1
|
Bai L, Wang Y, Du S, Si Y, Chen L, Li L, Li Y. Lymphangiogenesis: A new strategy for heart disease treatment (Review). Int J Mol Med 2024; 53:35. [PMID: 38391009 PMCID: PMC10903933 DOI: 10.3892/ijmm.2024.5359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Heart disease remains a global health challenge, contributing notably to morbidity and mortality. The lymphatic vasculature, an integral component of the cardiovascular system, plays a crucial role in regulating essential physiological processes, including fluid balance, transportation of extravasated proteins and immune cell trafficking, all of which are important for heart function. Through thorough scientometric analysis and extensive research, the present review identified lymphangiogenesis as a hotspot in cardiovascular disease research, and the mechanisms underlying impaired cardiac lymphangiogenesis and inadequate lymph drainage in various cardiovascular diseases are discussed. Furthermore, the way used to improve lymphangiogenesis to effectively regulate a variety of heart diseases and associated signaling pathways was investigated. Notably, the current review also highlights the impact of Traditional Chinese Medicine (TCM) on lymphangiogenesis, aiming to establish a clinical basis for the potential of TCM to improve cardiovascular diseases by promoting lymphangiogenesis.
Collapse
Affiliation(s)
- Liding Bai
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Yanyan Wang
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Siqi Du
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Yumeng Si
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Lu Chen
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Lin Li
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Yuhong Li
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
2
|
Kannan S, Rutkowski JM. VEGFR-3 signaling in macrophages: friend or foe in disease? Front Immunol 2024; 15:1349500. [PMID: 38464522 PMCID: PMC10921555 DOI: 10.3389/fimmu.2024.1349500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/01/2024] [Indexed: 03/12/2024] Open
Abstract
Lymphatic vessels have been increasingly appreciated in the context of immunology not only as passive conduits for immune and cancer cell transport but also as key in local tissue immunomodulation. Targeting lymphatic vessel growth and potential immune regulation often takes advantage of vascular endothelial growth factor receptor-3 (VEGFR-3) signaling to manipulate lymphatic biology. A receptor tyrosine kinase, VEGFR-3, is highly expressed on lymphatic endothelial cells, and its signaling is key in lymphatic growth, development, and survival and, as a result, often considered to be "lymphatic-specific" in adults. A subset of immune cells, notably of the monocyte-derived lineage, have been identified to express VEGFR-3 in tissues from the lung to the gut and in conditions as varied as cancer and chronic kidney disease. These VEGFR-3+ macrophages are highly chemotactic toward the VEGFR-3 ligands VEGF-C and VEGF-D. VEGFR-3 signaling has also been implicated in dictating the plasticity of these cells from pro-inflammatory to anti-inflammatory phenotypes. Conversely, expression may potentially be transient during monocyte differentiation with unknown effects. Macrophages play critically important and varied roles in the onset and resolution of inflammation, tissue remodeling, and vasculogenesis: targeting lymphatic vessel growth and immunomodulation by manipulating VEGFR-3 signaling may thus impact macrophage biology and their impact on disease pathogenesis. This mini review highlights the studies and pathologies in which VEGFR-3+ macrophages have been specifically identified, as well as the activity and polarization changes that macrophage VEGFR-3 signaling may elicit, and affords some conclusions as to the importance of macrophage VEGFR-3 signaling in disease.
Collapse
Affiliation(s)
| | - Joseph M. Rutkowski
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX, United States
| |
Collapse
|
3
|
Chakraborty A, Kim A, AlAbdullatif S, Campbell JD, Alekseyev YO, Kaplan U, Dambal V, Ligresti G, Trojanowska M. Endothelial Erg Regulates Expression of Pulmonary Lymphatic Junctional and Inflammation Genes in Mouse Lungs Impacting Lymphatic Transport. RESEARCH SQUARE 2024:rs.3.rs-3808970. [PMID: 38343832 PMCID: PMC10854286 DOI: 10.21203/rs.3.rs-3808970/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The ETS transcription factor ERG is a master regulator of endothelial gene specificity and highly enriched in the capillary, vein, and arterial endothelial cells. ERG expression is critical for endothelial barrier function, permeability, and vascular inflammation. A dysfunctional vascular endothelial ERG has been shown to impair lung capillary homeostasis, contributing to pulmonary fibrosis as previously observed in IPF lungs. Our preliminary observations indicate that lymphatic endothelial cells (LEC) in the human IPF lung also lack ERG. To understand the role of ERG in pulmonary LECs, we developed LEC-specific inducible Erg-CKO and Erg-GFP-CKO conditional knockout (CKO) mice under Prox1 promoter. Whole lung microarray analysis, flow cytometry, and qPCR confirmed an inflammatory and pro-lymphvasculogenic predisposition in Erg-CKO lung. FITC-Dextran tracing analysis showed an increased pulmonary interstitial lymphatic fluid transport from the lung to the axial lymph node. Single-cell transcriptomics confirmed that genes associated with cell junction integrity were downregulated in Erg-CKO pre-collector and collector LECs. Integrating Single-cell transcriptomics and CellChatDB helped identify LEC specific communication pathways contributing to pulmonary inflammation, trans-endothelial migration, inflammation, and Endo-MT in Erg-CKO lung. Our findings suggest that downregulation of lymphatic Erg crucially affects LEC function, LEC permeability, pulmonary LEC communication pathways and lymphatic transcriptomics.
Collapse
Affiliation(s)
- Adri Chakraborty
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Alex Kim
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Salam AlAbdullatif
- Division of Computational Biomedicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Joshua D Campbell
- Division of Computational Biomedicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yuriy O Alekseyev
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Ulas Kaplan
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Vrinda Dambal
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Giovanni Ligresti
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Maria Trojanowska
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
4
|
Hu Z, Zhao X, Wu Z, Qu B, Yuan M, Xing Y, Song Y, Wang Z. Lymphatic vessel: origin, heterogeneity, biological functions, and therapeutic targets. Signal Transduct Target Ther 2024; 9:9. [PMID: 38172098 PMCID: PMC10764842 DOI: 10.1038/s41392-023-01723-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Lymphatic vessels, comprising the secondary circulatory system in human body, play a multifaceted role in maintaining homeostasis among various tissues and organs. They are tasked with a serious of responsibilities, including the regulation of lymph absorption and transport, the orchestration of immune surveillance and responses. Lymphatic vessel development undergoes a series of sophisticated regulatory signaling pathways governing heterogeneous-origin cell populations stepwise to assemble into the highly specialized lymphatic vessel networks. Lymphangiogenesis, as defined by new lymphatic vessels sprouting from preexisting lymphatic vessels/embryonic veins, is the main developmental mechanism underlying the formation and expansion of lymphatic vessel networks in an embryo. However, abnormal lymphangiogenesis could be observed in many pathological conditions and has a close relationship with the development and progression of various diseases. Mechanistic studies have revealed a set of lymphangiogenic factors and cascades that may serve as the potential targets for regulating abnormal lymphangiogenesis, to further modulate the progression of diseases. Actually, an increasing number of clinical trials have demonstrated the promising interventions and showed the feasibility of currently available treatments for future clinical translation. Targeting lymphangiogenic promoters or inhibitors not only directly regulates abnormal lymphangiogenesis, but improves the efficacy of diverse treatments. In conclusion, we present a comprehensive overview of lymphatic vessel development and physiological functions, and describe the critical involvement of abnormal lymphangiogenesis in multiple diseases. Moreover, we summarize the targeting therapeutic values of abnormal lymphangiogenesis, providing novel perspectives for treatment strategy of multiple human diseases.
Collapse
Affiliation(s)
- Zhaoliang Hu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Xushi Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Bicheng Qu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Minxian Yuan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yanan Xing
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
5
|
Phan TT, Chakraborty A, Tatum MA, Lima-Orellana A, Reyna AJ, Rutkowski JM. Increased adipose tissue lymphatic vessel density inhibits thermogenesis through elevated neurotensin levels. Front Cell Dev Biol 2023; 11:1100788. [PMID: 36776563 PMCID: PMC9911872 DOI: 10.3389/fcell.2023.1100788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
During cold exposure, white adipose tissue can remodel to dissipate energy as heat under cold similar to thermogenic brown adipose tissue. This "browning" and the regulation of body temperature is under the control of neural and hormonal signaling. It was recently discovered that neurotensin, a small neuropeptide, not only acts to inhibit thermogenesis, but also that lymphatic vessels may be a surprisingly potent source of neurotensin production. We hypothesized that the induction of adipose tissue lymphangiogenesis would therefore increase tissue neurotensin levels and impair thermogenesis. Methods: We utilized AdipoVD mice that have inducible expression of vascular endothelial growth factor (VEGF)-D, a potent lymphangiogenic stimulator, specifically in adipose tissue. Overexpression of VEGF-D induced significant lymphangiogenesis in both white and brown adipose tissues of AdipoVD mice. Results: Obese Adipo-VD mice demonstrated no differences in adipose morphology or browning under room temperature conditions compared to controls but did express significantly higher levels of neurotensin in their adipose tissues. Upon acute cold exposure, AdipoVD mice were markedly cold intolerant; inhibition of neurotensin signaling ameliorated this cold intolerance as AdipoVD mice were then able to maintain body temperature on cold challenge equivalent to their littermates. Conclusion: In total, these data demonstrate that adipose tissue lymphatic vessels are a potent paracrine source of neurotensin and that lymphangiogenesis therefore impairs the tissues' thermogenic ability.
Collapse
Affiliation(s)
- Thien T. Phan
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX, United States
| | - Adri Chakraborty
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX, United States,Currently the Arthritis and Autoimmune Disease Research Center, Boston University School of Medicine, Boston, MA, United States
| | - Madison A. Tatum
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX, United States
| | - Ana Lima-Orellana
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX, United States
| | - Andrea J. Reyna
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX, United States
| | - Joseph M. Rutkowski
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX, United States,*Correspondence: Joseph M. Rutkowski,
| |
Collapse
|
6
|
Yang Y, Cao Y. The impact of VEGF on cancer metastasis and systemic disease. Semin Cancer Biol 2022; 86:251-261. [PMID: 35307547 DOI: 10.1016/j.semcancer.2022.03.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023]
Abstract
Metastasis is the leading cause of cancer-associated mortality and the underlying mechanisms of cancer metastasis remain elusive. Both blood and lymphatic vasculatures are essential structures for mediating distal metastasis. The vasculature plays multiple functions, including accelerating tumor growth, sustaining the tumor microenvironment, supplying growth and invasive signals, promoting metastasis, and causing cancer-associated systemic disease. VEGF is one of the key angiogenic factors in tumors and participates in the initial stage of tumor development, progression and metastasis. Consequently, VEGF and its receptor-mediated signaling pathways have become one of the most important therapeutic targets for treating various cancers. Today, anti-VEGF-based antiangiogenic drugs (AADs) are widely used in the clinic for treating different types of cancer in human patients. Despite nearly 20-year clinical experience with AADs, the impact of these drugs on cancer metastasis and systemic disease remains largely unknown. In this review article, we focus our discussion on tumor VEGF in cancer metastasis and systemic disease and mechanisms underlying AADs in clinical benefits.
Collapse
Affiliation(s)
- Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institute, 171 77 Stockholm, Sweden.
| |
Collapse
|
7
|
Abstract
The lymphatic vessels play an essential role in maintaining immune and fluid homeostasis and in the transport of dietary lipids. The discovery of lymphatic endothelial cell-specific markers facilitated the visualization and mechanistic analysis of lymphatic vessels over the past two decades. As a result, lymphatic vessels have emerged as a crucial player in the pathogenesis of several cardiovascular diseases, as demonstrated by worsened disease progression caused by perturbations to lymphatic function. In this review, we discuss the major findings on the role of lymphatic vessels in cardiovascular diseases such as hypertension, obesity, atherosclerosis, myocardial infarction, and heart failure.
Collapse
Affiliation(s)
- Dakshnapriya Balasubbramanian
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Brett M Mitchell
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, Texas 77807, USA
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Lymphatic vessels are found in most tissues, with the exception of the cornea and the central nervous system. Tissues that have high exposure to antigens, such as the skin and the intestine, have especially extensive lymphatic vascular networks. Despite being densely vascularized with blood vessels, adipose tissue is poorly permeated with lymphatic vasculature. Here, we focus on the recent advances in the research on adipose tissue lymphatics and present a lymphatic-focused analysis of published single-cell and single-nucleus RNA sequencing datasets of adipose tissues. RECENT FINDINGS Although lymphatic expansion in obesity may limit inflammation and promote glycerol efflux from adipose tissue, lymphatic endothelial cells (LECs) secrete factors that reduce brown adipocyte thermogenesis. Transcriptomic analyses of these cells show that they express common lymphatic markers such as Prox1, but datasets from different studies show great variation in gene expression values due to the low number of captured LECs, depot differences, and species-specific gene expression patterns. SUMMARY As the importance of LECs in the homeostasis of adipose tissue has become evident, investigators want to shed light on the specific interactions of lymphatics with other cell types in adipose tissues. Extracting LECs from readily available transcriptomics datasets provides a standpoint for investigators for future research. However, systematic studies are needed to reveal unique identities according to depot and species-specific LEC signatures.
Collapse
|
9
|
Creed HA, Sanfelippo AN, Reyna AJ, Chakraborty A, Rutkowski JM. Impact of High Fat Diet and Bolus Feeding on Chyle Accumulation in a Mouse Model of Generalized Lymphatic Anomaly. Lymphat Res Biol 2021; 20:358-367. [PMID: 34748416 PMCID: PMC9422780 DOI: 10.1089/lrb.2021.0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Generalized lymphatic anomalies (GLA) are complex vessel malformations that can impair lymphatic function. Potential GLA complications include lipid-rich lymph in the thoracic space or peritoneal cavity, respectively chylothorax and chylous ascites. To reduce the potential for chyle accumulation, GLA patients limit dietary fats. We hypothesized that dietary fatty acid composition impacts the potential for lymphatic dysfunction and chyle accumulation in GLA. Methods and Results: Adipose-specific overexpression of lymphatic growth factors has demonstrated lethal chylothorax in mice. Here, we utilized mice with inducible adipocyte overexpression of vascular endothelial growth factor-D (VD mice) to mimic lymphatic proliferation in GLA and assessed the incidence of chyle accumulation on a mixed high fat diet (HFD), high saturated fat diet (HSFD), or high unsaturated fat diet (HUSFD). Lipid transport was assessed by uptake rates of bolus oral triglyceride load and mesenteric fat analysis. Lymphatic expansion and inflammation were determined by whole mount immunofluorescence and gene expression. Body composition was assessed by MRI. HSFD 2-month wildtype groups resulted in an increase in TNF-α, IL-6, and IL-10 expression compared with chow-fed controls. The chyle accumulation incidence was highest in HFD-fed mice compared with either HSFD or HUSFD. Strikingly, increased mortality was observed irrespective of which high fat diet was consumed after administration of a bolus lipid load. Conclusion: Chronic HFD increases risk of chyle accumulation, however increased mortality was driven particularly by a bolus lipid load in VD mice. These findings suggest that although chronic HFD increases chyle accumulation risk, a single large meal feeding may increase risk of lethal chylothorax instances for GLA patients.
Collapse
Affiliation(s)
- Heidi A Creed
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, Texas, USA
| | - Ashley N Sanfelippo
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, Texas, USA
| | - Andrea J Reyna
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, Texas, USA
| | - Adri Chakraborty
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, Texas, USA
| | - Joseph M Rutkowski
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, Texas, USA
| |
Collapse
|
10
|
Chakraborty A, Upadhya R, Usman TA, Shetty AK, Rutkowski JM. Chronic VEGFR-3 signaling preserves dendritic arborization and sensitization under stress. Brain Behav Immun 2021; 98:219-233. [PMID: 34389489 PMCID: PMC8511130 DOI: 10.1016/j.bbi.2021.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/15/2021] [Accepted: 08/05/2021] [Indexed: 11/15/2022] Open
Abstract
Dendritic arborization is critical for the establishment and maintenance of precise neural circuits. Vascular endothelial growth factor D (VEGF-D), well-characterized as a "lymphangiogenic" growth factor, reportedly maintains dendritic arborization and synaptic strength in the hippocampus of adult mice through VEGF receptor (VEGFR-3) signaling. Here, we investigated the effect of chronic VEGFR-3-specific activation on adipose arbor morphometry using the Adipo-VD mouse, a model of inducible, adipose-specific VEGF-D overexpression. We examined whether adipose tissue innervation was preserved or functionally different in Adipo-VD mice during stress in vivo and if VEGFR-3 signaling afforded neuroprotection to challenged neurons in vitro. Chronic VEGFR-3 signaling in Adipo-VD subcutaneous adipose tissue resulted in a reduction in the dendrite length, dendritic terminal branches (filament length), and dendritic terminal branch volume (filament volume), but increased dendrite branching. We also identified reduced stimulus-evoked excitatory sympathetic nerve activity in Adipo-VD mice. Following 6-hydroxydopamine (6-OHDA) denervation, Adipo-VD dendritic arbors were preserved, including improved dendritic branch volume, length, and dendritic branches than in wildtype tissues. In vitro, we found that chronic elevation of VEGFR-3 signaling in developing mVC neurons changes the dendritic arbor complexity and improves stress-induced structure remodeling. Developing neurons are conferred neuroprotection against stress, potentially by upregulation of proteolytic conversion of pro-BDNF to mature BDNF. Mature neurons, however, display improved dendritic arbor complexity, and unaltered dendritic structural remodeling and improved resistance to stress with VEGFR-3 signaling. Overall, chronically increasing VEGFR-3 signaling in neurons has a synergistic impact on neurosensitization and neuroprotection during stress.
Collapse
Affiliation(s)
- Adri Chakraborty
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Timaj A. Usman
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Joseph M. Rutkowski
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA,Correspondence: Joseph M Rutkowski, Texas A&M University College of Medicine, 8447 Riverside Parkway, Bryan, TX 77807 USA, Ph: 979-436-0576,
| |
Collapse
|
11
|
Simioni C, Conti I, Varano G, Brenna C, Costanzi E, Neri LM. The Complexity of the Tumor Microenvironment and Its Role in Acute Lymphoblastic Leukemia: Implications for Therapies. Front Oncol 2021; 11:673506. [PMID: 34026651 PMCID: PMC8131840 DOI: 10.3389/fonc.2021.673506] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
The microenvironment that surrounds a tumor, in addition to the tumor itself, plays an important role in the onset of resistance to molecularly targeted therapies. Cancer cells and their microenvironment interact closely between them by means of a molecular communication that mutually influences their biological characteristics and behavior. Leukemia cells regulate the recruitment, activation and program of the cells of the surrounding microenvironment, including those of the immune system. Studies on the interactions between the bone marrow (BM) microenvironment and Acute Lymphoblastic Leukemia (ALL) cells have opened a scenario of potential therapeutic targets which include cytokines and their receptors, signal transduction networks, and hypoxia-related proteins. Hypoxia also enhances the formation of new blood vessels, and several studies show how angiogenesis could have a key role in the pathogenesis of ALL. Knowledge of the molecular mechanisms underlying tumor-microenvironment communication and angiogenesis could contribute to the early diagnosis of leukemia and to personalized molecular therapies. This article is part of a Special Issue entitled: Innovative Multi-Disciplinary Approaches for Precision Studies in Leukemia edited by Sandra Marmiroli (University of Modena and Reggio Emilia, Modena, Italy) and Xu Huang (University of Glasgow, Glasgow, United Kingdom).
Collapse
Affiliation(s)
- Carolina Simioni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA) - Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| | - Ilaria Conti
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Gabriele Varano
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Cinzia Brenna
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Eva Costanzi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Laboratory for Technologies of Advanced Therapies (LTTA) - Electron Microscopy Center, University of Ferrara, Ferrara, Italy.,Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|