1
|
Skovgaard AC, Mohammadnejad A, Beck HC, Tan Q, Soerensen M. Multi-omics association study of DNA methylation and gene expression levels and diagnoses of cardiovascular diseases in Danish Twins. Clin Epigenetics 2024; 16:117. [PMID: 39187864 PMCID: PMC11348607 DOI: 10.1186/s13148-024-01727-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are major causes of mortality and morbidity worldwide; yet the understanding of their molecular basis is incomplete. Multi-omics studies have significant potential to uncover these mechanisms, but such studies are challenged by genetic and environmental confounding-a problem that can be effectively reduced by investigating intrapair differences in twins. Here, we linked data on all diagnoses of the circulatory system from the nationwide Danish Patient Registry (spanning 1977-2022) to a study population of 835 twins holding genome-wide DNA methylation and gene expression data. CVD diagnoses were divided into prevalent or incident cases (i.e., occurring before or after blood sample collection (2007-2011)). The diagnoses were classified into four groups: cerebrovascular diseases, coronary artery disease (CAD), arterial and other cardiovascular diseases (AOCDs), and diseases of the veins and lymphatic system. Statistical analyses were performed by linear (prevalent cases) or cox (incident cases) regression analyses at both the individual-level and twin pair-level. Significant genes (p < 0.05) in both types of biological data and at both levels were inspected by bioinformatic analyses, including gene set enrichment analysis and interaction network analysis. RESULTS In general, more genes were found for prevalent than for incident cases, and bioinformatic analyses primarily found pathways of the immune system, signal transduction and diseases for prevalent cases, and pathways of cell-cell communication, metabolisms of proteins and RNA, gene expression, and chromatin organization groups for incident cases. This potentially reflects biology related to response to CVD (prevalent cases) and mechanisms related to regulation and development of disease (incident cases). Of specific genes, Myosin 1E was found to be central for CAD, and DEAD-Box Helicase 5 for AOCD. These genes were observed in both the prevalent and the incident analyses, potentially reflecting that their DNA methylation and gene transcription levels change both because of disease (prevalent cases) and prior disease (incident cases). CONCLUSION We present novel biomarkers for CVD by performing multi-omics analysis in twins, hereby lowering the confounding due to shared genetics and early life environment-a study design that is surprisingly rare in the field of CVD, and where additional studies are highly needed.
Collapse
Affiliation(s)
- Asmus Cosmos Skovgaard
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| | - Afsaneh Mohammadnejad
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Hans Christian Beck
- Center for Individualized Medicine in Arterial Diseases, Department of Biochemistry, Odense University Hospital, J.B. Winsloews Vej 4, 5000, Odense C, Denmark
| | - Qihua Tan
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Mette Soerensen
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
- Department of Clinical Genetics, Odense University Hospital, J.B. Winsloews Vej 4, 5000, Odense C, Denmark
| |
Collapse
|
2
|
Shrivastava A, Kumar A, Aggarwal LM, Pradhan S, Choudhary S, Ashish A, Kashyap K, Mishra S. Evolution of Bioelectric Membrane Potentials: Implications in Cancer Pathogenesis and Therapeutic Strategies. J Membr Biol 2024:10.1007/s00232-024-00323-2. [PMID: 39183198 DOI: 10.1007/s00232-024-00323-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Electrophysiology typically deals with the electrical properties of excitable cells like neurons and muscles. However, all other cells (non-excitable) also possess bioelectric membrane potentials for intracellular and extracellular communications. These membrane potentials are generated by different ions present in fluids available in and outside the cell, playing a vital role in communication and coordination between the cell and its organelles. Bioelectric membrane potential variations disturb cellular ionic homeostasis and are characteristic of many diseases, including cancers. A rapidly increasing interest has emerged in sorting out the electrophysiology of cancer cells. Compared to healthy cells, the distinct electrical properties exhibited by cancer cells offer a unique way of understanding cancer development, migration, and progression. Decoding the altered bioelectric signals influenced by fluctuating electric fields benefits understanding cancer more closely. While cancer research has predominantly focussed on genetic and molecular traits, the delicate area of electrophysiological characteristics has increasingly gained prominence. This review explores the historical exploration of electrophysiology in the context of cancer cells, shedding light on how alterations in bioelectric membrane potentials, mediated by ion channels and gap junctions, contribute to the pathophysiology of cancer.
Collapse
Affiliation(s)
- Anju Shrivastava
- Department of Physiology, Chhattisgarh Institute of Medical Sciences, Bilaspur, India.
| | - Amit Kumar
- Department of Anatomy, Chhattisgarh Institute of Medical Sciences, Bilaspur, India
| | - Lalit Mohan Aggarwal
- Radiotherapy and Radiation Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Satyajit Pradhan
- Radiation Oncology, Mahamana Pandit Madhan Mohan Malaviya Cancer Centre, Varanasi, India
| | - Sunil Choudhary
- Radiotherapy and Radiation Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ashish Ashish
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Keshav Kashyap
- Department of Physiology, Chhattisgarh Institute of Medical Sciences, Bilaspur, India
| | - Shivani Mishra
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Masenga SK, Liweleya S, Kirabo A. High salt intake and HIV infection on endothelial glycocalyx shedding in salt-sensitive hypertension. Front Cell Dev Biol 2024; 12:1395885. [PMID: 39081863 PMCID: PMC11286502 DOI: 10.3389/fcell.2024.1395885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
The endothelial glycocalyx is closely associated with various physiological and pathophysiological events. Significant modification of the endothelial glycocalyx is an early process in the pathogenesis of cardiovascular disease. High dietary salt and HIV infection damages the endothelial glycocalyx causing endothelial dysfunction and increasing the risk for salt-sensitive hypertension and cardiovascular disease. The two factors, HIV infection and dietary salt are critical independent predictors of hypertension and cardiovascular disease and often synergize to exacerbate and accelerate disease pathogenesis. Salt-sensitive hypertension is more common among people living with HIV and is associated with risk for cardiovascular disease, stroke, heart attack and even death. However, the underlying mechanisms linking endothelial glycocalyx damage to dietary salt and HIV infection are lacking. Yet, both HIV infection/treatment and dietary salt are closely linked to endothelial glycocalyx damage and development of salt-sensitive hypertension. Moreover, the majority of individuals globally, consume more salt than is recommended and the burden of HIV especially in sub-Sahara Africa is disproportionately high. In this review, we have discussed the missing link between high salt and endothelial glycocalyx shedding in the pathogenesis of salt-sensitive hypertension. We have further elaborated the role played by HIV infection and treatment in modifying endothelial glycocalyx integrity to contribute to the development of hypertension and cardiovascular disease.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Situmbeko Liweleya
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Immunobiology, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, United States
- Vanderbilt Institute for Global Health, Nashville, TN, United States
| |
Collapse
|
4
|
Lindinger MI, Cairns SP, Sejersted OM. Resting membrane potential and intracellular [Na +] at rest, during fatigue and during recovery in rat soleus muscle fibres in situ. J Physiol 2024; 602:3469-3487. [PMID: 38877870 DOI: 10.1113/jp285870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/28/2024] [Indexed: 07/17/2024] Open
Abstract
Large trans-sarcolemmal ionic shifts occur with fatiguing exercise or stimulation of isolated muscles. However, it is unknown how resting membrane potential (EM) and intracellular sodium concentration ([Na+]i) change with repeated contractions in living mammals. We investigated (i) whether [Na+]i (peak, kinetics) can reveal changes of Na+-K+ pump activity during brief or fatiguing stimulation and (ii) how resting EM and [Na+]i change during fatigue and recovery of rat soleus muscle in situ. Muscles of anaesthetised rats were stimulated with brief (10 s) or repeated tetani (60 Hz for 200 ms, every 2 s, for 30 s or 300 s) with isometric force measured. Double-barrelled ion-sensitive microelectrodes were used to quantify resting EM and [Na+]i. Post-stimulation data were fitted using polynomials and back-extrapolated to time zero recovery. Mean pre-stimulation resting EM (layer 2-7 fibres) was -71 mV (surface fibres were more depolarised), and [Na+]i was 14 mM. With deeper fibres, 10 s stimulation (2-150 Hz) increased [Na+]i to 38-46 mM whilst simultaneously causing hyperpolarisations (7.3 mV for 2-90 Hz). Fatiguing stimulation for 30 s or 300 s led to end-stimulation resting EM of -61 to -53 mV, which recovered rapidly (T1/2, 8-22 s). Mean end-stimulation [Na+]i increased to 86-101 mM with both fatigue protocols and the [Na+]i recovery time-course (T1/2, 21-35 s) showed no difference between protocols. These combined findings suggest that brief stimulation hyperpolarises the resting EM, likely via maximum Na+-induced stimulation of the Na+-K+ pump. Repeated tetani caused massive depolarisation and elevations of [Na+]i that together lower force, although they likely interact with other factors to cause fatigue. [Na+]i recovery kinetics provided no evidence of impaired Na+-K+ pump activity with fatigue. KEY POINTS: It is uncertain how resting membrane potential, intracellular sodium concentration ([Na+]i), and sodium-potassium (Na+-K+) pump activity change during repeated muscle contractions in living mammals. For rat soleus muscle fibres in situ, brief tetanic stimulation for 10 s led to raised [Na+]i, anticipated to evoke maximal Na+-induced stimulation of the Na+-K+ pump causing an immediate hyperpolarisation of the sarcolemma. More prolonged stimulation with repeated tetanic contractions causes massive elevations of [Na+]i, which together with large depolarisations (via K+ disturbances) likely reduce force production. These effects occurred without impairment of Na+-K+ pump function. Together these findings suggest that rapid activation of the Na+-K+ pump occurs with brief stimulation to maintain excitability, whereas more prolonged stimulation causes rundown of the trans-sarcolemmal K+ gradient (hence depolarisation) and Na+ gradient, which in combination can impair contraction to contribute to fatigue in living mammals.
Collapse
Affiliation(s)
- Michael I Lindinger
- Research and Development, The Nutraceutical Alliance Inc., Guelph, Ontario, Canada
| | - Simeon P Cairns
- Sports Performance Research Institute New Zealand, School of Sport and Recreation, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Ole M Sejersted
- Institute for Experimental Medical Research, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
5
|
Contreras RG, Torres-Carrillo A, Flores-Maldonado C, Shoshani L, Ponce A. Na +/K +-ATPase: More than an Electrogenic Pump. Int J Mol Sci 2024; 25:6122. [PMID: 38892309 PMCID: PMC11172918 DOI: 10.3390/ijms25116122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The sodium pump, or Na+/K+-ATPase (NKA), is an essential enzyme found in the plasma membrane of all animal cells. Its primary role is to transport sodium (Na+) and potassium (K+) ions across the cell membrane, using energy from ATP hydrolysis. This transport creates and maintains an electrochemical gradient, which is crucial for various cellular processes, including cell volume regulation, electrical excitability, and secondary active transport. Although the role of NKA as a pump was discovered and demonstrated several decades ago, it remains the subject of intense research. Current studies aim to delve deeper into several aspects of this molecular entity, such as describing its structure and mode of operation in atomic detail, understanding its molecular and functional diversity, and examining the consequences of its malfunction due to structural alterations. Additionally, researchers are investigating the effects of various substances that amplify or decrease its pumping activity. Beyond its role as a pump, growing evidence indicates that in various cell types, NKA also functions as a receptor for cardiac glycosides like ouabain. This receptor activity triggers the activation of various signaling pathways, producing significant morphological and physiological effects. In this report, we present the results of a comprehensive review of the most outstanding studies of the past five years. We highlight the progress made regarding this new concept of NKA and the various cardiac glycosides that influence it. Furthermore, we emphasize NKA's role in epithelial physiology, particularly its function as a receptor for cardiac glycosides that trigger intracellular signals regulating cell-cell contacts, proliferation, differentiation, and adhesion. We also analyze the role of NKA β-subunits as cell adhesion molecules in glia and epithelial cells.
Collapse
Affiliation(s)
| | | | | | | | - Arturo Ponce
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, Mexico City 07360, Mexico; (R.G.C.); (A.T.-C.); (C.F.-M.); (L.S.)
| |
Collapse
|
6
|
Shearer A, Molinaro M, Montazerian M, Sly JJ, Miola M, Baino F, Mauro JC. The unexplored role of alkali and alkaline earth elements (ALAEs) on the structure, processing, and biological effects of bioactive glasses. Biomater Sci 2024; 12:2521-2560. [PMID: 38530228 DOI: 10.1039/d3bm01338c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Bioactive glass has been employed in several medical applications since its inception in 1969. The compositions of these materials have been investigated extensively with emphasis on glass network formers, therapeutic transition metals, and glass network modifiers. Through these experiments, several commercial and experimental compositions have been developed with varying chemical durability, induced physiological responses, and hydroxyapatite forming abilities. In many of these studies, the concentrations of each alkali and alkaline earth element have been altered to monitor changes in structure and biological response. This review aims to discuss the impact of each alkali and alkaline earth element on the structure, processing, and biological effects of bioactive glass. We explore critical questions regarding these elements from both a glass science and biological perspective. Should elements with little biological impact be included? Are alkali free bioactive glasses more promising for greater biological responses? Does this mixed alkali effect show increased degradation rates and should it be employed for optimized dissolution? Each of these questions along with others are evaluated comprehensively and discussed in the final section where guidance for compositional design is provided.
Collapse
Affiliation(s)
- Adam Shearer
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Matthew Molinaro
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Maziar Montazerian
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Jessica J Sly
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Marta Miola
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Torino, Italy.
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Torino, Italy.
| | - John C Mauro
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
7
|
Antony F, Brough Z, Zhao Z, Duong van Hoa F. Capture of the Mouse Organ Membrane Proteome Specificity in Peptidisc Libraries. J Proteome Res 2024; 23:857-867. [PMID: 38232390 DOI: 10.1021/acs.jproteome.3c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Membrane proteins, particularly those on the cell surface, play pivotal roles in diverse physiological processes, and their dysfunction is linked to a broad spectrum of diseases. Despite being crucial biomarkers and therapeutic drug targets, their low abundance and hydrophobic nature pose challenges in isolation and quantification, especially when extracted from tissues and organs. To overcome these hurdles, we developed the membrane-mimicking peptidisc, enabling the isolation of the membrane proteome in a water-soluble library conducive to swift identification through liquid chromatography with tandem mass spectrometry. This study applies the method across five mice organs, capturing between 200 and 450 plasma membrane proteins in each case. More than just membrane protein identification, the peptidisc is used to estimate the relative abundance across organs, linking cell-surface protein molecular functions to organ biological roles, thereby contributing to the ongoing discourse on organ specificity. This contribution holds substantial potential for unveiling new avenues in the exploration of biomarkers and downstream applications involving knowledge of the organ cell-surface proteome.
Collapse
Affiliation(s)
- Frank Antony
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Zora Brough
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Zhiyu Zhao
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Franck Duong van Hoa
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
8
|
Drury ER, Wu J, Gigliotti JC, Le TH. Sex differences in blood pressure regulation and hypertension: renal, hemodynamic, and hormonal mechanisms. Physiol Rev 2024; 104:199-251. [PMID: 37477622 PMCID: PMC11281816 DOI: 10.1152/physrev.00041.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/06/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023] Open
Abstract
The teleology of sex differences has been argued since at least as early as Aristotle's controversial Generation of Animals more than 300 years BC, which reflects the sex bias of the time to contemporary readers. Although the question "why are the sexes different" remains a topic of debate in the present day in metaphysics, the recent emphasis on sex comparison in research studies has led to the question "how are the sexes different" being addressed in health science through numerous observational studies in both health and disease susceptibility, including blood pressure regulation and hypertension. These efforts have resulted in better understanding of differences in males and females at the molecular level that partially explain their differences in vascular function and renal sodium handling and hence blood pressure and the consequential cardiovascular and kidney disease risks in hypertension. This review focuses on clinical studies comparing differences between men and women in blood pressure over the life span and response to dietary sodium and highlights experimental models investigating sexual dimorphism in the renin-angiotensin-aldosterone, vascular, sympathetic nervous, and immune systems, endothelin, the major renal sodium transporters/exchangers/channels, and the impact of sex hormones on these systems in blood pressure homeostasis. Understanding the mechanisms governing sex differences in blood pressure regulation could guide novel therapeutic approaches in a sex-specific manner to lower cardiovascular risks in hypertension and advance personalized medicine.
Collapse
Affiliation(s)
- Erika R Drury
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States
| | - Jing Wu
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, United States
| | - Joseph C Gigliotti
- Department of Integrative Physiology and Pharmacology, Liberty University College of Osteopathic Medicine, Lynchburg, Virginia, United States
| | - Thu H Le
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States
| |
Collapse
|
9
|
Granic A, Suetterlin K, Shavlakadze T, Grounds M, Sayer A. Hallmarks of ageing in human skeletal muscle and implications for understanding the pathophysiology of sarcopenia in women and men. Clin Sci (Lond) 2023; 137:1721-1751. [PMID: 37986616 PMCID: PMC10665130 DOI: 10.1042/cs20230319] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Ageing is a complex biological process associated with increased morbidity and mortality. Nine classic, interdependent hallmarks of ageing have been proposed involving genetic and biochemical pathways that collectively influence ageing trajectories and susceptibility to pathology in humans. Ageing skeletal muscle undergoes profound morphological and physiological changes associated with loss of strength, mass, and function, a condition known as sarcopenia. The aetiology of sarcopenia is complex and whilst research in this area is growing rapidly, there is a relative paucity of human studies, particularly in older women. Here, we evaluate how the nine classic hallmarks of ageing: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication contribute to skeletal muscle ageing and the pathophysiology of sarcopenia. We also highlight five novel hallmarks of particular significance to skeletal muscle ageing: inflammation, neural dysfunction, extracellular matrix dysfunction, reduced vascular perfusion, and ionic dyshomeostasis, and discuss how the classic and novel hallmarks are interconnected. Their clinical relevance and translational potential are also considered.
Collapse
Affiliation(s)
- Antoneta Granic
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, U.K
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, U.K
| | - Karen Suetterlin
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, U.K
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, U.K
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle upon Tyne, U.K
| | - Tea Shavlakadze
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, NY, U.S.A
| | - Miranda D. Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, the University of Western Australia, Perth, WA 6009, Australia
| | - Avan A. Sayer
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, U.K
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, U.K
| |
Collapse
|
10
|
Peluffo RD, Hernández JA. The Na +,K +-ATPase and its stoichiometric ratio: some thermodynamic speculations. Biophys Rev 2023; 15:539-552. [PMID: 37681108 PMCID: PMC10480117 DOI: 10.1007/s12551-023-01082-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/18/2023] [Indexed: 09/09/2023] Open
Abstract
Almost seventy years after its discovery, the sodium-potassium adenosine triphosphatase (the sodium pump) located in the cell plasma membrane remains a source of novel mechanistic and physiologic findings. A noteworthy feature of this enzyme/transporter is its robust stoichiometric ratio under physiological conditions: it sequentially counter-transports three sodium ions and two potassium ions against their electrochemical potential gradients per each hydrolyzed ATP molecule. Here we summarize some present knowledge about the sodium pump and its physiological roles, and speculate whether energetic constraints may have played a role in the evolutionary selection of its characteristic stoichiometric ratio.
Collapse
Affiliation(s)
- R. Daniel Peluffo
- Group of Biophysical Chemistry, Department of Biological Sciences, CENUR Litoral Norte, Universidad de La República, Rivera 1350, CP: 50000 Salto, Uruguay
| | - Julio A. Hernández
- Biophysics and Systems Biology Section, Department of Cell and Molecular Biology, Facultad de Ciencias, Universidad de La República, Iguá 4225, CP: 11400 Montevideo, Uruguay
| |
Collapse
|
11
|
Keilich SR, Cadar AN, Ahern DT, Torrance BL, Lorenzo EC, Martin DE, Haynes L, Bartley JM. Altered T cell infiltration and enrichment of leukocyte regulating pathways within aged skeletal muscle are associated impaired muscle function following influenza infection. GeroScience 2023; 45:1197-1213. [PMID: 36580167 PMCID: PMC9886695 DOI: 10.1007/s11357-022-00715-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/09/2022] [Indexed: 12/30/2022] Open
Abstract
Older adults have diminished immune responses that increase susceptibility to infectious diseases, such as influenza (flu). In older adults, flu infection can lead to hospitalization, catastrophic disability, and mortality. We previously demonstrated severe and prolonged muscle degradation and atrophy in aged mice during flu infection. Here, we utilized an unbiased transcriptomic analysis to elucidate mechanisms of flu-induced muscular declines in a mouse model. Our results showed age-related gene expression differences including downregulation of genes associated with muscle regeneration and organization and upregulation of genes associated with pro-inflammatory cytokines and migratory immune pathways in aged mice when compared to young. Pathway analysis revealed significant enrichment of leukocyte migration and T cell activation pathways in the aged muscle during infection. Intramuscular CD4 T cells increased in both young and aged mice during infection, while intramuscular CD8 T cells increased exclusively in aged muscle. CD4 T cells in young muscle were regulatory T cells (Treg), while those in aged were T follicular helper (Tfh) and Th2 cells. Correspondingly, IL-33, an important cytokine for Treg accumulation within tissue, increased only in young flu-infected muscle. Conversely, CXCL10 (IP-10) increased only in aged muscle suggesting a continued recruitment of CD8 T cells into the aged muscle during flu infection. Overall, our findings elucidate a link between flu-induced disability and dysregulated intracellular T cell recruitment into flu-injured muscle with aging. Furthermore, we uncovered potential pathways involved that can be targeted to develop preventative and therapeutic interventions to avert disability and maintain independence following infection.
Collapse
Affiliation(s)
- Spencer R Keilich
- UConn Center On Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Millipore Sigma, 400 Summit Drive, Burlington, MA, 01803, USA
| | - Andreia N Cadar
- UConn Center On Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Darcy T Ahern
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Intellia Therapeutics, 40 Erie St, Cambridge, MA, 02139, USA
| | - Blake L Torrance
- UConn Center On Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Erica C Lorenzo
- UConn Center On Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Dominique E Martin
- UConn Center On Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Laura Haynes
- UConn Center On Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
| | - Jenna M Bartley
- UConn Center On Aging, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
| |
Collapse
|
12
|
Youssef ME, Yahya G, Popoviciu MS, Cavalu S, Abd-Eldayem MA, Saber S. Unlocking the Full Potential of SGLT2 Inhibitors: Expanding Applications beyond Glycemic Control. Int J Mol Sci 2023; 24:ijms24076039. [PMID: 37047011 PMCID: PMC10094124 DOI: 10.3390/ijms24076039] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
The number of diabetic patients has risen dramatically in recent decades, owing mostly to the rising incidence of type 2 diabetes mellitus (T2DM). Several oral antidiabetic medications are used for the treatment of T2DM including, α-glucosidases inhibitors, biguanides, sulfonylureas, meglitinides, GLP-1 receptor agonists, PPAR-γ agonists, DDP4 inhibitors, and SGLT2 inhibitors. In this review we focus on the possible effects of SGLT2 inhibitors on different body systems. Beyond the diabetic state, SGLT2 inhibitors have revealed a demonstrable ability to ameliorate cardiac remodeling, enhance myocardial function, and lower heart failure mortality. Additionally, SGLT2 inhibitors can modify adipocytes and their production of cytokines, such as adipokines and adiponectin, which enhances insulin sensitivity and delays diabetes onset. On the other hand, SGLT2 inhibitors have been linked to decreased total hip bone mineral deposition and increased hip bone resorption in T2DM patients. More data are needed to evaluate the role of SGLT2 inhibitors on cancer. Finally, the effects of SGLT2 inhibitors on neuroprotection appear to be both direct and indirect, according to scientific investigations utilizing various experimental models. SGLT2 inhibitors improve vascular tone, elasticity, and contractility by reducing oxidative stress, inflammation, insulin signaling pathways, and endothelial cell proliferation. They also improve brain function, synaptic plasticity, acetylcholinesterase activity, and reduce amyloid plaque formation, as well as regulation of the mTOR pathway in the brain, which reduces brain damage and cognitive decline.
Collapse
Affiliation(s)
- Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Al Sharqia 44519, Egypt
| | - Mihaela Simona Popoviciu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| | - Marwa A Abd-Eldayem
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| |
Collapse
|
13
|
Sakellakis M, Chalkias A. The Role οf Ion Channels in the Development and Progression of Prostate Cancer. Mol Diagn Ther 2023; 27:227-242. [PMID: 36600143 DOI: 10.1007/s40291-022-00636-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2022] [Indexed: 01/06/2023]
Abstract
Ion channels have major regulatory functions in living cells. Apart from their role in ion transport, they are responsible for cellular electrogenesis and excitability, and may also regulate tissue homeostasis. Although cancer is not officially classified as a channelopathy, it has been increasingly recognized that ion channel aberrations play an important role in virtually all cancer types. Ion channels can exert pro-tumorigenic activities due to genetic or epigenetic alterations, or as a response to molecular signals, such as growth factors, hormones, etc. Increasing evidence suggests that ion channels and pumps play a critical role in the regulation of prostate cancer cell proliferation, apoptosis evasion, migration, epithelial-to-mesenchymal transition, and angiogenesis. There is also evidence suggesting that ion channels might play a role in treatment failure in patients with prostate cancer. Hence, they represent promising targets for diagnosis, staging, and treatment, and their effects may be of particular significance for specific patient populations, including those undergoing anesthesia and surgery. In this article, the role of major types of ion channels involved in the development and progression of prostate cancer are reviewed. Identifying the underlying molecular mechanisms of the pro-tumorigenic effects of ion channels may potentially inform the development of novel therapeutic strategies to counter this malignancy.
Collapse
Affiliation(s)
- Minas Sakellakis
- Hellenic GU Cancer Group, Athens, Greece. .,Department of Medical Oncology, Metropolitan Hospital, 9 Ethnarchou Makariou, 18547, Athens, Greece.
| | - Athanasios Chalkias
- Department of Anesthesiology, Faculty of Medicine, University of Thessaly, Larissa, Greece.,Outcomes Research Consortium, Cleveland, OH, USA
| |
Collapse
|
14
|
Xiao M, Wang X, Wang H, Du F, Yao Y, Wang X, Wang J, Yang J, Xiong W, Wang Q, Ren X, Zhu T. Risk factors for hyponatremia in acute exacerbation chronic obstructive pulmonary disease (AECOPD): a multicenter cross-sectional study. BMC Pulm Med 2023; 23:39. [PMID: 36709254 PMCID: PMC9884134 DOI: 10.1186/s12890-023-02328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/16/2023] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Hyponatremia is an independent predictor of poor prognosis, including increased mortality and readmission, in COPD patients. Identifying modifiable etiologies of hyponatremia may help reduce adverse events in patients with AECOPD. Therefore, the aim of this study was to explore the risk factors and underlying etiologies of hyponatremia in AECOPD patients. METHODS A total of 586 AECOPD patients were enrolled in this multicenter cross-sectional study. Finally, 323 had normonatremia, and 90 had hyponatremia. Demographics, underlying diseases, comorbidities, symptoms, and laboratory data were collected. The least absolute shrinkage and selection operator (LASSO) regression was used to select potential risk factors, which were substituted into binary logistic regression to identify independent risk factors. Nomogram was built to visualize and validate binary logistics regression model. RESULTS Nine potential hyponatremia-associated variables were selected by LASSO regression. Subsequently, a binary logistic regression model identified that smoking status, rate of community-acquired pneumonia (CAP), anion gap (AG), erythrocyte sedimentation rate (ESR), and serum magnesium (Mg2+) were independent variables of hyponatremia in AECOPD patients. The AUC of ROC curve of nomogram was 0.756. The DCA curve revealed that the nomogram could yielded more clinical benefits if the threshold was between 10% and 52%. CONCLUSIONS Collectively, our results showed that smoking status, CAP, AG, ESR, and serum Mg2+ were independently associated with hyponatremia in AECOPD patients. Then, these findings indicate that pneumonia, metabolic acidosis, and hypomagnesemia were the underlying etiologies of hyponatremia in AECOPD patients. However, their internal connections need further exploration.
Collapse
Affiliation(s)
- Min Xiao
- grid.412901.f0000 0004 1770 1022Respiratory Medicine and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Xiaoyu Wang
- grid.412901.f0000 0004 1770 1022Otolaryngology Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Hanchao Wang
- Respiratory Medicine and Critical Care Medicine, and Preclinical Research Center, Suining Central Hospital, Suining, 629000 Sichuan China
| | - Fawang Du
- Respiratory Medicine and Critical Care Medicine, and Preclinical Research Center, Suining Central Hospital, Suining, 629000 Sichuan China
| | - Yu Yao
- Respiratory Medicine and Critical Care Medicine, and Preclinical Research Center, Suining Central Hospital, Suining, 629000 Sichuan China
| | - Xiaochuan Wang
- Respiratory Medicine and Critical Care Medicine, and Preclinical Research Center, Suining Central Hospital, Suining, 629000 Sichuan China
| | - Jiajia Wang
- grid.412461.40000 0004 9334 6536Rheumatology Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Juan Yang
- grid.66875.3a0000 0004 0459 167XDivision of General Internal Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Wei Xiong
- grid.412461.40000 0004 9334 6536Respiratory Medicine and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Qin Wang
- grid.412461.40000 0004 9334 6536Respiratory Medicine and Critical Care Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Xubin Ren
- Respiratory Medicine and Critical Care Medicine, Chengdu First People’s Hospital, Chengdu, 610041 Sichuan China
| | - Tao Zhu
- Respiratory Medicine and Critical Care Medicine, and Preclinical Research Center, Suining Central Hospital, Suining, 629000 Sichuan China
| |
Collapse
|
15
|
Homologs of Ancestral CNNM Proteins Affect Magnesium Homeostasis and Circadian Rhythmicity in a Model Eukaryotic Cell. Int J Mol Sci 2023; 24:ijms24032273. [PMID: 36768595 PMCID: PMC9916543 DOI: 10.3390/ijms24032273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Biological rhythms are ubiquitous across organisms and coordinate key cellular processes. Oscillations of Mg2+ levels in cells are now well-established, and due to the critical roles of Mg2+ in cell metabolism, they are potentially fundamental for the circadian control of cellular activity. The identity of the transport proteins responsible for sustaining Mg2+ levels in eukaryotic cells remains hotly debated, and several are restricted to specific groups of higher eukaryotes. Here, using the eukaryotic minimal model cells of Ostreococcus tauri, we report two homologs of common descents of the Cyclin M (CNNM)/CorC protein family. Overexpression of these proteins leads to a reduction in the overall magnesium content of cells and a lengthening of the period of circadian gene expression rhythms. However, we observed a paradoxical increase in the magnesium content of the organelle fraction. The chemical inhibition of Mg2+ transport has a synergistic effect on circadian period lengthening upon the overexpression of one CNNM homolog, but not the other. Finally, both homologs rescue the deleterious effect of low extracellular magnesium on cell proliferation rates. Overall, we identified two CNNM proteins that directly affect Mg2+ homeostasis and cellular rhythms.
Collapse
|
16
|
Obradovic M, Sudar-Milovanovic E, Gluvic Z, Banjac K, Rizzo M, Isenovic ER. The Na +/K +-ATPase: A potential therapeutic target in cardiometabolic diseases. Front Endocrinol (Lausanne) 2023; 14:1150171. [PMID: 36926029 PMCID: PMC10011626 DOI: 10.3389/fendo.2023.1150171] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
Cardiometabolic diseases (CMD) are a direct consequence of modern living and contribute to the development of multisystem diseases such as cardiovascular diseases and diabetes mellitus (DM). CMD has reached epidemic proportions worldwide. A sodium pump (Na+/K+-ATPase) is found in most eukaryotic cells' membrane and controls many essential cellular functions directly or indirectly. This ion transporter and its isoforms are important in the pathogenesis of some pathological processes, including CMD. The structure and function of Na+/K+-ATPase, its expression and distribution in tissues, and its interactions with known ligands such as cardiotonic steroids and other suspected endogenous regulators are discussed in this review. In addition, we reviewed recent literature data related to the involvement of Na+/K+-ATPase activity dysfunction in CMD, focusing on the Na+/K+-ATPase as a potential therapeutic target in CMD.
Collapse
Affiliation(s)
- Milan Obradovic
- Department of Radiobiology and Molecular Genetics, “VINČA“ Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Emina Sudar-Milovanovic
- Department of Radiobiology and Molecular Genetics, “VINČA“ Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran Gluvic
- University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal medicine, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Katarina Banjac
- Department of Radiobiology and Molecular Genetics, “VINČA“ Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Manfredi Rizzo
- School of Medicine, Promise Department, University of Palermo, Palermo, Italy
- *Correspondence: Manfredi Rizzo,
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, “VINČA“ Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
17
|
Role of Translationally Controlled Tumor Protein (TCTP) in the Development of Hypertension and Related Diseases in Mouse Models. Biomedicines 2022; 10:biomedicines10112722. [DOI: 10.3390/biomedicines10112722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Translationally controlled tumor protein (TCTP) is a multifunctional protein that plays a wide variety of physiological and pathological roles, including as a cytoplasmic repressor of Na,K-ATPase, an enzyme pivotal in maintaining Na+ and K+ ion gradients across the plasma membrane, by binding to and inhibiting Na,K-ATPase. Studies with transgenic mice overexpressing TCTP (TCTP-TG) revealed the pathophysiological significance of TCTP in the development of systemic arterial hypertension. Overexpression of TCTP and inhibition of Na,K-ATPase result in the elevation of cytoplasmic Ca2+ levels, which increases the vascular contractility in the mice, leading to hypertension. Furthermore, studies using an animal model constructed by multiple mating of TCTP-TG with apolipoprotein E knockout mice (ApoE KO) indicated that TCTP-induced hypertension facilitates the severity of atherosclerotic lesions in vivo. This review attempts to discuss the mechanisms underlying TCTP-induced hypertension and related diseases gleaned from studies using genetically altered animal models and the potential of TCTP as a target in the therapy of hypertension-related pathological conditions.
Collapse
|
18
|
Moreno C, Jiao S, Yano S, Holmgren M. Disease mutations of human α3 Na +/K +-ATPase define extracellular Na + binding/occlusion kinetics at ion binding site III. PNAS NEXUS 2022; 1:pgac205. [PMID: 36304555 PMCID: PMC9585393 DOI: 10.1093/pnasnexus/pgac205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Na+/K+-ATPase, which creates transmembrane electrochemical gradients by exchanging 3 Na+ for 2 K+, is central to the pathogenesis of neurological diseases such as alternating hemiplegia of childhood. Although Na+/K+-ATPase has 3 distinct ion binding sites I-III, the difficulty of distinguishing ion binding events at each site from the others hinders kinetic study of these transitions. Here, we show that binding of Na+ at each site in the human α3 Na+/K+-ATPase can be resolved using extracellular Na+-mediated transient currents. When Na+/K+-ATPase is constrained to bind and release only Na+, three kinetic components: fast, medium, and slow, can be isolated, presumably corresponding to the protein dynamics associated with the binding (or release depending on the voltage step direction) and the occlusion (or deocclusion) of each of the 3 Na+. Patient-derived mutations of residues which coordinate Na+ at site III exclusively impact the slow component, demonstrating that site III is crucial for deocclusion and release of the first Na+ into the extracellular milieu. These results advance understanding of Na+/K+-ATPase mutation pathogenesis and provide a foundation for study of individual ions' binding kinetics.
Collapse
Affiliation(s)
- Cristina Moreno
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Song Jiao
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sho Yano
- Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA,Medical Genetics and Genomic Medicine Training Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Miguel Holmgren
- Correspondence should be addressed: Miguel Holmgren, Ph.D. Molecular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA. Tel: +1-(301) 451-6259; E-mail:
| |
Collapse
|
19
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
20
|
Munteanu C, Rotariu M, Turnea M, Ionescu AM, Popescu C, Spinu A, Ionescu EV, Oprea C, Țucmeanu RE, Tătăranu LG, Silișteanu SC, Onose G. Main Cations and Cellular Biology of Traumatic Spinal Cord Injury. Cells 2022; 11:2503. [PMID: 36010579 PMCID: PMC9406880 DOI: 10.3390/cells11162503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 02/08/2023] Open
Abstract
Traumatic spinal cord injury is a life-changing condition with a significant socio-economic impact on patients, their relatives, their caregivers, and even the community. Despite considerable medical advances, there is still a lack of options for the effective treatment of these patients. The major complexity and significant disabling potential of the pathophysiology that spinal cord trauma triggers are the main factors that have led to incremental scientific research on this topic, including trying to describe the molecular and cellular mechanisms that regulate spinal cord repair and regeneration. Scientists have identified various practical approaches to promote cell growth and survival, remyelination, and neuroplasticity in this part of the central nervous system. This review focuses on specific detailed aspects of the involvement of cations in the cell biology of such pathology and on the possibility of repairing damaged spinal cord tissue. In this context, the cellular biology of sodium, potassium, lithium, calcium, and magnesium is essential for understanding the related pathophysiology and also the possibilities to counteract the harmful effects of traumatic events. Lithium, sodium, potassium-monovalent cations-and calcium and magnesium-bivalent cations-can influence many protein-protein interactions, gene transcription, ion channel functions, cellular energy processes-phosphorylation, oxidation-inflammation, etc. For data systematization and synthesis, we used the Preferred Reporting Items for Systematic Reviews and Meta-Analyzes (PRISMA) methodology, trying to make, as far as possible, some order in seeing the "big forest" instead of "trees". Although we would have expected a large number of articles to address the topic, we were still surprised to find only 51 unique articles after removing duplicates from the 207 articles initially identified. Our article integrates data on many biochemical processes influenced by cations at the molecular level to understand the real possibilities of therapeutic intervention-which must maintain a very narrow balance in cell ion concentrations. Multimolecular, multi-cellular: neuronal cells, glial cells, non-neuronal cells, but also multi-ionic interactions play an important role in the balance between neuro-degenerative pathophysiological processes and the development of effective neuroprotective strategies. This article emphasizes the need for studying cation dynamics as an important future direction.
Collapse
Affiliation(s)
- Constantin Munteanu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania
- Neuromuscular Rehabilitation Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Mariana Rotariu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania
| | - Marius Turnea
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania
| | - Anca Mirela Ionescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Cristina Popescu
- Neuromuscular Rehabilitation Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Aura Spinu
- Neuromuscular Rehabilitation Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Elena Valentina Ionescu
- Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania
- Balneal and Rehabilitation Sanatorium of Techirghiol, 906100 Techirghiol, Romania
| | - Carmen Oprea
- Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania
- Balneal and Rehabilitation Sanatorium of Techirghiol, 906100 Techirghiol, Romania
| | - Roxana Elena Țucmeanu
- Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania
- Balneal and Rehabilitation Sanatorium of Techirghiol, 906100 Techirghiol, Romania
| | - Ligia Gabriela Tătăranu
- Neuromuscular Rehabilitation Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Sînziana Calina Silișteanu
- Faculty of Medicine and Biological Sciences, “Stefan cel Mare” University of Suceava, 720229 Suceava, Romania
| | - Gelu Onose
- Neuromuscular Rehabilitation Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| |
Collapse
|
21
|
Rodrigues T, Piccirillo S, Magi S, Preziuso A, Dos Santos Ramos V, Serfilippi T, Orciani M, Maciel Palacio Alvarez M, Luis Dos Santos Tersariol I, Amoroso S, Lariccia V. Control of Ca 2+ and metabolic homeostasis by the Na +/Ca 2+ exchangers (NCXs) in health and disease. Biochem Pharmacol 2022; 203:115163. [PMID: 35803319 DOI: 10.1016/j.bcp.2022.115163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022]
Abstract
Spatial and temporal control of calcium (Ca2+) levels is essential for the background rhythms and responses of living cells to environmental stimuli. Whatever other regulators a given cellular activity may have, localized and wider scale Ca2+ events (sparks, transients, and waves) are hierarchical determinants of fundamental processes such as cell contraction, excitability, growth, metabolism and survival. Different cell types express specific channels, pumps and exchangers to efficiently generate and adapt Ca2+ patterns to cell requirements. The Na+/Ca2+ exchangers (NCXs) in particular contribute to Ca2+ homeostasis by buffering intracellular Ca2+ loads according to the electrochemical gradients of substrate ions - i.e., Ca2+ and sodium (Na+) - and under a dynamic control of redundant regulatory processes. An interesting feature of NCX emerges from the strict relationship that connects transporter activity with cell metabolism: on the one hand NCX operates under constant control of ATP-dependent regulatory processes, on the other hand the ion fluxes generated through NCX provide mechanistic support for the Na+-driven uptake of glutamate and Ca2+ influx to fuel mitochondrial respiration. Proof of concept evidence highlights therapeutic potential of preserving a timed and balanced NCX activity in a growing rate of diseases (including excitability, neurodegenerative, and proliferative disorders) because of an improved ability of stressed cells to safely maintain ion gradients and mitochondrial bioenergetics. Here, we will summarize and review recent works that have focused on the pathophysiological roles of NCXs in balancing the two-way relationship between Ca2+ signals and metabolism.
Collapse
Affiliation(s)
- Tiago Rodrigues
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil.
| | - Silvia Piccirillo
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Ancona, Italy.
| | - Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Ancona, Italy.
| | - Alessandra Preziuso
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Ancona, Italy.
| | - Vyctória Dos Santos Ramos
- Interdisciplinary Center for Biochemistry Investigation (CIIB), University of Mogi das Cruzes (UMC), Mogi das Cruzes, SP, Brazil
| | - Tiziano Serfilippi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Ancona, Italy.
| | - Monia Orciani
- Department of Clinical and Molecular Sciences, Histology, University "Politecnica delle Marche", Ancona, Italy.
| | - Marcela Maciel Palacio Alvarez
- Department of Biochemistry, São Paulo School of Medicine, Federal University of São Paulo (Unifesp) São Paulo, SP, Brazil
| | | | - Salvatore Amoroso
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Ancona, Italy.
| | - Vincenzo Lariccia
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Ancona, Italy.
| |
Collapse
|
22
|
Glycaemia dynamics concepts before and after insulin. Biochem Pharmacol 2022; 201:115092. [PMID: 35588854 DOI: 10.1016/j.bcp.2022.115092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
|
23
|
Lewis S, Chen L, Raghuram V, Khundmiri SJ, Chou CL, Yang CR, Knepper MA. "SLC-omics" of the kidney: Solute transporters along the nephron. Am J Physiol Cell Physiol 2021; 321:C507-C518. [PMID: 34191628 DOI: 10.1152/ajpcell.00197.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The fluid in the 14 distinct segments of the renal tubule undergoes sequential transport processes that gradually convert the glomerular filtrate into the final urine. The solute carrier (SLC) family of proteins is responsible for much of the transport of ions and organic molecules along the renal tubule. In addition, some SLC family proteins mediate housekeeping functions by transporting substrates for metabolism. Here, we have developed a curated list of SLC family proteins. We used the list to produce resource webpages that map these proteins and their transcripts to specific segments along the renal tubule. The data were used to highlight some interesting features of expression along the renal tubule including sex-specific expression in the proximal tubule and the role of accessory proteins (β-subunit proteins) that are thought to be important for polarized targeting in renal tubule epithelia. Also, as an example of application of the data resource, we describe the patterns of acid-base transporter expression along the renal tubule.
Collapse
Affiliation(s)
- Spencer Lewis
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Syed J Khundmiri
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
24
|
Steward CH, Smith R, Stepto NK, Brown M, Ng I, McKenna MJ. A single oral glucose load decreases arterial plasma [K + ] during exercise and recovery. Physiol Rep 2021; 9:e14889. [PMID: 34110701 PMCID: PMC8191174 DOI: 10.14814/phy2.14889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022] Open
Abstract
AIM We investigated whether acute carbohydrate ingestion reduced arterial potassium concentration ([K+ ]) during and after intense exercise and delayed fatigue. METHODS In a randomized, double-blind crossover design, eight males ingested 300 ml water containing 75 g glucose (CHO) or placebo (CON); rested for 60 min, then performed high-intensity intermittent cycling (HIIC) at 130% V ˙ O 2peak , comprising three 45-s exercise bouts (EB), then a fourth EB until fatigue. Radial arterial (a) and antecubital venous (v) blood was sampled at rest, before, during and after HIIC and analyzed for plasma ions and metabolites, with forearm arteriovenous differences (a-v diff) calculated to assess inactive forearm muscle effects. RESULTS Glucose ingestion elevated [glucose]a and [insulin]a above CON (p = .001), being, respectively, ~2- and ~5-fold higher during CHO at 60 min after ingestion (p = .001). Plasma [K+ ]a rose during and declined following each exercise bout in HIIC (p = .001), falling below baseline at 5 min post-exercise (p = .007). Both [K+ ]a and [K+ ]v were lower during CHO (p = .036, p = .001, respectively, treatment main effect). The [K+ ]a-v diff across the forearm widened during exercise (p = .001), returned to baseline during recovery, and was greater in CHO than CON during EB1, EB2 (p = .001) and EB3 (p = .005). Time to fatigue did not differ between trials. CONCLUSION Acute oral glucose ingestion, as used in a glucose tolerance test, induced a small, systemic K+ -lowering effect before, during, and after HIIC, that was detectable in both arterial and venous plasma. This likely reflects insulin-mediated, increased Na+ ,K+ -ATPase induced K+ uptake into non-contracting muscles. However, glucose ingestion did not delay fatigue.
Collapse
Affiliation(s)
| | - Robert Smith
- Institute for Health and SportVictoria UniversityMelbourneVICAustralia
- Department of AnaesthesiaWestern HospitalMelbourneVICAustralia
| | - Nigel K. Stepto
- Institute for Health and SportVictoria UniversityMelbourneVICAustralia
| | - Malcolm Brown
- Department of Biochemistry and PharmacologyUniversity of MelbourneMelbourneVICAustralia
| | - Irene Ng
- Department of Anaesthesia and Pain ManagementRoyal Melbourne HospitalMelbourneVICAustralia
| | | |
Collapse
|