1
|
De la Torre GG, Groemer G, Diaz-Artiles A, Pattyn N, Van Cutsem J, Musilova M, Kopec W, Schneider S, Abeln V, Larose T, Ferlazzo F, Zivi P, de Carvalho A, Sandal GM, Orzechowski L, Nicolas M, Billette de Villemeur R, Traon APL, Antunes I. Space Analogs and Behavioral Health Performance Research review and recommendations checklist from ESA Topical Team. NPJ Microgravity 2024; 10:98. [PMID: 39433767 PMCID: PMC11494059 DOI: 10.1038/s41526-024-00437-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024] Open
Abstract
Space analog research has increased over the last few years with new analogs appearing every year. Research in this field is very important for future real mission planning, selection and training of astronauts. Analog environments offer specific characteristics that resemble to some extent the environment of a real space mission. These analog environments are especially interesting from the psychological point of view since they allow the investigation of mental and social variables in very similar conditions to those occurring during real space missions. Analog missions also represent an opportunity to test operational work and obtain information on which combination of processes and team dynamics are most optimal for completing specific aspects of the mission. A group of experts from a European Space Agency (ESA) funded topical team reviews the current situation of topic, potentialities, gaps, and recommendations for appropriate research. This review covers the different domains in space analog research including classification, main areas of behavioral health performance research in these environments and operational aspects. We also include at the end, a section with a list or tool of recommendations in the form of a checklist for the scientific community interested in doing research in this field. This checklist can be useful to maintain optimal standards of methodological and scientific quality, in addition to identifying topics and areas of special interest.
Collapse
Affiliation(s)
- Gabriel G De la Torre
- Neuropsychology and Experimental Psychology Lab. University of Cadiz, Cadiz, Spain.
- Institute of Biomedical Research and Innovation of Cadiz (INIBICA), Cadiz, Spain.
| | | | - Ana Diaz-Artiles
- Bioastronautics and Human Performance Lab. Texas AM University, Houston, TX, USA
| | - Nathalie Pattyn
- VIPER Research Unit, Royal Military Academy, Brussels, Belgium
- Brain, Body and Cognition, Vrije Universiteit, Brussels, Belgium
- Centre de Recherche Avancée en Médecine du Sommeil, Université de Montréal, Montreal, QC, Canada
| | - Jeroen Van Cutsem
- VIPER Research Unit, Royal Military Academy, Brussels, Belgium
- Brain, Body and Cognition, Vrije Universiteit, Brussels, Belgium
| | - Michaela Musilova
- Institute of Robotics and Cybernetics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Wieslaw Kopec
- XR Center, Polish-Japanese Academy of Information Technology, Warsaw, Poland
| | - Stefan Schneider
- Institute for Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
| | - Vera Abeln
- Institute for Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
| | - Tricia Larose
- Faculty of Medicine, Institute for Health and Community Medicine. University of Oslo, Oslo, Norway
| | - Fabio Ferlazzo
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Pierpaolo Zivi
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | - Anne Pavy-Le Traon
- Institute for Space Medicine and Physiology (MEDES), Toulouse, France
- Department of Neurology, Institute for Neurosciences, Toulouse University Hospital, Toulouse, France
| | - Ines Antunes
- Directorate of Human and Robotic Exploration Programmes (HRE-RS). European Space Agency (ESA), Noordwijk, The Netherlands
| |
Collapse
|
2
|
Frett T, Lecheler L, Arz M, Pustowalow W, Petrat G, Mommsen F, Breuer J, Schmitz MT, Green DA, Jordan J. Acute cardiovascular and muscular response to rowing ergometer exercise in artificial gravity - a pilot trial. NPJ Microgravity 2024; 10:57. [PMID: 38782970 PMCID: PMC11116499 DOI: 10.1038/s41526-024-00402-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
Prolonged immobilization and spaceflight cause cardiovascular and musculoskeletal deconditioning. Combining artificial gravity through short-arm centrifugation with rowing exercise may serve as a countermeasure. We aimed to compare the tolerability, muscle force production, cardiovascular response, and power output of rowing on a short-arm centrifuge and under terrestrial gravity. Twelve rowing athletes (4 women, aged 27.2 ± 7.4 years, height 179 ± 0.1 cm, mass 73.7 ± 9.4 kg) participated in two rowing sessions, spaced at least six weeks apart. One session used a short-arm centrifuge with +0.5 Gz, while the other inclined the rowing ergometer by 26.6° to mimic centrifugal loading. Participants started self-paced rowing at 30 W, increasing by 15 W every three minutes until exhaustion. We measured rowing performance, heart rate, blood pressure, ground reaction forces, leg muscle activation, and blood lactate concentration. Rowing on the centrifuge was well-tolerated without adverse events. No significant differences in heart rate, blood pressure, or blood lactate concentration were observed between conditions. Inclined rowing under artificial gravity resulted in lower power output (-33%, p < 0.001) compared to natural gravity, but produced higher mean and peak ground reaction forces (p < 0.0001) and increased leg muscle activation. Muscle activation and ground reaction forces varied with rotational direction. Rowing in artificial gravity shows promise as a strategy against cardiovascular and muscular deconditioning during long-term spaceflight, but further investigation is required to understand its long-term effects.
Collapse
Affiliation(s)
- Timo Frett
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany.
| | - Leo Lecheler
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Michael Arz
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Willi Pustowalow
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Guido Petrat
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Florian Mommsen
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Jan Breuer
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Marie-Therese Schmitz
- Institute of Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Bonn, Germany
| | - David Andrew Green
- European Space Agency, Cologne, Germany
- King's College London, London, UK
- Space Medicine Team, European Astronaut Centre, European Space Agency, Cologne, Germany
- KBRwyle GmbH, Cologne, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Chair of Aerospace Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Hajj‐Boutros G, Sonjak V, Faust A, Balram S, Lagacé J, St‐Martin P, Divsalar DN, Sadeghian F, Liu‐Ambrose T, Blaber AP, Dionne IJ, Duchesne S, Kontulainen S, Theou O, Morais JA. Myths and Methodologies: Understanding the health impact of head down bedrest for the benefit of older adults and astronauts. Study protocol of the Canadian Bedrest Study. Exp Physiol 2024; 109:812-827. [PMID: 38372420 PMCID: PMC11061626 DOI: 10.1113/ep091473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
Weightlessness during spaceflight can harm various bodily systems, including bone density, muscle mass, strength and cognitive functions. Exercise appears to somewhat counteract these effects. A terrestrial model for this is head-down bedrest (HDBR), simulating gravity loss. This mirrors challenges faced by older adults in extended bedrest and space environments. The first Canadian study, backed by the Canadian Space Agency, Canadian Institutes of Health Research, and Canadian Frailty Network, aims to explore these issues. The study seeks to: (1) scrutinize the impact of 14-day HDBR on physiological, psychological and neurocognitive systems, and (2) assess the benefits of exercise during HDBR. Eight teams developed distinct protocols, harmonized in three videoconferences, at the McGill University Health Center. Over 26 days, 23 participants aged 55-65 underwent baseline measurements, 14 days of -6° HDBR, and 7 days of recovery. Half did prescribed exercise thrice daily combining resistance and endurance exercise for a total duration of 1 h. Assessments included demographics, cardiorespiratory fitness, bone health, body composition, quality of life, mental health, cognition, muscle health and biomarkers. This study has yielded some published outcomes, with more forthcoming. Findings will enrich our comprehension of HDBR effects, guiding future strategies for astronaut well-being and aiding bedrest-bound older adults. By outlining evidence-based interventions, this research supports both space travellers and those enduring prolonged bedrest.
Collapse
Affiliation(s)
- Guy Hajj‐Boutros
- Research Institute of McGill University Health CentreMcGill UniversityMontréalQuebecCanada
| | - Vita Sonjak
- Research Institute of McGill University Health CentreMcGill UniversityMontréalQuebecCanada
| | - Andréa Faust
- Research Institute of McGill University Health CentreMcGill UniversityMontréalQuebecCanada
| | - Sharmila Balram
- Research Institute of McGill University Health CentreMcGill UniversityMontréalQuebecCanada
| | - Jean‐Christophe Lagacé
- Faculté des Sciences de l'activité physique, Centre de recherche sur le VieillissementUniversité de SherbrookeSherbrookeQuebecCanada
| | - Philippe St‐Martin
- Faculté des Sciences de l'activité physique, Centre de recherche sur le VieillissementUniversité de SherbrookeSherbrookeQuebecCanada
| | - Donya Naz Divsalar
- Department of Biomedical Physiology and KinesiologySimon Fraser UniversityGreater VancouverBritish ColumbiaCanada
| | - Farshid Sadeghian
- Department of Biomedical Physiology and KinesiologySimon Fraser UniversityGreater VancouverBritish ColumbiaCanada
| | - Teresa Liu‐Ambrose
- Aging, Mobility and Cognitive Neuroscience Laboratory, Department of Physical Therapy, Faculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Health Research InstituteVancouverBritish ColumbiaCanada
- Centre for Hip Health and MobilityVancouver Coastal Health Research InstituteVancouverBritish ColumbiaCanada
| | - Andrew P. Blaber
- Department of Biomedical Physiology and KinesiologySimon Fraser UniversityGreater VancouverBritish ColumbiaCanada
| | - Isabelle J. Dionne
- Faculté des Sciences de l'activité physique, Centre de recherche sur le VieillissementUniversité de SherbrookeSherbrookeQuebecCanada
| | - Simon Duchesne
- Department of Radiology and Nuclear MedicineUniversité LavalQuebec CityQuebecCanada
- CERVO Brain Research CenterQuebec CityQuebecCanada
| | - Saija Kontulainen
- College of KinesiologyUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Olga Theou
- Physiotherapy and Geriatric MedicineDalhousie UniversityHalifaxNova ScotiaCanada
| | - José A. Morais
- Division of Geriatric Medicine, McGill University Health CentreMcGill UniversityMontréalQuebecCanada
| |
Collapse
|
4
|
Cowburn J, Serrancolí G, Colyer S, Cazzola D. Optimal fibre length and maximum isometric force are the most influential parameters when modelling muscular adaptations to unloading using Hill-type muscle models. Front Physiol 2024; 15:1347089. [PMID: 38694205 PMCID: PMC11061504 DOI: 10.3389/fphys.2024.1347089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction: Spaceflight is associated with severe muscular adaptations with substantial inter-individual variability. A Hill-type muscle model is a common method to replicate muscle physiology in musculoskeletal simulations, but little is known about how the underlying parameters should be adjusted to model adaptations to unloading. The aim of this study was to determine how Hill-type muscle model parameters should be adjusted to model disuse muscular adaptations. Methods: Isokinetic dynamometer data were taken from a bed rest campaign and used to perform tracking simulations at two knee extension angular velocities (30°·s-1 and 180°·s-1). The activation and contraction dynamics were solved using an optimal control approach and direct collocation method. A Monte Carlo sampling technique was used to perturb muscle model parameters within physiological boundaries to create a range of theoretical and feasible parameters to model muscle adaptations. Results: Optimal fibre length could not be shortened by more than 67% and 61% for the knee flexors and non-knee muscles, respectively. Discussion: The Hill-type muscle model successfully replicated muscular adaptations due to unloading, and recreated salient features of muscle behaviour associated with spaceflight, such as altered force-length behaviour. Future researchers should carefully adjust the optimal fibre lengths of their muscle-models when trying to model adaptations to unloading, particularly muscles that primarily operate on the ascending and descending limbs of the force-length relationship.
Collapse
Affiliation(s)
- James Cowburn
- Department for Health, University of Bath, Bath, United Kingdom
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, United Kingdom
| | - Gil Serrancolí
- Department of Mechanical Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Steffi Colyer
- Department for Health, University of Bath, Bath, United Kingdom
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, United Kingdom
| | - Dario Cazzola
- Department for Health, University of Bath, Bath, United Kingdom
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, United Kingdom
| |
Collapse
|
5
|
Cowburn J, Serrancolí G, Pavei G, Minetti A, Salo A, Colyer S, Cazzola D. A novel computational framework for the estimation of internal musculoskeletal loading and muscle adaptation in hypogravity. Front Physiol 2024; 15:1329765. [PMID: 38384800 PMCID: PMC10880100 DOI: 10.3389/fphys.2024.1329765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/08/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction: Spaceflight is associated with substantial and variable musculoskeletal (MSK) adaptations. Characterisation of muscle and joint loading profiles can provide key information to better align exercise prescription to astronaut MSK adaptations upon return-to-Earth. A case-study is presented of single-leg hopping in hypogravity to demonstrate the additional benefit computational MSK modelling has when estimating lower-limb MSK loading. Methods: A single male participant performed single-leg vertical hopping whilst attached to a body weight support system to replicate five gravity conditions (0.17, 0.25, 0.37, 0.50, 1 g). Experimental joint kinematics, joint kinetics and ground reaction forces were tracked in a data-tracking direct collocation simulation framework. Ground reaction forces, sagittal plane hip, knee and ankle net joint moments, quadriceps muscle forces (Rectus Femoris and three Vasti muscles), and hip, knee and ankle joint reaction forces were extracted for analysis. Estimated quadriceps muscle forces were input into a muscle adaptation model to predict a meaningful increase in muscle cross-sectional area, defined in (DeFreitas et al., 2011). Results: Two distinct strategies were observed to cope with the increase in ground reaction forces as gravity increased. Hypogravity was associated with an ankle dominant strategy with increased range of motion and net plantarflexor moment that was not seen at the hip or knee, and the Rectus Femoris being the primary contributor to quadriceps muscle force. At 1 g, all three joints had increased range of motion and net extensor moments relative to 0.50 g, with the Vasti muscles becoming the main muscles contributing to quadriceps muscle force. Additionally, hip joint reaction force did not increase substantially as gravity increased, whereas the other two joints increased monotonically with gravity. The predicted volume of exercise needed to counteract muscle adaptations decreased substantially with gravity. Despite the ankle dominant strategy in hypogravity, the loading on the knee muscles and joint also increased, demonstrating this provided more information about MSK loading. Discussion: This approach, supplemented with muscle-adaptation models, can be used to compare MSK loading between exercises to enhance astronaut exercise prescription.
Collapse
Affiliation(s)
- James Cowburn
- Department for Health, University of Bath, Bath, United Kingdom
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, United Kingdom
| | - Gil Serrancolí
- Department of Mechanical Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Gaspare Pavei
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alberto Minetti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Aki Salo
- Department for Health, University of Bath, Bath, United Kingdom
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, United Kingdom
| | - Steffi Colyer
- Department for Health, University of Bath, Bath, United Kingdom
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, United Kingdom
| | - Dario Cazzola
- Department for Health, University of Bath, Bath, United Kingdom
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, United Kingdom
| |
Collapse
|
6
|
Hoenemann JN, Moestl S, van Herwaarden AE, Diedrich A, Mulder E, Frett T, Petrat G, Pustowalow W, Arz M, Heusser K, Lee S, Jordan J, Tank J, Hoffmann F. Effects of daily artificial gravity training on orthostatic tolerance following 60-day strict head-down tilt bedrest. Clin Auton Res 2023; 33:401-410. [PMID: 37347452 PMCID: PMC10439060 DOI: 10.1007/s10286-023-00959-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
PURPOSE Orthostatic intolerance commonly occurs following immobilization or space flight. We hypothesized that daily artificial gravity training through short-arm centrifugation could help to maintain orthostatic tolerance following head-down tilt bedrest, which is an established terrestrial model for weightlessness. METHODS We studied 24 healthy persons (eight women; age 33.3 ± 9.0 years; BMI 24.3 ± 2.1 kg/m2) who participated in the 60-days head-down tilt bedrest (AGBRESA) study. They were assigned to 30 min/day continuous or 6 × 5 min intermittent short-arm centrifugation with 1Gz at the center of mass or a control group. We performed head-up tilt testing with incremental lower-body negative pressure until presyncope before and after bedrest. We recorded an electrocardiogram, beat-to-beat finger blood pressure, and brachial blood pressure and obtained blood samples from an antecubital venous catheter. Orthostatic tolerance was defined as time to presyncope. We related changes in orthostatic tolerance to changes in plasma volume determined by carbon dioxide rebreathing. RESULTS Compared with baseline measurements, supine and upright heart rate increased in all three groups following head-down tilt bedrest. Compared with baseline measurements, time to presyncope decreased by 323 ± 235 s with continuous centrifugation, by 296 ± 508 s with intermittent centrifugation, and by 801 ± 354 s in the control group (p = 0.0249 between interventions). The change in orthostatic tolerance was not correlated with changes in plasma volume. CONCLUSIONS Daily artificial gravity training on a short-arm centrifuge attenuated the reduction in orthostatic tolerance after 60 days of head-down tilt bedrest.
Collapse
Affiliation(s)
- J-N Hoenemann
- German Aerospace Center - DLR, Institute of Aerospace Medicine, Linder Hoehe, 51147, Cologne, Germany
- Department of Internal Medicine III, Division of Cardiology, Pneumology, Angiology, and Intensive Care, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - S Moestl
- German Aerospace Center - DLR, Institute of Aerospace Medicine, Linder Hoehe, 51147, Cologne, Germany
| | - A E van Herwaarden
- Laboratory Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, Netherlands
| | - A Diedrich
- Department of Medicine, Division of Clinical Pharmacology, Autonomic Dysfunction Service, Vanderbilt University, Nashville, TN, USA
| | - E Mulder
- German Aerospace Center - DLR, Institute of Aerospace Medicine, Linder Hoehe, 51147, Cologne, Germany
| | - T Frett
- German Aerospace Center - DLR, Institute of Aerospace Medicine, Linder Hoehe, 51147, Cologne, Germany
| | - G Petrat
- German Aerospace Center - DLR, Institute of Aerospace Medicine, Linder Hoehe, 51147, Cologne, Germany
| | - W Pustowalow
- German Aerospace Center - DLR, Institute of Aerospace Medicine, Linder Hoehe, 51147, Cologne, Germany
| | - M Arz
- German Aerospace Center - DLR, Institute of Aerospace Medicine, Linder Hoehe, 51147, Cologne, Germany
| | - K Heusser
- German Aerospace Center - DLR, Institute of Aerospace Medicine, Linder Hoehe, 51147, Cologne, Germany
| | - S Lee
- NASA JSC KBR Wyle, Houston, TX, USA
| | - J Jordan
- German Aerospace Center - DLR, Institute of Aerospace Medicine, Linder Hoehe, 51147, Cologne, Germany
- Head of Aerospace Medicine, University of Cologne, Albertus-Magnus-Platz, 50923, Cologne, Germany
| | - J Tank
- German Aerospace Center - DLR, Institute of Aerospace Medicine, Linder Hoehe, 51147, Cologne, Germany.
| | - F Hoffmann
- German Aerospace Center - DLR, Institute of Aerospace Medicine, Linder Hoehe, 51147, Cologne, Germany
- Department of Internal Medicine III, Division of Cardiology, Pneumology, Angiology, and Intensive Care, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| |
Collapse
|
7
|
Jiang A, Fang W, Liu J, Foing B, Yao X, Westland S, Hemingray C. The effect of colour environments on visual tracking and visual strain during short-term simulation of three gravity states. APPLIED ERGONOMICS 2023; 110:103994. [PMID: 36863907 DOI: 10.1016/j.apergo.2023.103994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/21/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the effects of nine colour environments on visual tracking accuracy and visual strain during normal sitting (SP), -12° head-down bed (HD) and 9.6° head-up tilt bed (HU). In a standard posture change laboratory study, fifty-four participants performed visual tracking tasks in nine colour environments while in the three postures. Visual strain was measured by means of a questionnaire. The results showed that in all colour environments, the -12° head-down bed rest posture significantly affected visual tracking accuracy and visual strain. During the three postures, the participants' visual tracking accuracy in the cyan environment was significantly higher than that in other colour environments, and their visual strain was the lowest. Overall, the study adds to our understanding of how environmental and postural factors impact on visual tracking and visual strain.
Collapse
Affiliation(s)
- Ao Jiang
- Ningbo Innovation Centre, Zhejiang University, China; Dyson School of Design Engineering, Imperial College London, UK; ILEWG EuroMoonMars at ESTEC European Space Agency, Netherlands; Euro Space Hub, Netherlands.
| | | | | | - Bernard Foing
- ILEWG EuroMoonMars at ESTEC European Space Agency, Netherlands; Euro Space Hub, Netherlands; Leiden University, Netherlands; Vrije Universiteit Amsterdam, Netherlands
| | | | | | | |
Collapse
|
8
|
Musculoskeletal research in human space flight - unmet needs for the success of crewed deep space exploration. NPJ Microgravity 2023; 9:9. [PMID: 36707515 PMCID: PMC9883469 DOI: 10.1038/s41526-023-00258-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/20/2023] [Indexed: 01/29/2023] Open
Abstract
Based on the European Space Agency (ESA) Science in Space Environment (SciSpacE) community White Paper "Human Physiology - Musculoskeletal system", this perspective highlights unmet needs and suggests new avenues for future studies in musculoskeletal research to enable crewed exploration missions. The musculoskeletal system is essential for sustaining physical function and energy metabolism, and the maintenance of health during exploration missions, and consequently mission success, will be tightly linked to musculoskeletal function. Data collection from current space missions from pre-, during-, and post-flight periods would provide important information to understand and ultimately offset musculoskeletal alterations during long-term spaceflight. In addition, understanding the kinetics of the different components of the musculoskeletal system in parallel with a detailed description of the molecular mechanisms driving these alterations appears to be the best approach to address potential musculoskeletal problems that future exploratory-mission crew will face. These research efforts should be accompanied by technical advances in molecular and phenotypic monitoring tools to provide in-flight real-time feedback.
Collapse
|
9
|
Herssens N, Cowburn J, Albracht K, Braunstein B, Cazzola D, Colyer S, Minetti AE, Pavei G, Rittweger J, Weber T, Green DA. Movement in low gravity environments (MoLo) programme-The MoLo-L.O.O.P. study protocol. PLoS One 2022; 17:e0278051. [PMID: 36417480 PMCID: PMC9683620 DOI: 10.1371/journal.pone.0278051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Exposure to prolonged periods in microgravity is associated with deconditioning of the musculoskeletal system due to chronic changes in mechanical stimulation. Given astronauts will operate on the Lunar surface for extended periods of time, it is critical to quantify both external (e.g., ground reaction forces) and internal (e.g., joint reaction forces) loads of relevant movements performed during Lunar missions. Such knowledge is key to predict musculoskeletal deconditioning and determine appropriate exercise countermeasures associated with extended exposure to hypogravity. OBJECTIVES The aim of this paper is to define an experimental protocol and methodology suitable to estimate in high-fidelity hypogravity conditions the lower limb internal joint reaction forces. State-of-the-art movement kinetics, kinematics, muscle activation and muscle-tendon unit behaviour during locomotor and plyometric movements will be collected and used as inputs (Objective 1), with musculoskeletal modelling and an optimisation framework used to estimate lower limb internal joint loading (Objective 2). METHODS Twenty-six healthy participants will be recruited for this cross-sectional study. Participants will walk, skip and run, at speeds ranging between 0.56-3.6 m/s, and perform plyometric movement trials at each gravity level (1, 0.7, 0.5, 0.38, 0.27 and 0.16g) in a randomized order. Through the collection of state-of-the-art kinetics, kinematics, muscle activation and muscle-tendon behaviour, a musculoskeletal modelling framework will be used to estimate lower limb joint reaction forces via tracking simulations. CONCLUSION The results of this study will provide first estimations of internal musculoskeletal loads associated with human movement performed in a range of hypogravity levels. Thus, our unique data will be a key step towards modelling the musculoskeletal deconditioning associated with long term habitation on the Lunar surface, and thereby aiding the design of Lunar exercise countermeasures and mitigation strategies.
Collapse
Affiliation(s)
- Nolan Herssens
- Space Medicine Team, European Astronaut Centre, European Space Agency, Cologne, Germany
| | - James Cowburn
- Department for Health, University of Bath, Bath, United Kingdom
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, United Kingdom
| | - Kirsten Albracht
- Centre for Health and Integrative Physiology in Space, German Sport University, Cologne, Germany
- Institute of Movement and Neuroscience, German Sport University, Cologne, Germany
- Department of Medical Engineering and Technomathematics, University of Applied Sciences Aachen, Aachen, Germany
| | - Bjoern Braunstein
- Centre for Health and Integrative Physiology in Space, German Sport University, Cologne, Germany
- Institute of Movement and Neuroscience, German Sport University, Cologne, Germany
- Institute of Biomechanics and Orthopaedics, German Sport University, Cologne, Germany
- German Research Centre of Elite Sport Cologne, Cologne, Germany
| | - Dario Cazzola
- Department for Health, University of Bath, Bath, United Kingdom
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, United Kingdom
| | - Steffi Colyer
- Department for Health, University of Bath, Bath, United Kingdom
- Centre for the Analysis of Motion, Entertainment Research and Applications, University of Bath, Bath, United Kingdom
| | - Alberto E. Minetti
- Laboratory of Physiomechanics of Locomotion, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Gaspare Pavei
- Laboratory of Physiomechanics of Locomotion, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Jörn Rittweger
- Division of Muscle and Bone Metabolism, Institute of Aerospace Medicine DLR, Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - Tobias Weber
- Space Medicine Team, European Astronaut Centre, European Space Agency, Cologne, Germany
- KBR, Cologne, North Rhein-Westphalia, Germany
| | - David A. Green
- Space Medicine Team, European Astronaut Centre, European Space Agency, Cologne, Germany
- KBR, Cologne, North Rhein-Westphalia, Germany
- Centre of Human and Applied Physiological Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
10
|
Marcos-Lorenzo D, Frett T, Gil-Martinez A, Speer M, Swanenburg J, Green DA. Effect of trunk exercise upon lumbar IVD height and vertebral compliance when performed supine with 1 g at the CoM compared to upright in 1 g. BMC Sports Sci Med Rehabil 2022; 14:177. [PMID: 36207739 PMCID: PMC9540696 DOI: 10.1186/s13102-022-00575-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022]
Abstract
Background Spinal unloading in microgravity is associated with stature increments, back pain, intervertebral disc (IVD) swelling and impaired spinal kinematics. The aim of this study was to determine the effect of lateral stabilization, trunk rotation and isometric abdominal exercise upon lumbar IVD height, and both passive and active vertebral compliance when performed supine on a short-arm human centrifuge (SAHC)—a candidate microgravity countermeasure—with 1 g at the CoM, compared to that generated with equivalent upright exercise in 1 g. Methods 12 (8 male) healthy subjects (33.8 ± 7 years, 178.4 ± 8.2 cm, 72.1 ± 9.6 kg) gave written informed consent. Subjects performed three sets of upper body trunk exercises either when standing upright (UPRIGHT), or when being spun on the SAHC. Lumbar IVD height and vertebral compliance (active and passive) were evaluated prior to SAHC (PRE SAHC) and following the first SAHC (POST SPIN 1) and second Spin (POST SPIN 2), in addition to before (PRE UPRIGHT), and after upright trunk exercises (POST UPRIGHT). Results No significant effect upon IVD height (L2–S1) when performed UPRIGHT or on the SAHC was observed. Trunk muscle exercise induced significant (p < 0.05) reduction of active thoracic vertebral compliance when performed on the SAHC, but not UPRIGHT. However, no effect was observed in the cervical, lumbar or across the entire vertebral column. On passive or active vertebral compliance. Conclusion This study, the first of its kind demonstrates that trunk exercise were feasible and tolerable. Whilst trunk muscle exercise appears to have minor effect upon IVD height, it may be a candidate approach to mitigate—particularly active—vertebral stability on Earth, and in μg via concurrent SAHC. However, significant variability suggests larger studies including optimization of trunk exercise and SAHC prescription with MRI are warranted. Trial Registration North Rhine ethical committee (Number: 6000223393) and registered on 29/09/2020 in the German Clinical Trials Register (DRKS00021750).
Collapse
Affiliation(s)
- D Marcos-Lorenzo
- School of Medicine of Autonomous, University of Madrid, 28029, Madrid, Spain
| | - T Frett
- Department of Aerospace Physiology, Institute for Aerospace Medicine, German Aerospace Center E.V. (DLR), 51147, Cologne, Germany
| | - A Gil-Martinez
- Department of Physiotherapy, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023, Madrid, Spain
| | - M Speer
- Space Medicine Team, European Astronaut Centre, European Space Agency, Linder Höhe, 51147, Cologne, Germany
| | - J Swanenburg
- Integrative Spinal Research ISR, Department of Chiropractic Medicine, Balgrist University Hospital, UZH Space Hub Space Life Sciences, University of Zurich, Lengghalde 5, 8008, Zurich, Switzerland. .,University of Zurich, Zurich, Switzerland.
| | - D A Green
- Space Medicine Team, European Astronaut Centre, European Space Agency, Linder Höhe, 51147, Cologne, Germany.,Centre of Human and Applied Physiological Sciences, King's College London, London, SE1 1UL, UK.,KBRwyle GmbH, Albin Köbis Straße 4, 51147, Cologne, Germany
| |
Collapse
|
11
|
Reliability of bioreactance-derived hemodynamic monitoring during simulated sustained gravitational transitions induced by short-arm human centrifugation. Med Eng Phys 2022; 107:103868. [DOI: 10.1016/j.medengphy.2022.103868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/27/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022]
|
12
|
Ekman R, Green DA, Scott JPR, Huerta Lluch R, Weber T, Herssens N. Introducing the Concept of Exercise Holidays for Human Spaceflight - What Can We Learn From the Recovery of Bed Rest Passive Control Groups. Front Physiol 2022; 13:898430. [PMID: 35874509 PMCID: PMC9307084 DOI: 10.3389/fphys.2022.898430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
In an attempt to counteract microgravity-induced deconditioning during spaceflight, exercise has been performed in various forms on the International Space Station (ISS). Despite significant consumption of time and resources by daily exercise, including around one third of astronauts' energy expenditure, deconditioning-to variable extents-are observed. However, in future Artemis/Lunar Gateway missions, greater constraints will mean that the current high volume and diversity of ISS in-flight exercise will be impractical. Thus, investigating both more effective and efficient multi-systems countermeasure approaches taking into account the novel mission profiles and the associated health and safety risks will be required, while also reducing resource requirements. One potential approach is to reduce mission exercise volume by the introduction of exercise-free periods, or "exercise holidays". Thus, we hypothesise that by evaluating the 'recovery' of the no-intervention control group of head-down-tilt bed rest (HDTBR) campaigns of differing durations, we may be able to define the relationship between unloading duration and the dynamics of functional recovery-of interest to future spaceflight operations within and beyond Low Earth Orbit (LEO)-including preliminary evaluation of the concept of exercise holidays. Hence, the aim of this literature study is to collect and investigate the post-HDTBR recovery dynamics of current operationally relevant anthropometric outcomes and physiological systems (skeletal, muscular, and cardiovascular) of the passive control groups of HDTBR campaigns, mimicking a period of 'exercise holidays', thereby providing a preliminary evaluation of the concept of 'exercise holidays' for spaceflight, within and beyond LEO. The main findings were that, although a high degree of paucity and inconsistency of reported recovery data is present within the 18 included studies, data suggests that recovery of current operationally relevant outcomes following HDTBR without exercise-and even without targeted rehabilitation during the recovery period-could be timely and does not lead to persistent decrements differing from those experienced following spaceflight. Thus, evaluation of potential exercise holidays concepts within future HDTBR campaigns is warranted, filling current knowledge gaps prior to its potential implementation in human spaceflight exploration missions.
Collapse
Affiliation(s)
- Robert Ekman
- Riga Stradins University, Faculty of Medicine, Riga, Latvia
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
| | - David A. Green
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- Centre of Human and Applied Physiological Sciences, King’s College London, London, United Kingdom
- KBR GmbH, Cologne, Germany
| | - Jonathon P. R. Scott
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- Institut Médecine Physiologie Spatiale (MEDES), Toulouse, France
| | - Roger Huerta Lluch
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Tobias Weber
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Nolan Herssens
- Space Medicine Team (HRE-OM), European Astronaut Centre, European Space Agency, Cologne, Germany
- MOVANT, Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
13
|
Jiang S, Qian YIM, Jiang Y, Cao ZQ, Xin BM, Wang YC, Wu B. Effects of 15-Days −6° Head-Down Bed Rest on the Attention Bias of Threatening Stimulus. Front Psychol 2022; 13:730820. [PMID: 35832905 PMCID: PMC9272770 DOI: 10.3389/fpsyg.2022.730820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Previous researchers have found that head-down bed rest (HDBR) will affect the emotional state of individuals, and negative emotions such as anxiety are closely related to attention bias. The present study adopted the dot-probe task to evaluate the effects of 15-days of −6° HDBR on the attention bias of threatening stimulus in 17 young men, which was completed before (Pre-HDBR), during (HDBR-1, HDBR-8, HDBR-15), after (Post-HDBR) the bed rest. In addition, self-report inventories (State Anxiety Inventory, SAI; Positive Affect and Negative Affect Scale, PANAS) were conducted to record emotional changes. The results showed that the participants’ negative affect scores on HDBR-8 were significantly lower than the HDBR-1 in PANAS while there was no significant difference on positive affect scores and anxiety scores in SAI. And the results showed that at the Pre-HDBR, HDBT-1, HDBR-15, Post-HDBR, the response speed to threatening stimulus was faster than neutral stimulus, but no statistical significance. However, reaction time of threatening stimulus is significantly longer than neutral stimulus in the HDBR-8, indicating that HDBR may have an effect on the participants’ attention bias, and this effect is manifested as attention avoidance.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Psychology, Beijing Sport University, Beijing, China
| | - YI-Ming Qian
- Department of Psychology, Beijing Sport University, Beijing, China
| | - Yuan Jiang
- China Astronaut Research and Training Center, Beijing, China
| | - Zi-Qin Cao
- China Astronaut Research and Training Center, Beijing, China
| | - Bing-Mu Xin
- Engineering Research Center of Human Circadian Rhythm and Sleep, Shenzhen, China
- Space Science and Technology Institute, Shenzhen, China
| | - Ying-Chun Wang
- Department of Psychology, Beijing Sport University, Beijing, China
- *Correspondence: Ying-Chun Wang,
| | - Bin Wu
- China Astronaut Research and Training Center, Beijing, China
- Bin Wu,
| |
Collapse
|
14
|
Böcker J, Schmitz MT, Mittag U, Jordan J, Rittweger J. Between-Subject and Within-Subject Variaton of Muscle Atrophy and Bone Loss in Response to Experimental Bed Rest. Front Physiol 2022; 12:743876. [PMID: 35273514 PMCID: PMC8902302 DOI: 10.3389/fphys.2021.743876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/30/2021] [Indexed: 01/22/2023] Open
Abstract
To improve quantification of individual responses to bed rest interventions, we analyzed peripheral quantitative computer tomography (pQCT) datasets of the lower leg of 76 participants, who took part in eight different bed rest studies. A newly developed statistical approach differentiated measurement uncertainty UMeas from between-subject-variation (BSV) and within-subject variation (WSV). The results showed that UMeas decreased 59.3% to 80% over the two decades of bed rest studies (p < 0.01), and that it was higher for muscles than for bones. The reduction of UMeas could be explained by improved measurement procedures as well as a higher standardization. The vast majority (82.6%) of the individual responses pci exceeded the 95% confidence interval defined by UMeas, indicating significant and substantial BSV, which was greater for bones than for muscles, especially at the epiphyseal measurement sites. Non-significant to small positive inter-site correlations between bone sites, but very large positive inter-site correlation between muscle sites suggests that substantial WSV exists in the tibia bone, but much less so in the calf musculature. Furthermore, endocortical circumference, an indicator of the individual’s bone geometry could partly explain WSV and BSV. These results demonstrate the existence of substantial BSV bone, and that it is partly driven by WSV, and likely also by physical activity and dietary habits prior to bed rest. In addition, genetic and epigenetic variation could potentially explain BSV, but not WSV. As to the latter, differences of bone characteristics and the bone resorption process could offer an explanation for its existence. The study has also demonstrated the importance of duplicate baseline measurements. Finally, we provide here a rationale for worst case scenarios with partly effective countermeasures in long-term space missions.
Collapse
Affiliation(s)
- Jonas Böcker
- Department of Muscle and Bone Metabolism, German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
- *Correspondence: Jonas Böcker,
| | - Marie-Therese Schmitz
- Department of Muscle and Bone Metabolism, German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
- Institute of Medical Biometry, Informatics and Epidemiology (IMBIE), University Hospital Bonn, Bonn, Germany
| | - Uwe Mittag
- Department of Muscle and Bone Metabolism, German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Jens Jordan
- Chair of Aerospace Medicine, University of Cologne, Cologne, Germany
- German Aerospace Center, Head of Institute of Aerospace Medicine, Cologne, Germany
| | - Jörn Rittweger
- Department of Muscle and Bone Metabolism, German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
15
|
Dissociation of Bone Resorption and Formation in Spaceflight and Simulated Microgravity: Potential Role of Myokines and Osteokines? Biomedicines 2022; 10:biomedicines10020342. [PMID: 35203551 PMCID: PMC8961781 DOI: 10.3390/biomedicines10020342] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
The dissociation of bone formation and resorption is an important physiological process during spaceflight. It also occurs during local skeletal unloading or immobilization, such as in people with neuromuscular disorders or those who are on bed rest. Under these conditions, the physiological systems of the human body are perturbed down to the cellular level. Through the absence of mechanical stimuli, the musculoskeletal system and, predominantly, the postural skeletal muscles are largely affected. Despite in-flight exercise countermeasures, muscle wasting and bone loss occur, which are associated with spaceflight duration. Nevertheless, countermeasures can be effective, especially by preventing muscle wasting to rescue both postural and dynamic as well as muscle performance. Thus far, it is largely unknown how changes in bone microarchitecture evolve over the long term in the absence of a gravity vector and whether bone loss incurred in space or following the return to the Earth fully recovers or partly persists. In this review, we highlight the different mechanisms and factors that regulate the humoral crosstalk between the muscle and the bone. Further we focus on the interplay between currently known myokines and osteokines and their mutual regulation.
Collapse
|
16
|
Hart DA. Learning From Human Responses to Deconditioning Environments: Improved Understanding of the "Use It or Lose It" Principle. Front Sports Act Living 2021; 3:685845. [PMID: 34927066 PMCID: PMC8677937 DOI: 10.3389/fspor.2021.685845] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/28/2021] [Indexed: 01/25/2023] Open
Abstract
Physical activity, mobility or patterned mobility (i.e., exercise) is intrinsic to the functioning of Homo sapiens, and required for maintenance of health. Thus, systems such as the musculoskeletal and cardiovascular systems appear to require constant reinforcement or conditioning to maintain integrity. Loss of conditioning or development of chronic deconditioning can have multiple consequences. The study of different types of deconditioning and their prevention or reversal can offer a number of clues to the regulation of these systems and point to how deconditioning poses risk for disease development and progression. From the study of deconditioning associated with spaceflight, a condition not predicted by evolution, prolonged bedrest, protracted sedentary behavior, as well as menopause and obesity and their consequences, provide a background to better understand human heterogeneity and how physical fitness may impact the risks for chronic conditions subsequent to the deconditioning. The effectiveness of optimized physical activity and exercise protocols likely depend on the nature of the deconditioning, the sex and genetics of the individual, whether one is addressing prevention of deconditioning-associated disease or disease-associated progression, and whether it is focused on acute or chronic deconditioning associated with different forms of deconditioning. While considerable research effort has gone into preventing deconditioning, the study of the process of deconditioning and its endpoints can provide clues to the regulation of the affected systems and their contributions to human heterogeneity that have been framed by the boundary conditions of Earth during evolution and the "use it or lose it" principle of regulation. Such information regarding heterogeneity that is elaborated by the study of deconditioning environments could enhance the effectiveness of individualized interventions to prevent deconditions or rescue those who have become deconditioned.
Collapse
Affiliation(s)
- David A Hart
- Bone and Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB, Canada.,Department of Surgery, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Department of Family Practice, Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Richter C, Braunstein B, Staeudle B, Attias J, Suess A, Weber T, Mileva KN, Rittweger J, Green DA, Albracht K. Contractile behavior of the gastrocnemius medialis muscle during running in simulated hypogravity. NPJ Microgravity 2021; 7:32. [PMID: 34373462 PMCID: PMC8352871 DOI: 10.1038/s41526-021-00155-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Vigorous exercise countermeasures in microgravity can largely attenuate muscular degeneration, albeit the extent of applied loading is key for the extent of muscle wasting. Running on the International Space Station is usually performed with maximum loads of 70% body weight (0.7 g). However, it has not been investigated how the reduced musculoskeletal loading affects muscle and series elastic element dynamics, and thereby force and power generation. Therefore, this study examined the effects of running on the vertical treadmill facility, a ground-based analog, at simulated 0.7 g on gastrocnemius medialis contractile behavior. The results reveal that fascicle-series elastic element behavior differs between simulated hypogravity and 1 g running. Whilst shorter peak series elastic element lengths at simulated 0.7 g appear to be the result of lower muscular and gravitational forces acting on it, increased fascicle lengths and decreased velocities could not be anticipated, but may inform the development of optimized running training in hypogravity. However, whether the alterations in contractile behavior precipitate musculoskeletal degeneration warrants further study.
Collapse
Affiliation(s)
- Charlotte Richter
- Department of Medical Engineering and Technomathematics, University of Applied Sciences Aachen, Aachen, Germany.
- German Sport University Cologne, Institute of Movement and Neurosciences, Cologne, Germany.
| | - Bjoern Braunstein
- German Sport University Cologne, Institute of Movement and Neurosciences, Cologne, Germany
- German Sport University Cologne, Institute of Biomechanics and Orthopaedics, Cologne, Germany
- Centre for Health and Integrative Physiology in Space (CHIPS), Cologne, Germany
- German Research Centre of Elite Sport, Cologne, Germany
| | - Benjamin Staeudle
- Department of Medical Engineering and Technomathematics, University of Applied Sciences Aachen, Aachen, Germany
- German Sport University Cologne, Institute of Movement and Neurosciences, Cologne, Germany
| | - Julia Attias
- King's College London, Centre of Human and Applied Physiological Sciences, London, UK
| | - Alexander Suess
- European Astronaut Centre (EAC), European Space Agency, Space Medicine Team (HRE-OM), Cologne, Germany
| | - Tobias Weber
- European Astronaut Centre (EAC), European Space Agency, Space Medicine Team (HRE-OM), Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Katya N Mileva
- London South Bank University, School of Applied Sciences, London, UK
| | - Joern Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - David A Green
- King's College London, Centre of Human and Applied Physiological Sciences, London, UK
- European Astronaut Centre (EAC), European Space Agency, Space Medicine Team (HRE-OM), Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Kirsten Albracht
- Department of Medical Engineering and Technomathematics, University of Applied Sciences Aachen, Aachen, Germany
- German Sport University Cologne, Institute of Movement and Neurosciences, Cologne, Germany
- Institute for Bioengineering, University of Applied Sciences Aachen, Aachen, Germany
| |
Collapse
|
18
|
Fernandez-Gonzalo R, McDonnell AC, Simpson EJ, Macdonald IA, Rullman E, Mekjavic IB. Substantial and Reproducible Individual Variability in Skeletal Muscle Outcomes in the Cross-Over Designed Planica Bed Rest Program. Front Physiol 2021; 12:676501. [PMID: 34335293 PMCID: PMC8322684 DOI: 10.3389/fphys.2021.676501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
To evaluate the individual responses in skeletal muscle outcomes following bed rest, data from three studies (21-day PlanHab; 10-day FemHab and LunHab) were combined. Subjects (n = 35) participated in three cross-over campaigns within each study: normoxic (NBR) and hypoxic bed rest (HBR), and hypoxic ambulation (HAMB; used as control). Individual variability (SDIR) was investigated as √(SDExp 2 -SDCon 2 ), where SDExp and SDCon are the standard deviations of the change score (i.e., post - pre) in the experimental (NBR and HBR) and the control (HAMB) groups, respectively. Repeatability and moderators of the individual variability were explored. Significant SDIR was detected for knee extension torque, and thigh and calf muscle area, which translated into an individual response ranging from 3 to -17% for knee extension torque, -2 to -12% for calf muscle area, and -1 to -8% for thigh muscle area. Strong correlations were found for changes in NBR vs. HBR (i.e., repeatability) in thigh and calf muscle area (r = 0.65-0.75, P < 0.0001). Change-scores in knee extension torque, and thigh and calf muscle area strongly correlated with baseline values (P < 0.001; r between -0.5 and -0.9). Orthogonal partial least squares regression analysis explored if changes in the investigated variables could predict calf muscle area alterations. This analysis indicated that 43% of the variance in calf muscle area could be attributed to changes in all of the other variables. This is the first study using a validated methodology to report clinically relevant individual variability after bed rest in knee extension torque, calf muscle area, and (to a lower extent) thigh muscle area. Baseline values emerged as a moderator of the individual response, and a global bed rest signature served as a moderately strong predictor of the individual variation in calf muscle area alterations.
Collapse
Affiliation(s)
- Rodrigo Fernandez-Gonzalo
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Adam C. McDonnell
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Elizabeth J. Simpson
- MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham Medical School, Nottingham, United Kingdom
| | - Ian A. Macdonald
- MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham Medical School, Nottingham, United Kingdom
| | - Eric Rullman
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Igor B. Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|