1
|
Funayama M, Koreki A, Takata T, Nakagawa Y, Mimura M. Post-stroke urinary incontinence is associated with behavior control deficits and overactive bladder. Neuropsychologia 2024; 201:108942. [PMID: 38906459 DOI: 10.1016/j.neuropsychologia.2024.108942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Although urinary incontinence in stroke survivors can substantially impact the patient's quality of life, the underlying neuropsychological mechanisms and its neural basis have not been adequately investigated. Therefore, we investigated this topic via neuropsychological assessment and neuroimaging in a cross-sectional study. METHODS We recruited 71 individuals with cerebrovascular disease. The relationship between urinary incontinence and neuropsychological indices was investigated using simple linear regression analysis or Mann-Whitney U test, along with other explanatory variables, e.g., severity of overactive bladder. Variables with a p-value of <0.1 in the simple regression analysis were entered in the final multiple linear regression model to control for potential confounding factors. To carry out an in-depth examination of the neuroanatomical substrate for urinary incontinence, voxel-based lesion-behavior mapping was performed using MRIcron software. RESULTS Behavioral control deficits and severity of overactive bladder were closely related to severity of urinary incontinence. The voxel-based lesion-behavior mapping suggests a potential role for ventromedial prefrontal cortex lesioning in the severity of urinary incontinence, although this association is not statistically significant. CONCLUSIONS Post-stroke urinary incontinence is closely related to two factors: neurogenic overactive bladder, a physiological disinhibition of micturition reflex, and cognitive dysfunction, characterized by behavior control deficits.
Collapse
Affiliation(s)
- Michitaka Funayama
- Department of Neuropsychiatry, Ashikaga Red Cross Hospital, Ashikaga, Tochigi, 326-0843, Japan; Department of Rehabilitation, Edogawa Hospital, Edogawa, Tokyo, 133-0052, Japan; Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, 160-0016, Japan.
| | - Akihiro Koreki
- Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba, 266-0007, Japan
| | - Taketo Takata
- Department of Neuropsychiatry, Ashikaga Red Cross Hospital, Ashikaga, Tochigi, 326-0843, Japan
| | - Yoshitaka Nakagawa
- Department of Rehabilitation, Edogawa Hospital, Edogawa, Tokyo, 133-0052, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, 160-0016, Japan
| |
Collapse
|
2
|
Pang S, Yan J. Research and progress on the mechanism of lower urinary tract neuromodulation: a literature review. PeerJ 2024; 12:e17870. [PMID: 39148679 PMCID: PMC11326431 DOI: 10.7717/peerj.17870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
The storage and periodic voiding of urine in the lower urinary tract are regulated by a complex neural control system that includes the brain, spinal cord, and peripheral autonomic ganglia. Investigating the neuromodulation mechanisms of the lower urinary tract helps to deepen our understanding of urine storage and voiding processes, reveal the mechanisms underlying lower urinary tract dysfunction, and provide new strategies and insights for the treatment and management of related diseases. However, the current understanding of the neuromodulation mechanisms of the lower urinary tract is still limited, and further research methods are needed to elucidate its mechanisms and potential pathological mechanisms. This article provides an overview of the research progress in the functional study of the lower urinary tract system, as well as the key neural regulatory mechanisms during the micturition process. In addition, the commonly used research methods for studying the regulatory mechanisms of the lower urinary tract and the methods for evaluating lower urinary tract function in rodents are discussed. Finally, the latest advances and prospects of artificial intelligence in the research of neuromodulation mechanisms of the lower urinary tract are discussed. This includes the potential roles of machine learning in the diagnosis of lower urinary tract diseases and intelligent-assisted surgical systems, as well as the application of data mining and pattern recognition techniques in advancing lower urinary tract research. Our aim is to provide researchers with novel strategies and insights for the treatment and management of lower urinary tract dysfunction by conducting in-depth research and gaining a comprehensive understanding of the latest advancements in the neural regulation mechanisms of the lower urinary tract.
Collapse
Affiliation(s)
- Shutong Pang
- Guangxi Key Laboratory of Special Biomedicine and Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning, Guangxi, China
| | - Junan Yan
- Guangxi Key Laboratory of Special Biomedicine and Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning, Guangxi, China
- Department of Urology, PLA Naval Medical Center, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Piramide N, De Micco R, Di Nardo F, Caiazzo G, Siciliano M, Cirillo M, Russo A, Tedeschi G, Esposito F, Tessitore A. Altered domain-specific striatal functional connectivity in patients with Parkinson's disease and urinary symptoms. J Neural Transm (Vienna) 2024; 131:917-929. [PMID: 38661818 PMCID: PMC11343795 DOI: 10.1007/s00702-024-02776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND In this study, we aimed at investigating the possible association of urinary symptoms with whole-brain MRI resting-state functional connectivity (FC) alterations from distinct striatal subregions in a large cohort of early PD patients. METHODS Seventy-nine drug-naive PD patients (45 PD-urinary+/34 PD-urinary-) and 38 healthy controls (HCs) were consecutively enrolled. Presence/absence of urinary symptoms were assessed by means of the Nonmotor Symptom Scale - domain 7. Using an a priori connectivity-based domain-specific parcellation, we defined three ROIs (per each hemisphere) for different striatal functional subregions (sensorimotor, limbic and cognitive) from which seed-based FC voxel-wise analyses were conducted over the whole brain. RESULTS Compared to PD-urinary-, PD-urinary+ patients showed increased FC between striatal regions and motor and premotor/supplementary motor areas as well as insula/anterior dorsolateral PFC. Compared to HC, PD-urinary+ patients presented decreased FC between striatal regions and parietal, insular and cingulate cortices. CONCLUSIONS Our findings revealed a specific pattern of striatal FC alteration in PD patients with urinary symptoms, potentially associated to altered stimuli perception and sensorimotor integration even in the early stages. These results may potentially help clinicians to design more effective and tailored rehabilitation and neuromodulation protocols for PD patients.
Collapse
Affiliation(s)
- Noemi Piramide
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Rosa De Micco
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Federica Di Nardo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Giuseppina Caiazzo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Mattia Siciliano
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
- Neuropsychology Laboratory, Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Mario Cirillo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Antonio Russo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Gioacchino Tedeschi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Alessandro Tessitore
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy.
| |
Collapse
|
4
|
Jerez-Roig J, Farrés-Godayol P, Yildirim M, Escribà-Salvans A, Moreno-Martin P, Goutan-Roura E, Rierola-Fochs S, Romero-Mas M, Booth J, Skelton DA, Giné-Garriga M, Minobes-Molina E. Prevalence of urinary incontinence and associated factors in nursing homes: a multicentre cross-sectional study. BMC Geriatr 2024; 24:169. [PMID: 38368318 PMCID: PMC10874568 DOI: 10.1186/s12877-024-04748-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/25/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Urinary incontinence (UI) is a common geriatric syndrome with high health and socio-economic impacts in nursing home (NH) residents. OBJECTIVES To estimate the prevalence and types of UI and its associated factors in older people living in NHs in Central Catalonia (Spain). We also determined the proportion of residents who were receiving behavioural strategies to prevent/manage UI. DESIGN AND SETTING Cross-sectional study in 5 NHs conducted from January to March 2020. METHODS We included consenting residents aged 65 + permanently living in the NHs. Residents who were hospitalized, in a coma or palliative care were excluded. UI was assessed using Section H of the Minimum Data Set. Sociodemographic and health-related variables were examined. Descriptive, bivariate, and multivariate (logistic regression) analyses were performed. RESULTS We included 132 subjects (82.6% women), mean age of 85.2 (SD = 7.4) years. The prevalence of UI was 76.5% (95% CI: 68.60-82.93). The most common type was functional UI (45.5%), followed by urgency UI (11.4%). Only 46.2% of residents received at least one behavioural strategy to manage UI. Most sedentary behaviour (SB) variables presented a p-value lower than 0.001 in the bivariate analyses, but none remained in the final model. Moderate-severe cognitive impairment (OR = 4.44, p =.003), anticholinergic activity (OR = 3.50, p =.004) and risk of sarcopenia using SARC-F (OR = 2.75, p =.041) were associated with UI. CONCLUSIONS The prevalence of UI was high in this sample of NH residents compared to the literature, yet less than half received prompted voiding as a strategy to prevent/reduce UI.UI was associated with cognitive impairment, anticholinergic activity, and risk of sarcopenia.
Collapse
Affiliation(s)
- Javier Jerez-Roig
- Research group on Methodology, Methods, Models and Outcomes of Health and Social Sciences (M3O), Faculty of Health Sciences and Welfare, Centre for Health and Social Care Research (CESS), University of Vic-Central University of Catalonia (UVic-UCC), C. Sagrada Família, 7, Barcelona, Vic, 08500, Spain
- Institute for Research and Innovation in Life Sciences and Health in Central Catalonia (IRIS- CC), Barcelona, Vic, Spain
| | - Pau Farrés-Godayol
- Research group on Methodology, Methods, Models and Outcomes of Health and Social Sciences (M3O), Faculty of Health Sciences and Welfare, Centre for Health and Social Care Research (CESS), University of Vic-Central University of Catalonia (UVic-UCC), C. Sagrada Família, 7, Barcelona, Vic, 08500, Spain.
- Institute for Research and Innovation in Life Sciences and Health in Central Catalonia (IRIS- CC), Barcelona, Vic, Spain.
| | - Meltem Yildirim
- Research group on Methodology, Methods, Models and Outcomes of Health and Social Sciences (M3O), Faculty of Health Sciences and Welfare, Centre for Health and Social Care Research (CESS), University of Vic-Central University of Catalonia (UVic-UCC), C. Sagrada Família, 7, Barcelona, Vic, 08500, Spain
- Institute for Research and Innovation in Life Sciences and Health in Central Catalonia (IRIS- CC), Barcelona, Vic, Spain
| | - Anna Escribà-Salvans
- Research group on Methodology, Methods, Models and Outcomes of Health and Social Sciences (M3O), Faculty of Health Sciences and Welfare, Centre for Health and Social Care Research (CESS), University of Vic-Central University of Catalonia (UVic-UCC), C. Sagrada Família, 7, Barcelona, Vic, 08500, Spain
- Institute for Research and Innovation in Life Sciences and Health in Central Catalonia (IRIS- CC), Barcelona, Vic, Spain
| | - Pau Moreno-Martin
- Research group on Methodology, Methods, Models and Outcomes of Health and Social Sciences (M3O), Faculty of Health Sciences and Welfare, Centre for Health and Social Care Research (CESS), University of Vic-Central University of Catalonia (UVic-UCC), C. Sagrada Família, 7, Barcelona, Vic, 08500, Spain
- Institute for Research and Innovation in Life Sciences and Health in Central Catalonia (IRIS- CC), Barcelona, Vic, Spain
| | - Ester Goutan-Roura
- Institute for Research and Innovation in Life Sciences and Health in Central Catalonia (IRIS- CC), Barcelona, Vic, Spain
- Research group on Tissue Repair and Regeneration Laboratory (TR2Lab), Faculty of Health Sciences and Welfare, Centre for Health and Social Care Research (CESS), University of Vic- Central University of Catalonia (UVic-UCC), Barcelona, Spain
| | - Sandra Rierola-Fochs
- Research group on Methodology, Methods, Models and Outcomes of Health and Social Sciences (M3O), Faculty of Health Sciences and Welfare, Centre for Health and Social Care Research (CESS), University of Vic-Central University of Catalonia (UVic-UCC), C. Sagrada Família, 7, Barcelona, Vic, 08500, Spain
- Institute for Research and Innovation in Life Sciences and Health in Central Catalonia (IRIS- CC), Barcelona, Vic, Spain
| | - Montse Romero-Mas
- Research group on Methodology, Methods, Models and Outcomes of Health and Social Sciences (M3O), Faculty of Health Sciences and Welfare, Centre for Health and Social Care Research (CESS), University of Vic-Central University of Catalonia (UVic-UCC), C. Sagrada Família, 7, Barcelona, Vic, 08500, Spain
- Institute for Research and Innovation in Life Sciences and Health in Central Catalonia (IRIS- CC), Barcelona, Vic, Spain
| | - Joanne Booth
- Research Centre for Health (ReaCH), School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Dawn A Skelton
- Research Centre for Health (ReaCH), School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Maria Giné-Garriga
- Blanquerna Faculty of Psychology, Education and Sport Sciences, Ramon Llull University, Barcelona, Spain
- Blanquerna Faculty of Health Sciences, Ramon Llull University, Barcelona, Spain
| | - Eduard Minobes-Molina
- Research group on Methodology, Methods, Models and Outcomes of Health and Social Sciences (M3O), Faculty of Health Sciences and Welfare, Centre for Health and Social Care Research (CESS), University of Vic-Central University of Catalonia (UVic-UCC), C. Sagrada Família, 7, Barcelona, Vic, 08500, Spain
- Institute for Research and Innovation in Life Sciences and Health in Central Catalonia (IRIS- CC), Barcelona, Vic, Spain
| |
Collapse
|
5
|
Janssen R, Ariëns M, van Genugten J, Jacobi L, Koek G. Complex Dysautonomia in a Patient With Cerebral Cavernous Malformations Due to a KRIT1 Pleiotropic Gene Mutation. Cureus 2024; 16:e55202. [PMID: 38425333 PMCID: PMC10902799 DOI: 10.7759/cureus.55202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
Dysautonomia is a disruption of the body's autonomic processes. Symptoms vary among patients, depending on the underlying disease pathways. Given that symptoms can affect all organ functions, dysautonomia often significantly impacts quality of life. However, due to its complex and varied presentation, early recognition of dysautonomia remains a challenge, yet it is crucial for improving patient outcomes. We report a case of a patient with a KRIT1 mutation presenting with dysautonomia causing urological, sexual, and bowel dysfunction. We hypothesize that the patient's symptoms are due to a pontine cavernous malformation (CM) caused by the KRIT1 mutation. A literature review was conducted to establish a link between pontine CM and dysautonomia.
Collapse
Affiliation(s)
- Roel Janssen
- Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, NLD
| | - Maxime Ariëns
- Department of Primary Care Medicine, Radboud University Medical Center, Nijmegen, NLD
| | | | - Linda Jacobi
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, NLD
| | - Ger Koek
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, NLD
| |
Collapse
|
6
|
Hardy CC, Korstanje R. Aging and urinary control: Alterations in the brain-bladder axis. Aging Cell 2023; 22:e13990. [PMID: 37740454 PMCID: PMC10726905 DOI: 10.1111/acel.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/24/2023] Open
Abstract
Age-associated alterations in bladder control affect millions of older adults, with a heavy burden added to families both economically and in quality of life. Therapeutic options are limited with poor efficacy in older adults, lending to a growing need to address the gaps in our current understanding of urinary tract aging. This review summarizes the current knowledge of age-associated alterations in the structure and function of the brain-bladder axis and identifies important gaps in the field that have yet to be addressed. Urinary aging is associated with decreased tissue responsiveness, decreased control over the voiding reflex, signaling dysfunction along the brain-bladder axis, and structural changes within the bladder wall. Studies are needed to improve our understanding of how age affects the brain-bladder axis and identify genetic targets that correlate with functional outcomes.
Collapse
|
7
|
Gunduz T, Gunduz H, Cetinkaya H. Increase in physiological inhibitory control results in better suppression of unwanted memories. Br J Psychol 2023; 114:908-927. [PMID: 37246968 DOI: 10.1111/bjop.12667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 04/19/2023] [Indexed: 05/30/2023]
Abstract
Forgetting or suppressing a memory with unwanted content is just as important as remembering a desirable one. In addition to emphasizing the role of inhibitory control in memory suppression processes, neuropsychological studies have indicated that an intentional inhibition targeting a brain area may exert its inhibitory effects in seemingly unrelated areas through a common inhibitory network. In this study, we aimed to investigate whether the suppression of unwanted memories can be strengthened by recruiting an inhibitory task that can be simultaneously performed with a memory suppression task. Therefore, we manipulated the level of urinary urgency-induced inhibition of participants (N = 180) and test its effect on the suppression of unwanted memories using a Think/No-Think (T/NT) task. The results of our study indicated that individuals with high levels of urinary urgency demonstrated greater memory suppression compared to those with low urinary urgency. Findings and their implications are discussed within the context of cognitive and clinical perspectives, and recommendations are made for future research.
Collapse
Affiliation(s)
- Turan Gunduz
- Department of Psychology, Ankara University, Ankara, Turkey
| | - Hasan Gunduz
- Department of Psychology, Hacettepe University, Ankara, Turkey
| | | |
Collapse
|
8
|
Hao F, Jia F, Hao P, Duan H, Wang Z, Fan Y, Zhao W, Gao Y, Fan OR, Xu F, Yang Z, Sun YE, Li X. Proper wiring of newborn neurons to control bladder function after complete spinal cord injury. Biomaterials 2023; 292:121919. [PMID: 36455486 DOI: 10.1016/j.biomaterials.2022.121919] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/14/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022]
Abstract
Activation of endogenous neurogenesis by bioactive materials enables restoration of sensory/motor function after complete spinal cord injury (SCI) via formation of new relay neural circuits. The underlying wiring logic of newborn neurons in adult central nervous system (CNS) is unknown. Here, we report neurotrophin3-loaded chitosan biomaterial substantially recovered bladder function after SCI. Multiple neuro-circuitry tracing technologies using pseudorabies virus (PRV), rabies virus (RV), and anterograde adeno-associated virus (AAV), demonstrated that newborn neurons were integrated into the micturition neural circuits and reconnected higher brain centers and lower spinal cord centers to control voiding, and participated in the restoration of the lower urinary tract function, even in the absence of long-distance axonal regeneration. Opto- and chemo-genetic studies further supported the notion that the supraspinal control of the lower urinary tract function was partially recovered. Our data demonstrated that regenerated relay neurons could be properly integrated into disrupted long-range neural circuits to restore function of adult CNS.
Collapse
Affiliation(s)
- Fei Hao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Fan Jia
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Translational Research Center for the Nervous System (TRCNS), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Hao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Hongmei Duan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zijue Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China; School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yudan Gao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Orion R Fan
- Department of Evolution and Ecology, University of California, Davis, CA, 90007, USA
| | - Fuqiang Xu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Translational Research Center for the Nervous System (TRCNS), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Yi E Sun
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200065, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, 200120, China.
| | - Xiaoguang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Engineering Medicine, Beihang University, Beijing, 100191, China; Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
9
|
Kumar SJ, Biswas DA. Anatomical Aspects of Neurogenic Bladder and the Approach in Its Management: A Narrative Review. Cureus 2022; 14:e31165. [DOI: 10.7759/cureus.31165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/06/2022] [Indexed: 11/07/2022] Open
|
10
|
Heppner TJ, Hennig GW, Nelson MT, Herrera GM. Afferent nerve activity in a mouse model increases with faster bladder filling rates in vitro, but voiding behavior remains unaltered in vivo. Am J Physiol Regul Integr Comp Physiol 2022; 323:R682-R693. [PMID: 36121145 PMCID: PMC9602904 DOI: 10.1152/ajpregu.00156.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Storage and voiding functions in urinary bladder are well-known, yet fundamental physiological events coordinating these behaviors remain elusive. We sought to understand how voiding function is influenced by the rate at which the bladder fills. We hypothesized that faster filling rates would increase afferent sensory activity and increase micturition rate. In vivo, this would mean animals experiencing faster bladder filling would void more frequently with smaller void volumes. To test this hypothesis, we measured afferent nerve activity during different filling rates using an ex vivo mouse bladder preparation and assessed voiding frequency in normally behaving mice noninvasively (UroVoid). Bladder afferent nerve activity depended on the filling rate, with faster filling increasing afferent nerve activity at a given volume. Voiding behavior in vivo was measured in UroVoid cages. Male and female mice were given access to tap water or, to induce faster bladder filling rates, water containing 5% sucrose. Fluid intake increased dramatically in mice consuming 5% sucrose. As expected, micturition frequency was elevated in the sucrose group. However, even with the greatly increased rate of urine production, void volumes were unchanged in both genders. Although faster filling rates generated higher afferent nerve rates ex vivo, this did not translate into more frequent, smaller-volume voids in vivo. This suggests afferent nerve activity is only one factor contributing to the switch from bladder filling to micturition. Together with afferent nerve activity, higher centers in the central nervous system and the state of arousal are likely critical to coordinating the micturition reflex.
Collapse
Affiliation(s)
- Thomas J. Heppner
- 1Department of Pharmacology, University of Vermont, Burlington, Vermont
| | - Grant W. Hennig
- 1Department of Pharmacology, University of Vermont, Burlington, Vermont
| | - Mark T. Nelson
- 1Department of Pharmacology, University of Vermont, Burlington, Vermont,2Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Gerald M. Herrera
- 1Department of Pharmacology, University of Vermont, Burlington, Vermont
| |
Collapse
|
11
|
Clinical relevance of single-subject brain metabolism patterns in amyotrophic lateral sclerosis mutation carriers. Neuroimage Clin 2022; 36:103222. [PMID: 36223668 PMCID: PMC9668615 DOI: 10.1016/j.nicl.2022.103222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND OBJECTIVES The ALS diagnosis requires an integrative approach, combining the clinical examination and supporting tests. Nevertheless, in several cases, the diagnosis proves to be suboptimal, and for this reason, new diagnostic methods and novel biomarkers are catching on. The 18F-fluorodeoxyglucose (18F-FDG)-PET could be a helpful method, but it still requires additional research for sensitivity and specificity. We performed an 18F-FDG-PET single-subject analysis in a sample of familial ALS patients carrying different gene mutations, investigating the genotype-phenotype correlations and exploring metabolism correlations with clinical and neuropsychological data. METHODS We included ten ALS patients with pathogenic gene mutation who underwent a complete clinical and neuropsychological evaluation and an 18F-FDG-PET scan at baseline. Patients were recruited between 2018 and 2022 at the ALS Tertiary Centre in Novara, Italy. Patients were selected based on the presence of ALS gene mutation (C9orf72, SOD1, TBK1, and KIF5A). Following a validated voxel-based Statistical Parametric Mapping (SPM) procedure, we obtained hypometabolism maps at single-subject level. We extracted regional hypometabolism from the SPM maps, grouping significant hypometabolism regions into three meta-ROIs (motor, prefrontal association and limbic). Then, the corresponding 18F-FDG-PET regional hypometabolism was correlated with clinical and neuropsychological features. RESULTS Classifying the patients with C9orf72-ALS based on the rate of disease progression from symptoms onset to the time of scan, we observed two different patterns of brain hypometabolism: an extensive motor and prefrontal hypometabolism in patients classified as fast progressors, and a more limited brain hypometabolism in patients grouped as slow progressors. Patients with SOD1-ALS showed a hypometabolic pattern involving the motor cortex and prefrontal association regions, with a minor involvement of the limbic regions. The patient with TBK1-ALS showed an extended hypometabolism, in limbic systems, along with typical motor involvement, while the hypometabolism in the patient with KIF5A-ALS involved almost exclusively the motor regions, supporting the predominantly motor impairment linked to this gene mutation. Additionally, we observed strong correlations between the hypometabolism in the motor, prefrontal association and limbic meta-ROI and the specific neuropsychological performances. CONCLUSIONS To our knowledge, this is the first study investigating brain hypometabolism at the single-subject level in genetic ALS patients carrying different mutations. Our results show high heterogeneity in the hypometabolism maps and some commonalities in groups sharing the same mutation. Specifically, in patients with C9orf72-ALS the brain hypometabolism was larger in patients classified as fast progressors than slow progressors. In addition, in the whole group, the brain metabolism showed specific correlations with clinical and neuropsychological impairment, confirming the ability of 18F-FDG-PET in revealing pattern of neuronal dysfunction, aiding the diagnostic workup in genetic ALS patients.
Collapse
|
12
|
A review of the neural control of micturition in dogs and cats: neuroanatomy, neurophysiology and neuroplasticity. Vet Res Commun 2022; 46:991-998. [PMID: 35802232 DOI: 10.1007/s11259-022-09966-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
This article discusses the current knowledge on the role of the neurological structures, especially the cerebellum and the hypothalamus, and compares the information with human medicine. Micturition is a complex voluntary and involuntarily mechanism. Its physiological completion strictly depends on the hierarchical organisation of the central nervous system pathways in the peripheral nervous system. Although the role of the peripheral nervous system and subcortical areas, such as brainstem centres, are well established in veterinary medicine, the role of the cerebellum and hypothalamus have been poorly investigated and understood. Lower urinary tract dysfunction is often associated with neurological diseases that cause neurogenic bladder (NB). The neuroplasticity of the nervous system in the developmental changes of the mechanism of micturition during the prenatal and postnatal periods is also analysed.
Collapse
|
13
|
Rao Y, Gao Z, Li X, Li X, Li J, Liang S, Li D, Zhai J, Yan J, Yao J, Chen X. Ventrolateral Periaqueductal Gray Neurons Are Active During Urination. Front Cell Neurosci 2022; 16:865186. [PMID: 35813503 PMCID: PMC9259957 DOI: 10.3389/fncel.2022.865186] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
The ventrolateral periaqueductal gray (VLPAG) is thought to be the main PAG column for bladder control. PAG neurons (especially VLPAG neurons) and neurons in the pontine micturition center (PMC) innervating the bladder detrusor have anatomical and functional synaptic connections. The prevailing viewpoint on neural control of the bladder is that PAG neurons receive information on the decision to void made by upstream brain regions, and consequently activate the PMC through their direct projections to initiate urination reflex. However, the exact location of the PMC-projecting VLPAG neurons, their activity in response to urination, and their whole-brain inputs remain unclear. Here, we identified the distribution of VLPAG neurons that may participate in control of the bladder or project to the PMC through retrograde neural tracing. Population Ca2+ signals of PMC-projecting VLPAG neurons highly correlated with bladder contractions and urination as shown by in vivo recording in freely moving animals. Using a RV-based retrograde trans-synaptic tracing strategy, morphological results showed that urination-related PMC-projecting VLPAG neurons received dense inputs from multiple urination-related higher brain areas, such as the medial preoptic area, medial prefrontal cortex, and lateral hypothalamus. Thus, our findings reveal a novel insight into the VLPAG for control of bladder function and provide a potential therapeutic midbrain node for neurogenic bladder dysfunction.
Collapse
Affiliation(s)
- Yu Rao
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Ziyan Gao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Xianping Li
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Xing Li
- School of Physical Science and Technology, Guangxi University, Nanning, China
| | - Jun Li
- School of Physical Science and Technology, Guangxi University, Nanning, China
| | - Shanshan Liang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Daihan Li
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | | | - Junan Yan
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
- Department of Urology, Southwest Hospital, Third Military Medical University, Chongqing, China
- Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing, China
- *Correspondence: Junan Yan Jiwei Yao Xiaowei Chen
| | - Jiwei Yao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
- *Correspondence: Junan Yan Jiwei Yao Xiaowei Chen
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
- Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing, China
- *Correspondence: Junan Yan Jiwei Yao Xiaowei Chen
| |
Collapse
|
14
|
Chen P, Yang L, Tong Y, Meng L, Zhou R. The intracerebroventricular injection of lipopolysaccharide may induce neurogenic detrusor overactivity symptoms in mice. Neurourol Urodyn 2022; 41:894-904. [PMID: 35224770 DOI: 10.1002/nau.24890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Pengfei Chen
- Department of Urology, Jing'an District Central Hospital Fudan University Shanghai China
| | - Lei Yang
- Department of Urology, Jing'an District Central Hospital Fudan University Shanghai China
| | - Yu Tong
- Department of Urology, Jing'an District Central Hospital Fudan University Shanghai China
| | - Li Meng
- Department of Urology, Jing'an District Central Hospital Fudan University Shanghai China
| | - Renyuan Zhou
- Department of Urology, Jing'an District Central Hospital Fudan University Shanghai China
| |
Collapse
|
15
|
Huang W, Fang X, Li S, Mao R, Ye C, Liu W, Lin G. Shunt Surgery Efficacy Is Correlated With Baseline Cerebrum Perfusion in Idiopathic Normal Pressure Hydrocephalus: A 3D Pulsed Arterial-Spin Labeling Study. Front Aging Neurosci 2022; 14:797803. [PMID: 35283746 PMCID: PMC8906880 DOI: 10.3389/fnagi.2022.797803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
This study investigated the relationship between preoperative cerebral blood flow (CBF) in patients with idiopathic normal pressure hydrocephalus (INPH) and preoperative clinical symptoms and changes of clinical symptoms after shunt surgery. A total of 32 patients with diagnosed INPH and 18 age-matched healthy controls (HCs) were involved in this study. All subjects underwent magnetic resonance imaging (MRI), including 3D pulsed arterial-spin labeling (PASL) for non-invasive perfusion imaging, and clinical symptom evaluation at baseline, and all patients with INPH were reexamined with clinical tests 1 month postoperatively. Patients with INPH had significantly lower whole-brain CBF than HCs, with the most significant differences in the high convexity, temporal lobe, precuneus, and thalamus. At baseline, there was a significant correlation between the CBF in the middle frontal gyrus, calcarine, inferior and middle temporal gyrus, thalamus, and posterior cingulate gyrus and poor gait manifestation. After shunting, improvements were negatively correlated with preoperative perfusion in the inferior parietal gyrus, inferior occipital gyrus, and middle temporal gyrus. Preoperative CBF in the middle frontal gyrus was positively correlated with the severity of preoperative cognitive impairment and negatively correlated with the change of postoperative MMSE score. There was a moderate positive correlation between anterior cingulate hypoperfusion and improved postoperative urination. Our study revealed that widely distributed and intercorrelated cortical and subcortical pathways are involved in the development of INPH symptoms, and preoperative CBF may be correlative to short-term shunt outcomes.
Collapse
Affiliation(s)
- Wenjun Huang
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Xuhao Fang
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Shihong Li
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Renling Mao
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Chuntao Ye
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Wei Liu
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Guangwu Lin
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- *Correspondence: Guangwu Lin,
| |
Collapse
|
16
|
Bartolone SN, Sharma P, Chancellor MB, Lamb LE. Urinary Incontinence and Alzheimer's Disease: Insights From Patients and Preclinical Models. Front Aging Neurosci 2022; 13:777819. [PMID: 34975457 PMCID: PMC8718555 DOI: 10.3389/fnagi.2021.777819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease effects a large percentage of elderly dementia patients and is diagnosed on the basis of amyloid plaques and neurofibrillary tangles (NFTs) present in the brain. Urinary incontinence (UI) is often found in the elderly populations and multiple studies have shown that it is more common in Alzheimer's disease patients than those with normal cognitive function. However, the link between increased UI and Alzheimer's disease is still unclear. Amyloid plaques and NFTs present in micturition centers of the brain could cause a loss of signal to the bladder, resulting in the inability to properly void. Additionally, as Alzheimer's disease progresses, patients become less likely to recognize the need or understand the appropriate time and place to void. There are several treatments for UI targeting the muscarinic and β3 adrenergic receptors, which are present in the bladder and the brain. While these treatments may aid in UI, they often have effects on the brain with cognitive impairment side-effects. Acetylcholine esterase inhibitors are often used in treatment of Alzheimer's disease and directly oppose effects of anti-muscarinics used for UI, making UI management in Alzheimer's disease patients difficult. There are currently over 200 pre-clinical models of Alzheimer's disease, however, little research has been done on voiding disfunction in these models. There is preliminary data suggesting these models have similar voiding behavior to Alzheimer's disease patients but much more research is needed to understand the link between UI and Alzheimer's disease and discover better treatment options for managing both simultaneously.
Collapse
Affiliation(s)
- Sarah N Bartolone
- Department of Urology, Beaumont Health, Royal Oak, MI, United States
| | - Prasun Sharma
- Oakland University William Beaumont School of Medicine, Rochester Hills, MI, United States
| | - Michael B Chancellor
- Department of Urology, Beaumont Health, Royal Oak, MI, United States.,Oakland University William Beaumont School of Medicine, Rochester Hills, MI, United States
| | - Laura E Lamb
- Department of Urology, Beaumont Health, Royal Oak, MI, United States.,Oakland University William Beaumont School of Medicine, Rochester Hills, MI, United States
| |
Collapse
|
17
|
Pineal parenchymal tumor of intermediate differentiation: a systematic review and contemporary management of 389 cases reported during the last two decades. Neurosurg Rev 2021; 45:1135-1155. [PMID: 34668090 DOI: 10.1007/s10143-021-01674-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/21/2021] [Accepted: 10/07/2021] [Indexed: 12/29/2022]
Abstract
Pineal parenchymal tumor of intermediate differentiation (PPTID) is a WHO grade II and III tumor arising from pineal parenchymal cells. PPTID is a rare tumor accounting for less than 1% of all primary central nervous system neoplasms. Therefore, reports describing the clinical characteristics and biological features of PPTID are lacking. Moreover, the therapeutic strategy remains controversial. The current study aimed to evaluate treatment results and problems of contemporary therapeutic modalities of PPTID based on its features compared with other pineal parenchymal tumors. A comprehensive systematic literature review of 69 articles was performed, including articles on PPTID (389 patients) and similar tumors. Patient demographics, disease presentation, imaging characteristics, biological features, and current therapeutic options and their results were reviewed. We found that histopathological findings based on current WHO classification are well associated with survival; however, identifying and treating aggressive PPTID cases with uncommon features could be problematic. A molecular and genetic approach may help improve diagnostic accuracy. Therapeutic strategy, especially for grade III and aforementioned uncommon and aggressive tumors, remains controversial. A combination therapy involving maximum tumor resection, chemotherapy, and radiotherapy could be the first line of treatment. However, although challenging, a large prospective study would be required to identify ways to improve the clinical results of PPTID treatment.
Collapse
|