1
|
Qiu J, Peng S, Qu R, Wu L, Xing L, Zhang L, Sun J. New evidence of vascular defects in neurodegenerative diseases revealed by single cell RNA sequencing. Clin Sci (Lond) 2024; 138:1377-1394. [PMID: 39469930 DOI: 10.1042/cs20241658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Neurodegenerative diseases (NDs) involve the progressive loss of neuronal structure or function in the brain and spinal cord. Despite their diverse etiologies, NDs manifest similar pathologies. Emerging research identifies vascular defects as a previously neglected hallmark of NDs. The development and popularization of single-cell RNA sequencing (scRNA-seq) technologies have significantly advanced our understanding of brain vascular cell types and their molecular characteristics, including gene expression changes at the single-cell level in NDs. These unprecedented insights deepen our understanding of the pathogenic mechanisms underlying NDs. However, the occurrence and role of vascular defects in disease progression remain largely unexplored. In this paper, we systematically summarize recent advances in the structure and organization of the central nervous system vasculature in mice, healthy individuals, and patients with NDs, focussing primarily on disease-specific alterations in vascular cell types or subtypes. Combining scRNA-seq with pathology evidence, we propose that vascular defects, characterized by disruptions in cell types and structural integrity, may serve as common early features of NDs. Finally, we discuss several pathways through which vascular defects in NDs lead to neuronal degeneration. A deeper understanding of the causes and contributions of vascular defects to NDs aids in elucidating the pathogenic mechanisms and developing meaningful therapeutic interventions.
Collapse
Affiliation(s)
- Jiaying Qiu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| | - Siwan Peng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ruobing Qu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Liucheng Wu
- Laboratory Animal Center, Nantong University, Nantong 226001, China
| | - Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Luzhong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
2
|
Odeh M, Sajrawi C, Majcher A, Zubedat S, Shaulov L, Radzishevsky A, Mizrahi L, Chung WK, Avital A, Hornemann T, Liebl DJ, Radzishevsky I, Wolosker H. A new type of blood-brain barrier aminoacidopathy underlies metabolic microcephaly associated with SLC1A4 mutations. Brain 2024; 147:3874-3889. [PMID: 38662784 PMCID: PMC11531853 DOI: 10.1093/brain/awae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/19/2024] [Accepted: 04/05/2024] [Indexed: 10/20/2024] Open
Abstract
Mutations in the SLC1A4 transporter lead to neurodevelopmental impairments, spastic tetraplegia, thin corpus callosum and microcephaly in children. SLC1A4 catalyses obligatory amino acid exchange between neutral amino acids, but the physiopathology of SLC1A4 disease mutations and progressive microcephaly remain unclear. Here, we examined the phenotype and metabolic profile of three Slc1a4 mouse models: a constitutive Slc1a4-knockout mouse; a knock-in mouse with the major human Slc1a4 mutation (Slc1a4-K256E); and a selective knockout of Slc1a4 in brain endothelial cells (Slc1a4tie2-cre). We show that Slc1a4 is a bona fideL-serine transporter at the blood-brain barrier (BBB) and that acute inhibition or deletion of Slc1a4 leads to a decrease in serine influx into the brain. This results in microcephaly associated with decreased L-serine content in the brain, accumulation of atypical and cytotoxic 1-deoxysphingolipids, neurodegeneration, synaptic and mitochondrial abnormalities and behavioural impairments. Prenatal and early postnatal oral administration of L-serine at levels that replenish the serine pool in the brain rescued the observed biochemical and behavioural changes. Administration of L-serine until the second postnatal week also normalized brain weight in Slc1a4-E256K mice. Our observations suggest that the transport of 'non-essential' amino acids from the blood through the BBB is at least as important as that of essential amino acids for brain metabolism and development. We propose that SLC1A4 mutations cause a BBB aminoacidopathy with deficits in serine import across the BBB, required for optimal brain growth, leading to a metabolic microcephaly, which may be amenable to treatment with L-serine.
Collapse
Affiliation(s)
- Maali Odeh
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Inst of Technology, Haifa 3109601, Israel
| | - Clara Sajrawi
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Inst of Technology, Haifa 3109601, Israel
| | - Adam Majcher
- Institute of Clinical Chemistry, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Salman Zubedat
- Department of Occupational Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa 3498838, Israel
| | - Lihi Shaulov
- Electron Microscopy Unit, B. Rappaport Faculty of Medicine, Technion-Israel Inst of Technology, Haifa 3109601, Israel
| | | | | | - Wendy K Chung
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Avi Avital
- Department of Occupational Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa 3498838, Israel
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Daniel J Liebl
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Inna Radzishevsky
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Inst of Technology, Haifa 3109601, Israel
| | - Herman Wolosker
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Inst of Technology, Haifa 3109601, Israel
- Laura and Isaac Perlmutter Metabolomics Center, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Inst of Technology, Haifa 3109601, Israel
| |
Collapse
|
3
|
Cashion JM, Brown LS, Morris GP, Fortune AJ, Courtney JM, Makowiecki K, Premilovac D, Cullen CL, Young KM, Sutherland BA. Pericyte ablation causes hypoactivity and reactive gliosis in adult mice. Brain Behav Immun 2024; 123:681-696. [PMID: 39406266 DOI: 10.1016/j.bbi.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 09/16/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024] Open
Abstract
Capillary pericytes are important regulators of cerebral blood flow, blood-brain barrier integrity and neuroinflammation, but can become lost or dysfunctional in disease. The consequences of pericyte loss or dysfunction is extremely difficult to discern when it forms one component of a complex disease process. To evaluate this directly, we examined the effect of adult pericyte loss on mouse voluntary movement and motor function, and physiological responses such as hypoxia, blood-brain barrier (BBB) integrity and glial reactivity. Tamoxifen delivery to Pdgfrβ-CreERT2:: Rosa26-DTA transgenic mice was titrated to produce a dose-dependent ablation of pericytes in vivo. 100mg/kg of tamoxifen ablated approximately half of all brain pericytes, while two consecutive daily doses of 300mg/kg tamoxifen ablated >80% of brain pericytes. In the open field test, mice with ∼50% pericyte loss spent more time immobile and travelled half the distance of control mice. Mice with >80% pericyte ablation also slipped more frequently while performing the beam walk task. Our histopathological analyses of the brain revealed that blood vessel density was unchanged, but vessel lumen width was increased. Pericyte-ablated mice also exhibited: mild BBB disruption; increased neuronal hypoxia; astrogliosis and increased IBA1+ immunoreactivity, suggestive of microgliosis and/or macrophage infiltration. Our results highlight the importance of pericytes in the brain, as pericyte loss can directly compromise brain health and induce behavioural alterations in mice.
Collapse
Affiliation(s)
- Jake M Cashion
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Lachlan S Brown
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Gary P Morris
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Alastair J Fortune
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Jo-Maree Courtney
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Kalina Makowiecki
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Dino Premilovac
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Carlie L Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Brad A Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia.
| |
Collapse
|
4
|
Togre NS, Mekala N, Bhoj PS, Mogadala N, Winfield M, Trivedi J, Grove D, Kotnala S, Rom S, Sriram U, Persidsky Y. Neuroinflammatory responses and blood-brain barrier injury in chronic alcohol exposure: role of purinergic P2 × 7 Receptor signaling. J Neuroinflammation 2024; 21:244. [PMID: 39342243 PMCID: PMC11439317 DOI: 10.1186/s12974-024-03230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
Alcohol consumption leads to neuroinflammation and blood‒brain barrier (BBB) damage, resulting in neurological impairment. We previously demonstrated that ethanol-induced disruption of barrier function in human brain endothelial cells was associated with mitochondrial injury, increased ATP and extracellular vesicle (EV) release, and purinergic receptor P2 × 7R activation. Therefore, we aimed to evaluate the effect of P2 × 7R blockade on peripheral and neuro-inflammation in ethanol-exposed mice. In a chronic intermittent ethanol (CIE)-exposed mouse model, P2 × 7R was inhibited by two different methods: Brilliant Blue G (BBG) or gene knockout. We assessed blood ethanol concentration (BEC), brain microvessel gene expression by using RT2 PCR array, plasma P2 × 7R and P-gp, serum ATP, EV-ATP, number of EVs, and EV mtDNA copy numbers. An RT2 PCR array of brain microvessels revealed significant upregulation of proinflammatory genes involved in apoptosis, vasodilation, and platelet activation in CIE-exposed wild-type animals, which were decreased 15-50-fold in BBG-treated-CIE-exposed animals. Plasma P-gp levels and serum P2 × 7R shedding were significantly increased in CIE-exposed animals. Pharmacological or genetic suppression of P2 × 7R decreased receptor shedding to levels equivalent to those in control group. The increase in EV number and EV-ATP content in the CIE-exposed mice was significantly reduced by P2 × 7R inhibition. CIE mice showed augmented EV-mtDNA copy numbers which were reduced in EVs after P2 × 7R inhibition or receptor knockout. These observations suggested that P2 × 7R signaling plays a critical role in ethanol-induced brain injury. Increased extracellular ATP, EV-ATP, EV numbers, and EV-mtDNA copy numbers highlight a new mechanism of brain injury during alcohol exposure via P2 × 7R and biomarkers of such damage. In this study, for the first time, we report the in vivo involvement of P2 × 7R signaling in CIE-induced brain injury.
Collapse
Affiliation(s)
- Namdev S Togre
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| | - Naveen Mekala
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Priyanka S Bhoj
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Nikhita Mogadala
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Malika Winfield
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jayshil Trivedi
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Deborah Grove
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Sudhir Kotnala
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Slava Rom
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Uma Sriram
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
5
|
Yang LY, Tang SC, Lee JE, Chen YR, Chen YT, Chen KW, Hsieh ST, Wang KC. Recombinant soluble form of receptor for advanced glycation end products ameliorates microcirculation impairment and neuroinflammation after subarachnoid hemorrhage. Neurotherapeutics 2024; 21:e00312. [PMID: 38177024 DOI: 10.1016/j.neurot.2023.e00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024] Open
Abstract
Impaired cerebral microcirculation after subarachnoid hemorrhage (SAH) has been shown to be related to delayed ischemic neurological deficits (DIND). We previously demonstrated the involvement of the receptor for advanced glycation end products (RAGE) in the pathogenesis of SAH related neuronal death. In the present study, we aimed to investigate the therapeutic effects of a recombinant soluble form of RAGE (sRAGE) on microcirculation impairment following SAH. Intrathecal injection of autologous blood in rats, mixed primary astrocyte and microglia cultures exposed to hemolysates and endothelial cells (ECs) from human brain microvascular exposed to glia-conditioned medium or SAH patient's CSF were used as experimental SAH models in vivo and in vitro. The results indicated that intrathecal administration of recombinant sRAGE significantly ameliorated the vasoconstriction of cortical arterioles and associated perfusion impairment, brain edema, reduced cell death, endothelial dysfunction, and improved motor performance at 24 and 48 h after SAH induction in rats. The in vitro results further showed that recombinant sRAGE significantly reduced astrocyte swelling and microglia activation, in parallel with decreased mRNA expression levels of pro-inflammatory cytokines including interleukin-6 (IL-6) and interleukin-1β (IL-1β) in vitro. Moreover, the in vitro model of SAH-induced p-eNOS and eNOS suppression, along with stress fiber formation in brain microvascular ECs, was effectively reversed by sRAGE treatment and led to a decrease in cleaved-caspase 3 expression. In summary, recombinant sRAGE effectively lessened microcirculation impairment and vascular injury after SAH via the mechanism of anti-inflammation, which may provide a potential therapeutic strategy for SAH.
Collapse
Affiliation(s)
- Ling-Yu Yang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sung-Chun Tang
- Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jing-Er Lee
- Department of Neurology, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| | - Yong-Ren Chen
- Non-invasive Cancer Therapy Research Institute, Taipei, Taiwan; Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Jin-Shan Branch, New Taipei City, Taiwan
| | - Yi-Tzu Chen
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kuo-Wei Chen
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sung-Tsang Hsieh
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan; Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kuo-Chuan Wang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
6
|
Vanbilloen WJF, Rechberger JS, Anderson JB, Nonnenbroich LF, Zhang L, Daniels DJ. Nanoparticle Strategies to Improve the Delivery of Anticancer Drugs across the Blood-Brain Barrier to Treat Brain Tumors. Pharmaceutics 2023; 15:1804. [PMID: 37513992 PMCID: PMC10383584 DOI: 10.3390/pharmaceutics15071804] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Primary brain and central nervous system (CNS) tumors are a diverse group of neoplasms that occur within the brain and spinal cord. Although significant advances in our understanding of the intricate biological underpinnings of CNS neoplasm tumorigenesis and progression have been made, the translation of these discoveries into effective therapies has been stymied by the unique challenges presented by these tumors' exquisitely sensitive location and the body's own defense mechanisms (e.g., the brain-CSF barrier and blood-brain barrier), which normally protect the CNS from toxic insult. These barriers effectively prevent the delivery of therapeutics to the site of disease. To overcome these obstacles, new methods for therapeutic delivery are being developed, with one such approach being the utilization of nanoparticles. Here, we will cover the current state of the field with a particular focus on the challenges posed by the BBB, the different nanoparticle classes which are under development for targeted CNS tumor therapeutics delivery, and strategies which have been developed to bypass the BBB and enable effective therapeutics delivery to the site of disease.
Collapse
Affiliation(s)
- Wouter J. F. Vanbilloen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Neurology, Elisabeth-Tweesteden Hospital, 5022 GC Tilburg, The Netherlands
| | - Julian S. Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jacob B. Anderson
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Medical Scientist Training Program, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Leo F. Nonnenbroich
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
| | - Liang Zhang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
| | - David J. Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
7
|
Liu LL, Shen X, Gu H, Zhao G, Du Y, Zheng W. High affinity of β-amyloid proteins to cerebral capillaries: implications in chronic lead exposure-induced neurotoxicity in rats. Fluids Barriers CNS 2023; 20:32. [PMID: 37122007 PMCID: PMC10150519 DOI: 10.1186/s12987-023-00432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/10/2023] [Indexed: 05/02/2023] Open
Abstract
Lead (Pb) is a known environmental risk factor in the etiology of Alzheimer's disease (AD). The existing reports suggest that Pb exposure increases beta-amyloid (Aβ) levels in brain tissues and cerebrospinal fluid (CSF) and facilitates the formation of amyloid plaques, which is a pathological hallmark for AD. Pb exposure has long been associated with cerebral vasculature injury. Yet it remained unclear if Pb exposure caused excessive Ab buildup in cerebral vasculature, which may damage the blood-brain barrier and cause abnormal Ab accumulation. This study was designed to investigate the impact of chronic Pb exposure on Aβ accumulation in cerebral capillary and the expression of low-density lipoprotein receptor protein-1 (LRP1), a critical Aβ transporter, in brain capillary and parenchyma. Sprague-Dawley rats received daily oral gavage at doses of 0, 14 (low-dose), and 27 (high-dose) mg Pb/kg as Pb acetate, 5 d/wk, for 4 or 8 wks. At the end of Pb exposure, a solution containing Aβ40 was infused into the brain via the cannulated internal carotid artery. Data by ELISA showed a strikingly high affinity of Ab to cerebral vasculature, which was approximately 7-14 times higher than that to the parenchymal fractions collected from control brains. Pb exposure further aggravated the Aβ accumulation in cerebral vasculature in a dose-dependent manner. Western blot analyses revealed that Pb exposure decreased LRP1 expression in cortical capillaries and hippocampal parenchyma. Immunohistochemistry (IHC) studies further revealed a disrupted distribution of LRP1 alongside hippocampal vasculature accompanied with a decreased expression in hippocampal neurons by Pb exposure. Taken together, the current study demonstrated that the cerebral vasculature naturally possessed a high affinity to Aβ present in circulating blood. Pb exposure significantly increased Aβ accumulation in cerebral vasculature; such an increased Aβ accumulation was due partly to the diminished expression of LRP1 in response to Pb in tested brain regions. Perceivably, Pb-facilitated Ab aggravation in cerebral vasculature may contribute to Pb-associated amyloid alterations.
Collapse
Affiliation(s)
- Luke L. Liu
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, HAMP-1273, West Lafayette, IN 47907 USA
| | - Xiaoli Shen
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, HAMP-1273, West Lafayette, IN 47907 USA
- School of Public Health, Qingdao University, Qingdao, China
| | - Huiying Gu
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Gang Zhao
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, HAMP-1273, West Lafayette, IN 47907 USA
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Yansheng Du
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Wei Zheng
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, HAMP-1273, West Lafayette, IN 47907 USA
| |
Collapse
|
8
|
Puris E, Saveleva L, de Sousa Maciel I, Kanninen KM, Auriola S, Fricker G. Protein Expression of Amino Acid Transporters Is Altered in Isolated Cerebral Microvessels of 5xFAD Mouse Model of Alzheimer's Disease. Mol Neurobiol 2023; 60:732-748. [PMID: 36367657 PMCID: PMC9849299 DOI: 10.1007/s12035-022-03111-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
Membrane transporters such as ATP-binding cassette (ABC) and solute carrier (SLC) transporters expressed at the neurovascular unit (NVU) play an important role in drug delivery to the brain and have been demonstrated to be involved in Alzheimer's disease (AD) pathogenesis. However, our knowledge of quantitative changes in transporter absolute protein expression and functionality in vivo in NVU in AD patients and animal models is limited. The study aim was to investigate alterations in protein expression of ABC and SLC transporters in the isolated brain microvessels and brain prefrontal cortices of a widely used model of familial AD, 5xFAD mice (8 months old), using a sensitive liquid chromatography tandem mass spectrometry-based quantitative targeted absolute proteomic approach. Moreover, we examined alterations in brain prefrontal cortical and plasmatic levels of transporter substrates in 5xFAD mice compared to age-matched wild-type (WT) controls. ASCT1 (encoded by Slc1a4) protein expression in the isolated brain microvessels and brain prefrontal cortices of 5xFAD mice was twice higher compared to WT controls (p = 0.01). Brain cortical levels of ASCT1 substrate, serine, were increased in 5xFAD mice compared to WT animals. LAT1 (encoded by Slc7a5) and 4F2hc (encoded by Slc3a2) protein expressions were significantly altered in the isolated brain microvessels of 5xFAD mice compared to WT controls (p = 0.008 and p = 0.05, respectively). Overall, the study provides important information, which is crucial for the optimal use of the 5xFAD mouse model in AD drug development and for investigating novel drug delivery approaches. In addition, the findings of the study shed light on the novel potential mechanisms underlying AD pathogenesis.
Collapse
Affiliation(s)
- Elena Puris
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| | - Liudmila Saveleva
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Izaque de Sousa Maciel
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Katja M. Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
Heitman AM, Bies RR, Schwartz SL. A Physiologically-Based Pharmacokinetic Model of the Brain Considering Regional Lipid Variance. J Pharmacol Exp Ther 2022; 383:217-226. [PMID: 36167416 DOI: 10.1124/jpet.122.001256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/08/2022] [Accepted: 08/25/2022] [Indexed: 01/07/2023] Open
Abstract
Modeling and simulation of the central nervous system provides a tool for understanding and predicting the distribution of small molecules throughout the brain tissue and cerebral spinal fluid (CSF), and these efforts often rely on empirical data to make predictions of distributions to move toward a better mechanistic understanding. A physiologically based pharmacokinetic model presented here incorporates multiple means of drug distribution to assemble a model for understanding potential factors that may determine the distribution of drugs across various regions of the brain, including both intra- and extracellular regions. Two classes of parameters are presented. The first concerns regional gross anatomic variability of the brain; the second concerns estimation of unbound fractions of drugs using know membrane phospholipid heterogeneity derived from regional lipid content. The model was then tested by comparing its outcomes to data from published human pharmacokinetic studies of acetaminophen, morphine, and phenytoin. The alignment of model predictions in the plasma, CSF, and tissue concentrations with the published data from studies of those three drugs suggests that the model can be a template for identifying drug localization in the brain. Clearly, knowledge of differentiated drug distribution in the brain is a requisite step in postulating pharmacodynamic and certain disease mechanisms. SIGNIFICANCE STATEMENT: This study concerns the application of heterogenous lipid distribution in brain tissue to predict regional variations in drug distribution in the brain via a mathematical model, thus expanding upon the current understanding of mechanisms of drug distribution in the central nervous system.
Collapse
Affiliation(s)
- Andrew McPherson Heitman
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC (A.M.H., S.L.S.) and Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York (R.B.)
| | - Robert R Bies
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC (A.M.H., S.L.S.) and Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York (R.B.)
| | - Sorell L Schwartz
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC (A.M.H., S.L.S.) and Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York (R.B.)
| |
Collapse
|
10
|
Pardridge WM. A Historical Review of Brain Drug Delivery. Pharmaceutics 2022; 14:1283. [PMID: 35745855 PMCID: PMC9229021 DOI: 10.3390/pharmaceutics14061283] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
The history of brain drug delivery is reviewed beginning with the first demonstration, in 1914, that a drug for syphilis, salvarsan, did not enter the brain, due to the presence of a blood-brain barrier (BBB). Owing to restricted transport across the BBB, FDA-approved drugs for the CNS have been generally limited to lipid-soluble small molecules. Drugs that do not cross the BBB can be re-engineered for transport on endogenous BBB carrier-mediated transport and receptor-mediated transport systems, which were identified during the 1970s-1980s. By the 1990s, a multitude of brain drug delivery technologies emerged, including trans-cranial delivery, CSF delivery, BBB disruption, lipid carriers, prodrugs, stem cells, exosomes, nanoparticles, gene therapy, and biologics. The advantages and limitations of each of these brain drug delivery technologies are critically reviewed.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Power EA, Rechberger JS, Gupta S, Schwartz JD, Daniels DJ, Khatua S. Drug delivery across the blood-brain barrier for the treatment of pediatric brain tumors - An update. Adv Drug Deliv Rev 2022; 185:114303. [PMID: 35460714 DOI: 10.1016/j.addr.2022.114303] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022]
Abstract
Even though the last decade has seen a surge in the identification of molecular targets and targeted therapies in pediatric brain tumors, the blood brain barrier (BBB) remains a significant challenge in systemic drug delivery. This continues to undermine therapeutic efficacy. Recent efforts have identified several strategies that can facilitate enhanced drug delivery into pediatric brain tumors. These include invasive methods such as intra-arterial, intrathecal, and convection enhanced delivery and non-invasive technologies that allow for transient access across the BBB, including focused ultrasound and nanotechnology. This review discusses current strategies that are being used to enhance delivery of different therapies across the BBB to the tumor site - a major unmet need in pediatric neuro-oncology.
Collapse
Affiliation(s)
- Erica A Power
- Mayo Clinic Graduate School of Biomedical Sciences, 200 First Street SW, Rochester, MN 55905, United States; Department of Neurologic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States
| | - Julian S Rechberger
- Mayo Clinic Graduate School of Biomedical Sciences, 200 First Street SW, Rochester, MN 55905, United States; Department of Neurologic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States
| | - Sumit Gupta
- Department of Pediatric Hematology/Oncology, Roseman University of Health Sciences, Las Vegas, NV 89118, United States
| | - Jonathan D Schwartz
- Department of Pediatric Hematology/Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States.
| |
Collapse
|
12
|
Pardridge WM. Blood-brain barrier delivery for lysosomal storage disorders with IgG-lysosomal enzyme fusion proteins. Adv Drug Deliv Rev 2022; 184:114234. [PMID: 35307484 DOI: 10.1016/j.addr.2022.114234] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/25/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
Abstract
The majority of lysosomal storage diseases affect the brain. Treatment of the brain with intravenous enzyme replacement therapy is not successful, because the recombinant lysosomal enzymes do not cross the blood-brain barrier (BBB). Biologic drugs, including lysosomal enzymes, can be re-engineered for BBB delivery as IgG-enzyme fusion proteins. The IgG domain of the fusion protein is a monoclonal antibody directed against an endogenous receptor-mediated transporter at the BBB, such as the insulin receptor or the transferrin receptor. This receptor transports the IgG across the BBB, in parallel with the endogenous receptor ligand, and the IgG acts as a molecular Trojan horse to ferry into brain the lysosomal enzyme genetically fused to the IgG. The IgG-enzyme fusion protein is bi-functional and retains both high affinity binding for the BBB receptor, and high lysosomal enzyme activity. IgG-lysosomal enzymes are presently in clinical trials for treatment of the brain in Mucopolysaccharidosis.
Collapse
|
13
|
Altered protein expression of membrane transporters in isolated cerebral microvessels and brain cortex of a rat Alzheimer's disease model. Neurobiol Dis 2022; 169:105741. [DOI: 10.1016/j.nbd.2022.105741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/25/2022] [Accepted: 04/20/2022] [Indexed: 01/28/2023] Open
|
14
|
In-Vivo and Ex-Vivo Brain Uptake Studies of Peptidomimetic Neurolysin Activators in Healthy and Stroke Animals. Pharm Res 2022; 39:1587-1598. [PMID: 35239135 DOI: 10.1007/s11095-022-03218-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/25/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Neurolysin (Nln) is a peptidase that functions to preserve the brain following ischemic stroke by hydrolyzing various neuropeptides. Nln activation has emerged as an attractive drug discovery target for treatment of ischemic stroke. Among first-in-class peptidomimetic Nln activators, we selected three lead compounds (9d, 10c, 11a) for quantitative pharmacokinetic analysis to provide valuable information for subsequent preclinical development. METHODS Pharmacokinetic profile of these compounds was studied in healthy and ischemic stroke-induced mice after bolus intravenous administration. Brain concentration and brain uptake clearance (Kin) was calculated from single time point analysis. The inter-relationship between LogP with in-vitro and in-vivo permeability was studied to determine CNS penetration. Brain slice uptake method was used to study tissue binding, whereas P-gp-mediated transport was evaluated to understand the potential brain efflux of these compounds. RESULTS According to calculated parameters, all three compounds showed a detectable amount in the brain after intravenous administration at 4 mg/kg; however, 11a had the highest brain concentration and brain uptake clearance. A strong correlation was documented between in-vitro and in-vivo permeability data. The efflux ratio of 10c was ~6-fold higher compared to 11a and correlated well with its lower Kin value. In experimental stroke animals, the Kin of 11a was significantly higher in ischemic vs. contralateral and intact hemispheres, though it remained below its A50 value required to activate Nln. CONCLUSIONS Collectively, these preclinical pharmacokinetic studies reveal promising BBB permeability of 11a and indicate that it can serve as an excellent lead for developing improved drug-like Nln activators.
Collapse
|
15
|
Damodarasamy M, Khaing ZZ, Hyde J, Keene CD, Bentov I, Banks WA, Reed MJ. Viable human brain microvessels for the study of aging and neurodegenerative diseases. Microvasc Res 2022; 140:104282. [PMID: 34813858 PMCID: PMC8846932 DOI: 10.1016/j.mvr.2021.104282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/28/2023]
Abstract
The brain microvasculature is altered in normal aging and in the presence of disease processes, such as neurodegeneration or ischemia, but there are few methods for studying living tissues. We now report that viable microvessels (MV) are readily isolated from brain tissue of subjects enrolled in studies of neurodegenerative diseases who undergo rapid autopsy (performed with <12 h postmortem interval - PMI). We find that these MV retain their morphology and cellular components and are fairly uniform in size. Sufficient MV (~3-5000) are obtained from 3 to 4 g of tissue to allow for studies of cellular composition as well as extracellular matrix (ECM). Using live/dead assays, these MV are viable for up to 5 days in tissue culture media (2D) designed to support endothelial cells and up to 11 days post-isolation in a 3-dimensional (3D) matrix (Low Growth Factor Matrigel™). Assays that measure the reducing potential of live cells \demonstrated that the majority of the MV maintain high levels of metabolic activity for a similar number of days as the live/dead assays. Functional cellular components (such as tight junctions and transporter proteins) and ECM of MV in tissue culture media, and to a lesser extent in 3D matrices, were readily visualized using immunofluorescence techniques. MV in tissue culture media are lysed and protein content analyzed, but MV in 3D matrix first require removal of the supporting matrix, which can confound the analysis of MV ECM. Finally, MV can be preserved in cryoprotective media, whereby over 50% retain their baseline viability upon thawing. In summary, we find that MV isolated from human brains undergoing rapid autopsy are viable in standard tissue culture for up to 5 days and the timeframe for experiments can be extended up to 11 days by use of a supportive 3D matrix. Viable human MV allow for temporal and spatial analysis of relevant cellular and ECM components that have implications for microvascular function in neurodegenerative diseases, vascular brain injury, and neurotrauma.
Collapse
Affiliation(s)
- Mamatha Damodarasamy
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA,VA Puget Sound Health Care System, Geriatric Research Education and Clinical Center, Seattle, WA, USA
| | - Zin Z Khaing
- Department of Neurosurgery, University of Washington, Seattle, WA, USA
| | - Jeffrey Hyde
- Department of Neurosurgery, University of Washington, Seattle, WA, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, Division of Neuropathology, University of Washington, Seattle, WA, USA
| | - Itay Bentov
- Department of Pain and Anesthesia, University of Washington, Seattle, WA, USA
| | - William A Banks
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA,VA Puget Sound Health Care System, Geriatric Research Education and Clinical Center, Seattle, WA, USA
| | - May J Reed
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA; VA Puget Sound Health Care System, Geriatric Research Education and Clinical Center, Seattle, WA, USA.
| |
Collapse
|
16
|
Gründemann D, Hartmann L, Flögel S. The Ergothioneine Transporter (ETT): Substrates and Locations, an Inventory. FEBS Lett 2021; 596:1252-1269. [PMID: 34958679 DOI: 10.1002/1873-3468.14269] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/07/2022]
Abstract
In all vertebrates including mammals, the ergothioneine transporter ETT (obsolete name OCTN1; human gene symbol SLC22A4) is a powerful and highly specific transporter for the uptake of ergothioneine (ET). ETT is not expressed ubiquitously and only cells with high ETT cell-surface levels can accumulate ET to high concentration. Without ETT, there is no uptake because the plasma membrane is essentially impermeable to this hydrophilic zwitterion. Here, we review the substrate specificity and localization of ETT, which is prominently expressed in neutrophils, monocytes/macrophages, and developing erythrocytes. Most sites of strong expression are conserved across species, but there are also major differences. In particular, we critically analyze the evidence for the expression of ETT in the brain as well as recent data suggesting that the transporter SLC22A15 may transport also ET. We conclude that, to date, ETT remains the only well-defined biomarker for intracellular ET activity. In humans, the ability to take up, distribute, and retain ET depends principally on this transporter.
Collapse
Affiliation(s)
- Dirk Gründemann
- Department of Pharmacology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Gleueler Straße 24, 50931, Cologne, Germany
| | - Lea Hartmann
- Department of Pharmacology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Gleueler Straße 24, 50931, Cologne, Germany
| | - Svenja Flögel
- Department of Pharmacology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Gleueler Straße 24, 50931, Cologne, Germany
| |
Collapse
|
17
|
Pardridge WM. Kinetics of Blood-Brain Barrier Transport of Monoclonal Antibodies Targeting the Insulin Receptor and the Transferrin Receptor. Pharmaceuticals (Basel) 2021; 15:3. [PMID: 35056060 PMCID: PMC8778919 DOI: 10.3390/ph15010003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/10/2021] [Accepted: 12/18/2021] [Indexed: 12/21/2022] Open
Abstract
Biologic drugs are large molecule pharmaceuticals that do not cross the blood-brain barrier (BBB), which is formed by the brain capillary endothelium. Biologics can be re-engineered for BBB transport as IgG fusion proteins, where the IgG domain is a monoclonal antibody (MAb) that targets an endogenous BBB transporter, such as the insulin receptor (IR) or transferrin receptor (TfR). The IR and TfR at the BBB transport the receptor-specific MAb in parallel with the transport of the endogenous ligand, insulin or transferrin. The kinetics of BBB transport of insulin or transferrin, or an IRMAb or TfRMAb, can be quantified with separate mathematical models. Mathematical models to estimate the half-time of receptor endocytosis, MAb or ligand exocytosis into brain extracellular space, or receptor recycling back to the endothelial luminal membrane were fit to the brain uptake of a TfRMAb or a IRMAb fusion protein in the Rhesus monkey. Model fits to the data also allow for estimates of the rates of association of the MAb in plasma with the IR or TfR that is embedded within the endothelial luminal membrane in vivo. The parameters generated from the model fits can be used to estimate the brain concentration profile of the MAb over time, and this brain exposure is shown to be a function of the rate of clearance of the antibody fusion protein from the plasma compartment.
Collapse
|
18
|
Proteome of the Luminal Surface of the Blood-Brain Barrier. Proteomes 2021; 9:proteomes9040045. [PMID: 34842825 PMCID: PMC8629012 DOI: 10.3390/proteomes9040045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022] Open
Abstract
Interrogation of the molecular makeup of the blood–brain barrier (BBB) using proteomic techniques has contributed to the cataloguing and functional understanding of the proteins uniquely organized at this specialized interface. The majority of proteomic studies have focused on cellular components of the BBB, including cultured brain endothelial cells (BEC). Detailed proteome mapping of polarized BEC membranes and their intracellular endosomal compartments has led to an improved understanding of the processes leading to internalization and transport of various classes of molecules across the BBB. Quantitative proteomic methods have further enabled absolute and comparative quantification of key BBB transporters and receptors in isolated BEC and microvessels from various species. However, translational studies further require in vivo/in situ analyses of the proteins exposed on the luminal surface of BEC in vessels under various disease and treatment conditions. In vivo proteomics approaches, both profiling and quantitative, usually rely on ‘capturing’ luminally-exposed proteins after perfusion with chemical labeling reagents, followed by analysis with various mass spectrometry-based approaches. This manuscript reviews recent advances in proteomic analyses of luminal membranes of BEC in vitro and in vivo and their applications in translational studies focused on developing novel delivery methods across the BBB.
Collapse
|
19
|
Cai P, Zheng Y, Sun Y, Zhang C, Zhang Q, Liu Q. New Blood-Brain Barrier Models Using Primary Parkinson's Disease Rat Brain Endothelial Cells and Astrocytes for the Development of Central Nervous System Drug Delivery Systems. ACS Chem Neurosci 2021; 12:3829-3837. [PMID: 34623131 DOI: 10.1021/acschemneuro.1c00118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor system defects due to the loss of dopaminergic neurons. A significant contributor to the current limited therapeutic treatments for PD is the poor penetration of potential drugs through the blood-brain barrier (BBB). The BBB is a highly specialized neurovascular system that separates components of the circulating blood from neurons. There is a great need to develop in vitro BBB models that retain fundamental characteristics and reliably predict the permeability of drug candidates. BBB breakdown may initiate and/or contribute to neuronal dysfunction and loss in diseases such as PD. However, there is no in vitro BBB model that mimics the pathological state of PD. To construct in vitro BBB models for drug delivery systems in the developing central nervous system (CNS), we isolated high purity endothelial cells from both normal and PD rat brain microvessels. The primary rat endothelial cell cultures maintained the properties of their in vivo counterparts. We developed and characterized in vitro rat endothelial cell and C6 glial cell coculture BBB models. We further examined the morphological and functional integrity of the barriers. The in vitro coculture BBB models we established displayed the typical cytoarchitecture and cellular markers by immunofluorescence staining and electron microscopy, high transendothelial electrical resistance (>300 Ω cm2), and a low permeability value (<3 × 10-6 cm/s). Our new models can be used to study BBB dysfunctions in relation to the pathogenesis and progression of PD, as well as a screening tool to test candidate drugs for PD treatment.
Collapse
Affiliation(s)
- Pei Cai
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China
| | - Yi Zheng
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China
| | - Yilin Sun
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Cuiping Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Qi Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Qian Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
- Key Laboratory of Central Nervous System Injury Research, Beijing Institute for Brain Disorders Brain Tumor Center, China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing 10050, China
| |
Collapse
|
20
|
Szczepkowska A, Harazin A, Barna L, Deli MA, Skipor J. Identification of Reference Genes for Circadian Studies on Brain Microvessels and Choroid Plexus Samples Isolated from Rats. Biomolecules 2021; 11:biom11081227. [PMID: 34439891 PMCID: PMC8394446 DOI: 10.3390/biom11081227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/18/2022] Open
Abstract
Delivery of putative compounds of therapeutic value to the brain is limited by brain barriers: the blood–brain barrier located in the endothelium of the brain microvessels (BrMV) and the blood–cerebrospinal fluid barrier located in the epithelium of the choroid plexus (ChP). Understanding their function and modulation by the circadian clock may enhance the efficacy of brain-targeting therapies. The aim of the present study was to evaluate the stability of 10 reference genes in the BrMV and ChP, isolated from male and female rats at six time points (ZT1, 5, 9, 13, 17, and 21). Gene evaluations were performed by qPCR, analyzed by RefFinder tool, and verified by analyzing the expression of the brain and muscle ARNT-like 1 (Bmal1) using the qPCR and digital PCR methods. We identified as the most stable genes for circadian studies tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (Ywhaz) and apolipoprotein E (Apoe) for BrMV, and beta actin (Actb) and hypoxanthine-guanine phosphoribosyltransferase (Hprt1) for ChP. After verification, ribosomal protein (Rps18) was also included as a sufficient reference gene. Additionally, the observed gender difference in the Bmal1 oscillations in both BrMV and ChP suggests that separate studies for each gender are recommended.
Collapse
Affiliation(s)
- Aleksandra Szczepkowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
- Correspondence: (A.S.); (M.A.D.); Tel.: +48-89-539-3125 (A.S.); +36-62-599602 (M.A.D.)
| | - András Harazin
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (A.H.); (L.B.)
| | - Lilla Barna
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (A.H.); (L.B.)
| | - Mária A. Deli
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (A.H.); (L.B.)
- Correspondence: (A.S.); (M.A.D.); Tel.: +48-89-539-3125 (A.S.); +36-62-599602 (M.A.D.)
| | - Janina Skipor
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| |
Collapse
|
21
|
Systemic inflammation induced changes in protein expression of ABC transporters and ionotropic glutamate receptor subunit 1 in the cerebral cortex of familial Alzheimer`s disease mouse model. J Pharm Sci 2021; 110:3953-3962. [PMID: 34403652 DOI: 10.1016/j.xphs.2021.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 01/28/2023]
Abstract
Alzheimer's disease (AD) is an incurable disease, with complex pathophysiology and a myriad of proteins involved in its development. In this study, we applied quantitative targeted absolute proteomic analysis for investigation of changes in potential AD drug targets, biomarkers, and transporters in cerebral cortices of lipopolysaccharide (LPS)-induced neuroinflammation mouse model, familial AD mice (APdE9) with and without LPS treatment as compared to age-matched wild type (WT) mice. The ABCB1, ABCG2 and GluN1 protein expression ratios between LPS treated APdE9 and WT control mice were 0.58 (95% CI 0.44 - 0.72), 0.65 (95% CI 0.53 - 0.77) and 0.61 (95% CI 0.52 - 0.69), respectively. The protein expression levels of other proteins such as MGLL, COX-2, CytC, ABCC1, ABCC4, SLC2A1 and SLC7A5 did not differ between the study groups. Overall, the study revealed that systemic inflammation can alter ABCB1 and ABCG2 protein expression in brain in AD, which can affect intra-brain drug distribution and play a role in AD development. Moreover, the inflammatory insult caused by peripheral infection in AD may be important factor triggering changes in GluN1 protein expression. However, more studies need to be performed in order to confirm these findings. The quantitative information about the expression of selected proteins provides important knowledge, which may help in the optimal use of the mouse models in AD drug development and better translation of preclinical data to humans.
Collapse
|
22
|
García-Varela L, Rodríguez-Pérez M, Custodia A, Moraga-Amaro R, Colabufo NA, Aguiar P, Sobrino T, Dierckx RA, van Waarde A, Elsinga PH, Luurtsema G. In Vivo Induction of P-Glycoprotein Function can be Measured with [ 18F]MC225 and PET. Mol Pharm 2021; 18:3073-3085. [PMID: 34228458 PMCID: PMC8383301 DOI: 10.1021/acs.molpharmaceut.1c00302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022]
Abstract
P-Glycoprotein (P-gp) is an efflux pump located at the blood-brain barrier (BBB) that contributes to the protection of the central nervous system by transporting neurotoxic compounds out of the brain. A decline in P-gp function has been related to the pathogenesis of neurodegenerative diseases. P-gp inducers can increase the P-gp function and are considered as potential candidates for the treatment of such disorders. The P-gp inducer MC111 increased P-gp expression and function in SW480 human colon adenocarcinoma and colo-320 cells, respectively. Our study aims to evaluate the P-gp inducing effect of MC111 in the whole brain in vivo, using the P-gp tracer [18F]MC225 and positron emission tomography (PET). Eighteen Wistar rats were treated with either vehicle solution, 4.5 mg/kg of MC111 (low-dose group), or 6 mg/kg of MC111 (high-dose group). Animals underwent a 60 min dynamic PET scan with arterial-blood sampling, 24 h after treatment with the inducer. Data were analyzed using the 1-tissue-compartment model and metabolite-corrected plasma as the input function. Model parameters such as the influx constant (K1) and volume of distribution (VT) were calculated, which reflect the in vivo P-gp function. P-gp and pregnane xenobiotic receptor (PXR) expression levels of the whole brain were assessed using western blot. The administration of MC111 decreased K1 and VT of [18F]MC225 in the whole brain and all of the selected brain regions. In the high-dose group, whole-brain K1 was decreased by 34% (K1-high-dose = 0.20 ± 0.02 vs K1-control = 0.30 ± 0.02; p < 0.001) and in the low-dose group by 7% (K1-low-dose = 0.28 ± 0.02 vs K1-control = 0.30 ± 0.02; p = 0.42) compared to controls. Whole-brain VT was decreased by 25% in the high-dose group (VT-high-dose = 5.92 ± 0.41 vs VT-control = 7.82 ± 0.38; p < 0.001) and by 6% in the low-dose group (VT-low-dose = 7.35 ± 0.38 vs VT-control = 7.82 ± 0.37; p = 0.38) compared to controls. k2 values did not vary after treatment. The treatment did not affect the metabolism of [18F]MC225. Western blot studies using the whole-brain tissue did not detect changes in the P-gp expression, however, preliminary results using isolated brain capillaries found an increasing trend up to 37% in treated rats. The decrease in K1 and VT values after treatment with the inducer indicates an increase in the P-gp functionality at the BBB of treated rats. Moreover, preliminary results using brain endothelial cells also sustained the increase in the P-gp expression. In conclusion, the results verify that MC111 induces P-gp expression and function at the BBB in rats. An increasing trend regarding the P-gp expression levels is found using western blot and an increased P-gp function is confirmed with [18F]MC225 and PET.
Collapse
Affiliation(s)
- Lara García-Varela
- Department
of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O.
Box 30001, 9713 GZ Groningen, The Netherlands
| | - Manuel Rodríguez-Pérez
- Clinical
Neurosciences Research Laboratory, Health
Research Institute of Santiago de Compostela (IDIS), 15706 Santiago
de Compostela, Spain
| | - Antía Custodia
- Clinical
Neurosciences Research Laboratory, Health
Research Institute of Santiago de Compostela (IDIS), 15706 Santiago
de Compostela, Spain
| | - Rodrigo Moraga-Amaro
- Department
of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O.
Box 30001, 9713 GZ Groningen, The Netherlands
| | - Nicola A. Colabufo
- Dipartimento
di Farmacia-Scienze del Farmaco, Università
degli Studi di Bari, I-70125 Bari, Italy
| | - Pablo Aguiar
- Department
of Nuclear Medicine and Molecular Imaging Group, Clinical University
Hospital, IDIS Health Research Institute, 15706 Santiago
de Compostela, Spain
| | - Tomás Sobrino
- Clinical
Neurosciences Research Laboratory, Health
Research Institute of Santiago de Compostela (IDIS), 15706 Santiago
de Compostela, Spain
| | - Rudi A.J.O. Dierckx
- Department
of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O.
Box 30001, 9713 GZ Groningen, The Netherlands
| | - Aren van Waarde
- Department
of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O.
Box 30001, 9713 GZ Groningen, The Netherlands
| | - Philip H. Elsinga
- Department
of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O.
Box 30001, 9713 GZ Groningen, The Netherlands
| | - Gert Luurtsema
- Department
of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O.
Box 30001, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
23
|
Su SH, Song Y, Newstead MW, Cai T, Wu M, Stephens A, Singer BH, Kurabayashi K. Ultrasensitive Multiparameter Phenotyping of Rare Cells Using an Integrated Digital-Molecular-Counting Microfluidic Well Plate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101743. [PMID: 34170616 PMCID: PMC8349899 DOI: 10.1002/smll.202101743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/08/2021] [Indexed: 06/13/2023]
Abstract
Integrated microfluidic cellular phenotyping platforms provide a promising means of studying a variety of inflammatory diseases mediated by cell-secreted cytokines. However, immunosensors integrated in previous microfluidic platforms lack the sensitivity to detect small signals in the cellular secretion of proinflammatory cytokines with high precision. This limitation prohibits researchers from studying cells secreting cytokines at low abundance or existing at a small population. Herein, the authors present an integrated platform named the "digital Phenoplate (dPP)," which integrates digital immunosensors into a microfluidic chip with on-chip cell assay chambers, and demonstrates ultrasensitive cellular cytokine secretory profile measurement. The integrated sensors yield a limit of detection as small as 0.25 pg mL-1 for mouse tumor necrosis factor alpha (TNF-α). Each on-chip cell assay chamber confines cells whose population ranges from ≈20 to 600 in arrayed single-cell trapping microwells. Together, these microfluidic features of the dPP simultaneously permit precise counting and image-based cytometry of individual cells while performing parallel measurements of TNF-α released from rare cells under multiple stimulant conditions for multiple samples. The dPP platform is broadly applicable to the characterization of cellular phenotypes demanding high precision and high throughput.
Collapse
Affiliation(s)
- Shiuan-Haur Su
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yujing Song
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Michael W Newstead
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tao Cai
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - MengXi Wu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Andrew Stephens
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Benjamin H Singer
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Katsuo Kurabayashi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
24
|
Leclerc M, Dudonné S, Calon F. Can Natural Products Exert Neuroprotection without Crossing the Blood-Brain Barrier? Int J Mol Sci 2021; 22:ijms22073356. [PMID: 33805947 PMCID: PMC8037419 DOI: 10.3390/ijms22073356] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/17/2022] Open
Abstract
The scope of evidence on the neuroprotective impact of natural products has been greatly extended in recent years. However, a key question that remains to be answered is whether natural products act directly on targets located in the central nervous system (CNS), or whether they act indirectly through other mechanisms in the periphery. While molecules utilized for brain diseases are typically bestowed with a capacity to cross the blood–brain barrier, it has been recently uncovered that peripheral metabolism impacts brain functions, including cognition. The gut–microbiota–brain axis is receiving increasing attention as another indirect pathway for orally administered compounds to act on the CNS. In this review, we will briefly explore these possibilities focusing on two classes of natural products: omega-3 polyunsaturated fatty acids (n-3 PUFAs) from marine sources and polyphenols from plants. The former will be used as an example of a natural product with relatively high brain bioavailability but with tightly regulated transport and metabolism, and the latter as an example of natural compounds with low brain bioavailability, yet with a growing amount of preclinical and clinical evidence of efficacy. In conclusion, it is proposed that bioavailability data should be sought early in the development of natural products to help identifying relevant mechanisms and potential impact on prevalent CNS disorders, such as Alzheimer’s disease.
Collapse
Affiliation(s)
- Manon Leclerc
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada;
- Axe Neurosciences, Centre de Recherche du CHU de Québec–Université Laval, Québec, QC G1V 4G2, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada;
- OptiNutriBrain-Laboratoire International Associé (NutriNeuro France-INAF Canada), Québec, QC G1V 0A6, Canada
| | - Stéphanie Dudonné
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada;
- OptiNutriBrain-Laboratoire International Associé (NutriNeuro France-INAF Canada), Québec, QC G1V 0A6, Canada
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada;
- Axe Neurosciences, Centre de Recherche du CHU de Québec–Université Laval, Québec, QC G1V 4G2, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada;
- OptiNutriBrain-Laboratoire International Associé (NutriNeuro France-INAF Canada), Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-(418)-525-4444 (ext. 48697); Fax: +1-(418)-654-2761
| |
Collapse
|
25
|
Sah E, Krishnamurthy S, Ahmidouch MY, Gillispie GJ, Milligan C, Orr ME. The Cellular Senescence Stress Response in Post-Mitotic Brain Cells: Cell Survival at the Expense of Tissue Degeneration. Life (Basel) 2021; 11:229. [PMID: 33799628 PMCID: PMC7998276 DOI: 10.3390/life11030229] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 01/10/2023] Open
Abstract
In 1960, Rita Levi-Montalcini and Barbara Booker made an observation that transformed neuroscience: as neurons mature, they become apoptosis resistant. The following year Leonard Hayflick and Paul Moorhead described a stable replicative arrest of cells in vitro, termed "senescence". For nearly 60 years, the cell biology fields of neuroscience and senescence ran in parallel, each separately defining phenotypes and uncovering molecular mediators to explain the 1960s observations of their founding mothers and fathers, respectively. During this time neuroscientists have consistently observed the remarkable ability of neurons to survive. Despite residing in environments of chronic inflammation and degeneration, as occurs in numerous neurodegenerative diseases, often times the neurons with highest levels of pathology resist death. Similarly, cellular senescence (hereon referred to simply as "senescence") now is recognized as a complex stress response that culminates with a change in cell fate. Instead of reacting to cellular/DNA damage by proliferation or apoptosis, senescent cells survive in a stable cell cycle arrest. Senescent cells simultaneously contribute to chronic tissue degeneration by secreting deleterious molecules that negatively impact surrounding cells. These fields have finally collided. Neuroscientists have begun applying concepts of senescence to the brain, including post-mitotic cells. This initially presented conceptual challenges to senescence cell biologists. Nonetheless, efforts to understand senescence in the context of brain aging and neurodegenerative disease and injury emerged and are advancing the field. The present review uses pre-defined criteria to evaluate evidence for post-mitotic brain cell senescence. A closer interaction between neuro and senescent cell biologists has potential to advance both disciplines and explain fundamental questions that have plagued their fields for decades.
Collapse
Affiliation(s)
- Eric Sah
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.S.); (S.K.); (M.Y.A.); (G.J.G.)
| | - Sudarshan Krishnamurthy
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.S.); (S.K.); (M.Y.A.); (G.J.G.)
- Bowman Gray Center for Medical Education, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Mohamed Y. Ahmidouch
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.S.); (S.K.); (M.Y.A.); (G.J.G.)
- Departments of Biology and Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Gregory J. Gillispie
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.S.); (S.K.); (M.Y.A.); (G.J.G.)
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Carol Milligan
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Miranda E. Orr
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.S.); (S.K.); (M.Y.A.); (G.J.G.)
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Salisbury VA Medical Center, Salisbury, NC 28144, USA
| |
Collapse
|
26
|
The Roles of Sodium-Independent Inorganic Phosphate Transporters in Inorganic Phosphate Homeostasis and in Cancer and Other Diseases. Int J Mol Sci 2020; 21:ijms21239298. [PMID: 33291240 PMCID: PMC7729900 DOI: 10.3390/ijms21239298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Inorganic phosphate (Pi) is an essential nutrient for the maintenance of cells. In healthy mammals, extracellular Pi is maintained within a narrow concentration range of 0.70 to 1.55 mM. Mammalian cells depend on Na+/Pi cotransporters for Pi absorption, which have been well studied. However, a new type of sodium-independent Pi transporter has been identified. This transporter assists in the absorption of Pi by intestinal cells and renal proximal tubule cells and in the reabsorption of Pi by osteoclasts and capillaries of the blood–brain barrier (BBB). Hyperphosphatemia is a risk factor for mineral deposition, the development of diseases such as osteoarthritis, and vascular calcifications (VCs). Na+-independent Pi transporters have been identified and biochemically characterized in vascular smooth muscle cells (VSMCs), chondrocytes, and matrix vesicles, and their involvement in mineral deposition in the extracellular microenvironment has been suggested. According to the growth rate hypothesis, cancer cells require more phosphate than healthy cells due to their rapid growth rates. Recently, it was demonstrated that breast cancer cells (MDA-MB-231) respond to high Pi concentration (2 mM) by decreasing Na+-dependent Pi transport activity concomitant with an increase in Na+-independent (H+-dependent) Pi transport. This Pi H+-dependent transport has a fundamental role in the proliferation and migratory capacity of MDA-MB-231 cells. The purpose of this review is to discuss experimental findings regarding Na+-independent inorganic phosphate transporters and summarize their roles in Pi homeostasis, cancers and other diseases, such as osteoarthritis, and in processes such as VC.
Collapse
|
27
|
Pardridge WM. Brain Delivery of Nanomedicines: Trojan Horse Liposomes for Plasmid DNA Gene Therapy of the Brain. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:602236. [PMID: 35047884 PMCID: PMC8757841 DOI: 10.3389/fmedt.2020.602236] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Non-viral gene therapy of the brain is enabled by the development of plasmid DNA brain delivery technology, which requires the engineering and manufacturing of nanomedicines that cross the blood-brain barrier (BBB). The development of such nanomedicines is a multi-faceted problem that requires progress at multiple levels. First, the type of nanocontainer, e.g., nanoparticle or liposome, which encapsulates the plasmid DNA, must be developed. Second, the type of molecular Trojan horse, e.g., peptide or receptor-specific monoclonal antibody (MAb), must be selected for incorporation on the surface of the nanomedicine, as this Trojan horse engages specific receptors expressed on the BBB, and the brain cell membrane, to trigger transport of the nanomedicine from blood into brain cells beyond the BBB. Third, the plasmid DNA must be engineered without bacterial elements, such as antibiotic resistance genes, to enable administration to humans; the plasmid DNA must also be engineered with tissue-specific gene promoters upstream of the therapeutic gene, to insure gene expression in the target organ with minimal off-target expression. Fourth, upstream manufacturing of the nanomedicine must be developed and scalable so as to meet market demand for the target disease, e.g., annual long-term treatment of 1,000 patients with an orphan disease, short term treatment of 10,000 patients with malignant glioma, or 100,000 patients with new onset Parkinson's disease. Fifth, downstream manufacturing problems, such as nanomedicine lyophilization, must be solved to ensure the nanomedicine has a commercially viable shelf-life for treatment of CNS disease in humans.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
28
|
Pardridge WM. Treatment of Alzheimer's Disease and Blood-Brain Barrier Drug Delivery. Pharmaceuticals (Basel) 2020; 13:E394. [PMID: 33207605 PMCID: PMC7697739 DOI: 10.3390/ph13110394] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the enormity of the societal and health burdens caused by Alzheimer's disease (AD), there have been no FDA approvals for new therapeutics for AD since 2003. This profound lack of progress in treatment of AD is due to dual problems, both related to the blood-brain barrier (BBB). First, 98% of small molecule drugs do not cross the BBB, and ~100% of biologic drugs do not cross the BBB, so BBB drug delivery technology is needed in AD drug development. Second, the pharmaceutical industry has not developed BBB drug delivery technology, which would enable industry to invent new therapeutics for AD that actually penetrate into brain parenchyma from blood. In 2020, less than 1% of all AD drug development projects use a BBB drug delivery technology. The pathogenesis of AD involves chronic neuro-inflammation, the progressive deposition of insoluble amyloid-beta or tau aggregates, and neural degeneration. New drugs that both attack these multiple sites in AD, and that have been coupled with BBB drug delivery technology, can lead to new and effective treatments of this serious disorder.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles, CA 90024, USA
| |
Collapse
|
29
|
Noorani B, Chowdhury EA, Alqahtani F, Ahn Y, Patel D, Al-Ahmad A, Mehvar R, Bickel U. LC-MS/MS-based in vitro and in vivo investigation of blood-brain barrier integrity by simultaneous quantitation of mannitol and sucrose. Fluids Barriers CNS 2020; 17:61. [PMID: 33054801 PMCID: PMC7556948 DOI: 10.1186/s12987-020-00224-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Understanding the pathophysiology of the blood brain-barrier (BBB) plays a critical role in diagnosis and treatment of disease conditions. Applying a sensitive and specific LC-MS/MS technique for the measurement of BBB integrity with high precision, we have recently introduced non-radioactive [13C12]sucrose as a superior marker substance. Comparison of permeability markers with different molecular weight, but otherwise similar physicochemical properties, can provide insights into the uptake mechanism at the BBB. Mannitol is a small hydrophilic, uncharged molecule that is half the size of sucrose. Previously only radioactive [3H]mannitol or [14C]mannitol has been used to measure BBB integrity. METHODS We developed a UPLC-MS/MS method for simultaneous analysis of stable isotope-labeled sucrose and mannitol. The in vivo BBB permeability of [13C6]mannitol and [13C12]sucrose was measured in mice, using [13C6]sucrose as a vascular marker to correct for brain intravascular content. Moreover, a Transwell model with induced pluripotent stem cell-derived brain endothelial cells was used to measure the permeability coefficient of sucrose and mannitol in vitro both under control and compromised (in the presence of IL-1β) conditions. RESULTS We found low permeability values for both mannitol and sucrose in vitro (permeability coefficients of 4.99 ± 0.152 × 10-7 and 3.12 ± 0.176 × 10-7 cm/s, respectively) and in vivo (PS products of 0.267 ± 0.021 and 0.126 ± 0.025 µl g-1 min-1, respectively). Further, the in vitro permeability of both markers substantially increased in the presence of IL-1β. Corrected brain concentrations (Cbr), obtained by washout vs. vascular marker correction, were not significantly different for either mannitol (0.071 ± 0.007 and 0.065 ± 0.009 percent injected dose per g) or sucrose (0.035 ± 0.003 and 0.037 ± 0.005 percent injected dose per g). These data also indicate that Cbr and PS product values of mannitol were about twice the corresponding values of sucrose. CONCLUSIONS We established a highly sensitive, specific and reproducible approach to simultaneously measure the BBB permeability of two classical low molecular weight, hydrophilic markers in a stable isotope labeled format. This method is now available as a tool to quantify BBB permeability in vitro and in vivo in different disease models, as well as for monitoring treatment outcomes.
Collapse
Affiliation(s)
- Behnam Noorani
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.,Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Ekram Ahmed Chowdhury
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.,Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Yeseul Ahn
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.,Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Dhavalkumar Patel
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Abraham Al-Ahmad
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.,Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Reza Mehvar
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, School of Pharmacy, Irvine, CA, USA
| | - Ulrich Bickel
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA. .,Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| |
Collapse
|
30
|
Zaragozá R. Transport of Amino Acids Across the Blood-Brain Barrier. Front Physiol 2020; 11:973. [PMID: 33071801 PMCID: PMC7538855 DOI: 10.3389/fphys.2020.00973] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/16/2020] [Indexed: 01/17/2023] Open
Abstract
The blood-brain-barrier (BBB), present in brain capillaries, constitutes an essential barrier mechanism for normal functioning and development of the brain. The presence of tight junctions between adjacent endothelial cells restricts permeability and movement of molecules between extracellular fluid and plasma. The protein complexes that control cell-cell attachment also polarize cellular membrane, so that it can be divided into luminal (blood-facing) and abluminal (brain) sides, and each solute that enters/leaves the brain must cross both membranes. Several amino acid (AA) transport systems with different distributions on both sides of the BBB have been described. In a broad sense, there are at least five different systems of facilitative transporters and all of them are found in the luminal membrane. Some of these transporters are very specific for a small group of substrates and are located exclusively on the luminal side of the BBB. However, the two major facilitative carriers, system L and system y+, are located in both membranes, although asymmetrically. The position of these Na+-independent transporters ensures AA availability in the brain and also its bidirectional transport across the endothelial cells. On the other hand, there are several Na+-dependent transport systems that transport AAs against its concentration gradient together with the movement of Na+ ions. The majority of these active transporters are present exclusively at the abluminal membrane and are responsible for AA efflux from the brain into the endothelial cells. Since they are Na+-coupled, the sodium pump Na+/K+-ATPase is also highly expressed on this abluminal side of the BBB. Once inside the cell, the facilitative transporters located in the luminal membranes mediate export from the endothelial cell to the blood. In summary, the polarized distribution of these transport systems between the luminal and abluminal membranes, and the fact that more than one transporter may carry the same substrate, ensures supply and excretion of AAs in and out of the brain, thereby controlling its homeostasis and proper function.
Collapse
Affiliation(s)
- Rosa Zaragozá
- Department of Human Anatomy and Embriology, School of Medicine, IIS INCLIVA, University of Valencia, Valencia, Spain
| |
Collapse
|