they can interact with various network components to modify pathologies and confer neuroprotection. This review focuses on some potent phytochemicals that directly or indirectly modulate the proteostasis network and on their possible molecular targets. In addition, we propose strategies for the natural product-based modulation of proteostasis machinery that target proteinopathies.
Collapse
Affiliation(s)
- Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Israt Jahan
- Department of Pharmacy, Faculty of Life and Earth Sciences, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Chayan Ali
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
| | - Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Binod Timalsina
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea; Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea.
| |
Collapse
|
21
|
Gene expression barcode values reveal a potential link between Parkinson's disease and gastric cancer. Aging (Albany NY) 2021; 13:6171-6181. [PMID: 33596182 PMCID: PMC7950232 DOI: 10.18632/aging.202623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
Gastric cancer is a disease that develops from the lining of the stomach, whereas Parkinson’s disease is a long-term degenerative disorder of the central nervous system that mainly affects the motor system. Although these two diseases seem to be distinct from each other, increasing evidence suggests that they might be linked. To explore the linkage between these two diseases, differentially expressed genes between the diseased people and their normal controls were identified using the barcode algorithm. This algorithm transforms actual gene expression values into barcode values comprised of 1’s (expressed genes) and 0’s (silenced genes). Once the overlapped differentially expressed genes were identified, their biological relevance was investigated. Thus, using the gene expression profiles and bioinformatics methods, we demonstrate that Parkinson’s disease and gastric cancer are indeed linked. This research may serve as a pilot study, and it will stimulate more research to investigate the relationship between gastric cancer and Parkinson’s disease from the perspective of gene profiles and their functions.
Collapse
|
22
|
Pingale T, Gupta GL. Current and emerging therapeutic targets for Parkinson's disease. Metab Brain Dis 2021; 36:13-27. [PMID: 33090348 DOI: 10.1007/s11011-020-00636-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is characterized by gradual neurodegeneration and forfeiture of dopamine neurons in substantia nigra pars compacta which ultimately leads to depletion of dopamine levels. PD patients not only display motor features such as rigidity, tremor, and bradykinesia but also non-motor features such as depression, anxiety, etc. Various treatments are available for PD patients such as dopamine replacement are well established but it is only partially or transiently effective. As these therapies not able to restore dopaminergic neurons and delay the development of Parkinson's disease, therefore, the need for an effective therapeutic approach is crucial. The present review discusses a comprehensive overview of current novel targets for PD which includes molecular chaperone, neuroinflammation, mitochondrial dysfunction, neuromelanin, Ubiquitin-proteasome system, protein Abelson, Synaptic vesicle glycoprotein 2C, and Cocaine-amphetamine-regulated transcript, etc. These approaches will help to identify new targets for the treatment of disease and may provide a ray of hope for PD patient treatment. Graphical abstract.
Collapse
Affiliation(s)
- Tanvi Pingale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, Maharashtra, India
| | - Girdhari Lal Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, Maharashtra, India.
- Department of Pharmacology, School of Pharmacy & Technology Management, SVKM'S NMIMS, Shirpur, 425 405, Maharashtra, India.
| |
Collapse
|
23
|
Limanaqi F, Biagioni F, Mastroiacovo F, Polzella M, Lazzeri G, Fornai F. Merging the Multi-Target Effects of Phytochemicals in Neurodegeneration: From Oxidative Stress to Protein Aggregation and Inflammation. Antioxidants (Basel) 2020; 9:antiox9101022. [PMID: 33092300 PMCID: PMC7589770 DOI: 10.3390/antiox9101022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023] Open
Abstract
Wide experimental evidence has been provided in the last decade concerning the neuroprotective effects of phytochemicals in a variety of neurodegenerative disorders. Generally, the neuroprotective effects of bioactive compounds belonging to different phytochemical classes are attributed to antioxidant, anti-aggregation, and anti-inflammatory activity along with the restoration of mitochondrial homeostasis and targeting alterations of cell-clearing systems. Far from being independent, these multi-target effects represent interconnected events that are commonly implicated in the pathogenesis of most neurodegenerative diseases, independently of etiology, nosography, and the specific misfolded proteins being involved. Nonetheless, the increasing amount of data applying to a variety of neurodegenerative disorders joined with the multiple effects exerted by the wide variety of plant-derived neuroprotective agents may rather confound the reader. The present review is an attempt to provide a general guideline about the most relevant mechanisms through which naturally occurring agents may counteract neurodegeneration. With such an aim, we focus on some popular phytochemical classes and bioactive compounds as representative examples to design a sort of main highway aimed at deciphering the most relevant protective mechanisms which make phytochemicals potentially useful in counteracting neurodegeneration. In this frame, we emphasize the potential role of the cell-clearing machinery as a kernel in the antioxidant, anti-aggregation, anti-inflammatory, and mitochondrial protecting effects of phytochemicals.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
| | - Francesca Biagioni
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (F.M.)
| | - Federica Mastroiacovo
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (F.M.)
| | - Maico Polzella
- Aliveda Laboratories, Viale Karol Wojtyla 19, 56042 Crespina Lorenzana, Italy;
| | - Gloria Lazzeri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- Correspondence: (G.L.); (F.F.)
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (F.M.)
- Correspondence: (G.L.); (F.F.)
| |
Collapse
|