1
|
Salman IM. Advancing cardiovascular neuromodulation: Aortic baroreceptor afferents act as targets for blood pressure control in hypertension. Science 2024; 385:508. [PMID: 39088614 DOI: 10.1126/science.adq8584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Aortic baroreceptor afferents act as targets for blood pressure control in hypertension.
Collapse
Affiliation(s)
- Ibrahim M Salman
- Department of Pharmaceutical Sciences, College of Pharmacy, Alfaisal University, Riyadh, Saudi Arabia
- Division of Pulmonology, Allergy and Immunology, Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
2
|
Hofmann GC, Gama de Barcellos Filho P, Khodadadi F, Ostrowski D, Kline DD, Hasser EM. Vagotomy blunts cardiorespiratory responses to vagal afferent stimulation via pre- and postsynaptic effects in the nucleus tractus solitarii. J Physiol 2024; 602:1147-1174. [PMID: 38377124 DOI: 10.1113/jp285854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
Viscerosensory information travels to the brain via vagal afferents, where it is first integrated within the brainstem nucleus tractus solitarii (nTS), a critical contributor to cardiorespiratory function and site of neuroplasticity. We have shown that decreasing input to the nTS via unilateral vagus nerve transection (vagotomy) induces morphological changes in nTS glia and reduces sighs during hypoxia. The mechanisms behind post-vagotomy changes are not well understood. We hypothesized that chronic vagotomy alters cardiorespiratory responses to vagal afferent stimulation via blunted nTS neuronal activity. Male Sprague-Dawley rats (6 weeks old) underwent right cervical vagotomy caudal to the nodose ganglion, or sham surgery. After 1 week, rats were anaesthetized, ventilated and instrumented to measure mean arterial pressure (MAP), heart rate (HR), and splanchnic sympathetic and phrenic nerve activity (SSNA and PhrNA, respectively). Vagal afferent stimulation (2-50 Hz) decreased cardiorespiratory parameters and increased neuronal Ca2+ measured by in vivo photometry and in vitro slice imaging of nTS GCaMP8m. Vagotomy attenuated both these reflex and neuronal Ca2+ responses compared to shams. Vagotomy also reduced presynaptic Ca2+ responses to stimulation (Cal-520 imaging) in the nTS slice. The decrease in HR, SSNA and PhrNA due to nTS nanoinjection of exogenous glutamate also was tempered following vagotomy. This effect was not restored by blocking excitatory amino acid transporters. However, the blunted responses were mimicked by NMDA, not AMPA, nanoinjection and were associated with reduced NR1 subunits in the nTS. Altogether, these results demonstrate that vagotomy induces multiple changes within the nTS tripartite synapse that influence cardiorespiratory reflex responses to afferent stimulation. KEY POINTS: Multiple mechanisms within the nucleus tractus solitarii (nTS) contribute to functional changes following vagal nerve transection. Vagotomy results in reduced cardiorespiratory reflex responses to vagal afferent stimulation and nTS glutamate nanoinjection. Blunted responses occur via reduced presynaptic Ca2+ activation and attenuated NMDA receptor expression and function, leading to a reduction in nTS neuronal activation. These results provide insight into the control of autonomic and respiratory function, as well as the plasticity that can occur in response to nerve damage and cardiorespiratory disease.
Collapse
Affiliation(s)
- Gabrielle C Hofmann
- Comparative Medicine, University of Missouri, Columbia, Missouri, USA
- Area Pathobiology, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Procopio Gama de Barcellos Filho
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Fateme Khodadadi
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Daniela Ostrowski
- Department of Pharmacology, A.T. Still University, Kirksville, Missouri, USA
| | - David D Kline
- Area Pathobiology, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - Eileen M Hasser
- Area Pathobiology, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
3
|
Baumer-Harrison C, Elsaafien K, Johnson DN, Peñaloza Aponte JD, de Araujo A, Patel S, Bruce EB, Harden SW, Frazier CJ, Scott KA, de Lartigue G, Krause EG, de Kloet AD. Alleviating Hypertension by Selectively Targeting Angiotensin Receptor-Expressing Vagal Sensory Neurons. J Neurosci 2024; 44:e1154232023. [PMID: 38242697 PMCID: PMC10904025 DOI: 10.1523/jneurosci.1154-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/03/2023] [Accepted: 11/29/2023] [Indexed: 01/21/2024] Open
Abstract
Cardiovascular homeostasis is maintained, in part, by neural signals arising from arterial baroreceptors that apprise the brain of blood volume and pressure. Here, we test whether neurons within the nodose ganglia that express angiotensin type-1a receptors (referred to as NGAT1aR) serve as baroreceptors that differentially influence blood pressure (BP) in male and female mice. Using Agtr1a-Cre mice and Cre-dependent AAVs to direct tdTomato to NGAT1aR, neuroanatomical studies revealed that NGAT1aR receive input from the aortic arch, project to the caudal nucleus of the solitary tract (NTS), and synthesize mechanosensitive ion channels, Piezo1/2 To evaluate the functionality of NGAT1aR, we directed the fluorescent calcium indicator (GCaMP6s) or the light-sensitive channelrhodopsin-2 (ChR2) to Agtr1a-containing neurons. Two-photon intravital imaging in Agtr1a-GCaMP6s mice revealed that NGAT1aR couple their firing to elevated BP, induced by phenylephrine (i.v.). Furthermore, optical excitation of NGAT1aR at their soma or axon terminals within the caudal NTS of Agtr1a-ChR2 mice elicited robust frequency-dependent decreases in BP and heart rate, indicating that NGAT1aR are sufficient to elicit appropriate compensatory responses to vascular mechanosensation. Optical excitation also elicited hypotensive and bradycardic responses in ChR2-expressing mice that were subjected to deoxycorticosterone acetate (DOCA)-salt hypertension; however, the duration of these effects was altered, suggestive of hypertension-induced impairment of the baroreflex. Similarly, increased GCaMP6s fluorescence observed after administration of phenylephrine was delayed in mice subjected to DOCA-salt or chronic delivery of angiotensin II. Collectively, these results reveal the structure and function of NGAT1aR and suggest that such neurons may be exploited to discern and relieve hypertension.
Collapse
Affiliation(s)
- Caitlin Baumer-Harrison
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida 32611
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida 32611
- Center for Smell and Taste, University of Florida, Gainesville, Florida 32611
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Khalid Elsaafien
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida 32611
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32611
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302
| | - Dominique N Johnson
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida 32611
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32611
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302
| | - Jesus D Peñaloza Aponte
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida 32611
| | - Alan de Araujo
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104
| | - Sagar Patel
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida 32611
| | - Erin B Bruce
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida 32611
| | - Scott W Harden
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida 32611
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32611
| | - Charles J Frazier
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida 32611
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32611
| | - Karen A Scott
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida 32611
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32611
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302
| | | | - Eric G Krause
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida 32611
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32611
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302
| | - Annette D de Kloet
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida 32611
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida 32611
- Center for Smell and Taste, University of Florida, Gainesville, Florida 32611
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302
| |
Collapse
|
4
|
Salman IM. Key challenges in exploring the rat as a preclinical neurostimulation model for aortic baroreflex modulation in hypertension. Hypertens Res 2024; 47:399-415. [PMID: 37919429 DOI: 10.1038/s41440-023-01486-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
Electrode-based electrophysiological interfaces with peripheral nerves have come a long way since the 1960s, with several neurostimulation applications witnessing widespread clinical implementation since then. In resistant hypertension, previous clinical trials have shown that "carotid" baroreflex stimulation using device-based baroreflex activation therapy (BAT) can effectively lower blood pressure (BP). However, device-based "aortic" baroreflex stimulation remains untouched for clinical translation. The rat is a remarkable animal model that facilitates exploration of mechanisms pertaining to the baroreceptor reflex and preclinical development of novel therapeutic strategies for BP modulation and hypertension treatment. Specifically, the aortic depressor nerve (ADN) in rats carries a relatively pure population of barosensitive afferent neurons, which enable selective investigation of the aortic baroreflex function. In a rat model of essential hypertension, the spontaneously hypertensive rat (SHR), we have recently investigated the aortic baroreceptor afferents as an alternate target for BP modulation, and showed that "low intensity" stimulation is able to evoke clinically meaningful reductions in BP. Deriving high quality short-term and long-term data on aortic baroreflex modulation in rats is currently hampered by a number of unresolved experimental challenges, including anatomical variations across rats which complicates identification of the ADN, the use of unrefined neurostimulation tools or paradigms, and issues arising from anesthetized and conscious surgical preparations. With the goal of refining existing experimental protocols designed for preclinical investigation of the baroreflex, this review seeks to outline current challenges hindering further progress in aortic baroreflex modulation studies in rats and present some practical considerations and recently emerging ideas to overcome them. Aortic baroreflex modulation.
Collapse
Affiliation(s)
- Ibrahim M Salman
- Department of Pharmaceutical Sciences, College of Pharmacy, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
5
|
Salman IM. Functional symmetry of the aortic baroreflex in female spontaneously hypertensive rats. J Hypertens 2023; 41:1456-1465. [PMID: 37382160 DOI: 10.1097/hjh.0000000000003493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
BACKGROUND Altered baroreflex function is well documented in hypertension; however, the female sex remains far less studied compared with males. We have previously demonstrated a left-sided dominance in the expression of aortic baroreflex function in male spontaneously hypertensive rats (SHRs) and normotensive rats of either sex. If lateralization in aortic baroreflex function extends to hypertensive female rats remains undetermined. This study, therefore, assessed the contribution of left and right aortic baroreceptor afferents to baroreflex modulation in female SHRs. METHOD Anesthetized female SHRs (total n = 9) were prepared for left, right and bilateral aortic depressor nerve (ADN) stimulation (1-40 Hz, 0.2 ms, 0.4 mA for 20 s) and measurement of reflex mean arterial pressure (MAP), heart rate (HR), mesenteric vascular resistance (MVR) and femoral vascular resistance (FVR). All rats were also matched for the diestrus phase of the estrus cycle. RESULTS Reflex (%) reductions in MAP, HR, MVR and FVR were comparable for both left-sided and right-sided stimulation. Bilateral stimulation evoked slightly larger ( P = 0.03) reductions in MVR compared with right-sided stimulation; however, all other reflex hemodynamic measures were similar to both left-sided and right-sided stimulation. CONCLUSION These data show that female SHRs, unlike male SHRs, express similar central integration of left versus right aortic baroreceptor afferent input and thus show no laterization in the aortic baroreflex during hypertension. Marginal increases in mesenteric vasodilation following bilateral activation of the aortic baroreceptor afferents drive no superior depressor responses beyond that of the unilateral stimulation. Clinically, unilateral targeting of the left or right aortic baroreceptor afferents may provide adequate reductions in blood pressure in female hypertensive patients.
Collapse
Affiliation(s)
- Ibrahim M Salman
- Department of Pharmaceutical Sciences, College of Pharmacy, Alfaisal University, Riyadh, Saudi Arabia
- Division of Pulmonology, Allergy and Immunology, Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Salman IM, Ameer OZ, McMurray S, Hassan SF, Sridhar A, Lewis SJ, Hsieh YH. Differential central integration of left versus right baroreceptor afferent input in spontaneously hypertensive rats. J Hypertens 2023; 41:1191-1200. [PMID: 37074354 PMCID: PMC10241432 DOI: 10.1097/hjh.0000000000003448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/07/2023] [Indexed: 04/20/2023]
Abstract
BACKGROUND The blood pressure (BP) regulatory impact of the arterial baroreflex has been well established in health and disease. Under normotensive conditions, we have previously demonstrated functional differences in the central processing of the left versus right aortic baroreceptor afferent input. However, it is unknown if lateralization in aortic baroreflex function remains evident during hypertension. METHOD We therefore, investigated the effects of laterality on the expression of baroreflex-driven cardiovascular reflexes in a genetic model of essential hypertension, the spontaneously hypertensive rat (SHR). Anesthetized male SHRs (total n = 9) were instrumented for left, right, and bilateral aortic depressor nerve (ADN) stimulation (1-40 Hz, 0.2 ms, and 0.4 mA for 20 s) and measurement of mean arterial pressure (MAP), heart rate (HR), mesenteric vascular resistance (MVR), and femoral vascular resistance (FVR). RESULTS Left right, and bilateral ADN stimulation evoked frequency-dependent decreases in MAP, HR, MVR, and FVR. Left and bilateral ADN stimulation evoked greater reflex reductions in MAP, HR, MVR, and FVR compared with right-sided stimulation. Reflex bradycardia to bilateral stimulation was larger relative to both left-sided and right-sided stimulation. Reflex depressor and vascular resistance responses to bilateral stimulation mimicked those of the left-sided stimulation. These data indicate a left-side dominance in the central integration of aortic baroreceptor afferent input. Furthermore, reflex summation due to bilateral stimulation is only evident on the reflex bradycardic response, and does not drive further reductions in BP, suggesting that reflex depressor responses in the SHRs are primarily driven by changes in vascular resistance. CONCLUSION Together, these results indicate that lateralization in aortic baroreflex function is not only evident under normotensive conditions but also extends to hypertensive conditions.
Collapse
Affiliation(s)
- Ibrahim M. Salman
- Department of Pharmaceutical Sciences, College of Pharmacy, Alfaisal University, Riyadh, Saudi Arabia
| | - Omar Z. Ameer
- Department of Pharmaceutical Sciences, College of Pharmacy, Alfaisal University, Riyadh, Saudi Arabia
| | | | | | - Arun Sridhar
- Galvani Bioelectronics, Stevenage, Hertfordshire, UK
| | - Stephen J. Lewis
- Division of Pulmonology, Allergy and Immunology, Department of Pediatrics, School of Medicine
- Electrical Stimulation Center
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care, and Sleep Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Low intensity stimulation of aortic baroreceptor afferent fibers as a potential therapeutic alternative for hypertension treatment. Sci Rep 2022; 12:12242. [PMID: 35851099 PMCID: PMC9293925 DOI: 10.1038/s41598-022-15761-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Carotid baroreceptor stimulation has been clinically explored for antihypertensive benefits, but neuromodulation of aortic baroreceptor afferents remains unexplored for potential translation into the clinic. Published studies have used supramaximal stimulations, which are unphysiological and energy inefficient. The objective of the present study was to identify optimal low-charge nerve stimulation parameters that would provide a clinically-relevant (20–30 mmHg) decrease in mean arterial pressure (MAP) in anesthetized spontaneously hypertensive rats. Stimulations of 20 s were delivered to the left aortic depressor nerve (ADN) of these rats using low ranges of pulse amplitudes (≤ 0.6 mA), widths (≤ 0.5 ms) and frequencies (≤ 5 Hz). We also assessed the effects of continuous (20 s) versus intermittent (5 s ON/3 s OFF and 5 s ON/3 s OFF for 20 s) stimulation on MAP, heart rate (HR), mesenteric (MVR) and femoral (FVR) vascular resistance using low (5 Hz) and high (15 Hz) frequencies. Lower pulse amplitudes (0.2 mA) produced 9 ± 2 to 18 ± 2 mmHg decreases in MAP. Higher pulse amplitudes (0.4 mA) produced a median MAP reduction of 28 ± 4 mmHg at 0.2 ms and 5 Hz, with no added benefit seen above 0.4 mA. Continuous and intermittent low frequency stimulation at 0.4 mA and 0.2 ms produced similar sustained decreases in MAP, HR, MVR and FVR. Continuous high frequency stimulation at 0.4 mA and 0.2 ms produced larger reductions in MAP, HR, MVR and FVR compared with all low frequency and/or intermittent high frequency stimulations. We conclude from these findings that “low intensity intermittent” electrical stimulation is an effective alternate way for neuromodulation of the aortic baroreceptor afferents and to evoke a required restoration of MAP levels in spontaneously hypertensive rats. This approach enables low energy consumption and markedly lowers the excessive decreases in MAP and hemodynamic disturbances elicited by continuous high-charge injection protocols.
Collapse
|
8
|
Forstenpointner J, Maallo AMS, Elman I, Holmes S, Freeman R, Baron R, Borsook D. The Solitary Nucleus Connectivity to Key Autonomic Regions in Humans MRI and Literature based Considerations. Eur J Neurosci 2022; 56:3938-3966. [PMID: 35545280 DOI: 10.1111/ejn.15691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
The nucleus tractus solitarius (NTS), is a key brainstem structure relaying interoceptive peripheral information to the interrelated brain centers for eliciting rapid autonomic responses and for shaping longer-term neuroendocrine and motor patterns. Structural and functional NTS' connectivity has been extensively investigated in laboratory animals. But there is limited information about NTS' connectome in humans. Using MRI, we examined diffusion and resting state data from 20 healthy participants in the Human Connectome Project. The regions within the brainstem (n=8), subcortical (n=6), cerebellar (n=2) and cortical (n=5) parts of the brain were selected via a systematic review of the literature and their white matter NTS connections were evaluated via probabilistic tractography along with functional and directional (i.e., Granger-causality) analyses. The underlying study confirms previous results from animal models and provides novel aspects on NTS integration in humans. Two key findings can be summarized: (i) the NTS predominantly processes afferent input and (ii) a lateralization towards a predominantly left-sided NTS processing. Our results lay the foundations for future investigations into the NTS' tripartite role comprised of interoreceptors' input integration, the resultant neurochemical outflow and cognitive/affective processing. The implications of these data add to the understanding of NTS' role in specific aspects of autonomic functions.
Collapse
Affiliation(s)
- Julia Forstenpointner
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA.,Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Anne Margarette S Maallo
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Igor Elman
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA.,Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - Scott Holmes
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - David Borsook
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA.,Department of Radiology and Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Baby SM, Discala JF, Gruber R, Getsy PM, Cheng F, Damron DS, Lewis SJ. Tempol Reverses the Negative Effects of Morphine on Arterial Blood-Gas Chemistry and Tissue Oxygen Saturation in Freely-Moving Rats. Front Pharmacol 2021; 12:749084. [PMID: 34630119 PMCID: PMC8493249 DOI: 10.3389/fphar.2021.749084] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/03/2021] [Indexed: 12/14/2022] Open
Abstract
We have reported that pretreatment with the clinically approved superoxide dismutase mimetic, Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl), blunts the cardiorespiratory depressant responses elicited by a subsequent injection of fentanyl, in halothane-anesthetized rats. The objective of the present study was to determine whether Tempol is able to reverse the effects of morphine on arterial blood-gas (ABG) chemistry in freely-moving Sprague Dawley rats. The intravenous injection of morphine (10 mg/kg) elicited substantial decreases in pH, pO2 and sO2 that were accompanied by substantial increases in pCO2 and Alveolar-arterial gradient, which results in diminished gas-exchange within the lungs. Intravenous injection of a 60 mg/kg dose of Tempol 15 min after the injection of morphine caused minor improvements in pO2 and pCO2 but not in other ABG parameters. In contrast, the 100 mg/kg dose of Tempol caused an immediate and sustained reversal of the negative effects of morphine on arterial blood pH, pCO2, pO2, sO2 and Alveolar-arterial gradient. In other rats, we used pulse oximetry to determine that the 100 mg/kg dose of Tempol, but not the 60 mg/kg dose elicited a rapid and sustained reversal of the negative effects of morphine (10 mg/kg, IV) on tissue O2 saturation (SpO2). The injection of morphine caused a relatively minor fall in mean arterial blood pressure that was somewhat exacerbated by Tempol. These findings demonstrate that Tempol can reverse the negative effects of morphine on ABG chemistry in freely-moving rats paving the way of structure-activity and mechanisms of action studies with the host of Tempol analogues that are commercially available.
Collapse
Affiliation(s)
| | | | - Ryan Gruber
- Galleon Pharmaceuticals Inc, Horsham, PA, United states
| | - Paulina M Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United states
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United states
| | - Derek S Damron
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, OH, United states
| | - Stephen J Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United states.,Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United states
| |
Collapse
|