1
|
Cai K, Jiang H, Zou Y, Song C, Cao K, Chen S, Wu Y, Zhang Z, Geng D, Zhang N, Liu B, Sun G, Tang M, Li Z, Zhang Y, Sun Y, Zhang Y. Programmed death of cardiomyocytes in cardiovascular disease and new therapeutic approaches. Pharmacol Res 2024; 206:107281. [PMID: 38942341 DOI: 10.1016/j.phrs.2024.107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Cardiovascular diseases (CVDs) have a complex pathogenesis and pose a major threat to human health. Cardiomyocytes have a low regenerative capacity, and their death is a key factor in the morbidity and mortality of many CVDs. Cardiomyocyte death can be regulated by specific signaling pathways known as programmed cell death (PCD), including apoptosis, necroptosis, autophagy, pyroptosis, and ferroptosis, etc. Abnormalities in PCD can lead to the development of a variety of cardiovascular diseases, and there are also molecular-level interconnections between different PCD pathways under the same cardiovascular disease model. Currently, the link between programmed cell death in cardiomyocytes and cardiovascular disease is not fully understood. This review describes the molecular mechanisms of programmed death and the impact of cardiomyocyte death on cardiovascular disease development. Emphasis is placed on a summary of drugs and potential therapeutic approaches that can be used to treat cardiovascular disease by targeting and blocking programmed cell death in cardiomyocytes.
Collapse
Affiliation(s)
- Kexin Cai
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Haoyue Jiang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Zhaobo Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China; Institute of health sciences, China medical university, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning 110001, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning 110001, People's Republic of China
| | - Bo Liu
- The first hospital of China Medical University, Department of cardiac surgery, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China.
| | - Guozhe Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China.
| | - Man Tang
- Department of clinical pharmacology, College of Pharmacy, China medical university, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning 110001, People's Republic of China.
| | - Zhao Li
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China; Institute of health sciences, China medical university, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning 110001, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning 110001, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China; Institute of health sciences, China medical university, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning 110001, People's Republic of China.
| |
Collapse
|
2
|
Hu G, Chen J, Chen M, Yang K, Wang Y, Ma Z, Bao H, Ding X. Silencing DOCK2 Attenuates Cardiac Fibrosis Following Myocardial Infarction in Mice Via Targeting PI3K/Akt and Wnt/β-Catenin Pathways. J Cardiovasc Transl Res 2024:10.1007/s12265-024-10533-7. [PMID: 38990461 DOI: 10.1007/s12265-024-10533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/05/2024] [Indexed: 07/12/2024]
Abstract
Cardiac fibrosis following myocardial infarction (MI) seriously affects the prognosis and survival rate of patients. This study aimed to determine the effect and regulation mechanism of the dedicator of cytokinesis 2 (DOCK2) during this process. Experiments were carried out in mice in vivo, and in Ang II treated cardiac fibroblasts (CFs) in vitro. DOCK2 was increased in mouse myocardial tissues after MI and Ang II-treated CFs. In MI mice, DOCK2 silencing improved cardiac function, and ameliorated cardiac fibrosis. DOCK2 knockdown suppressed the activation of CFs and decreased the expression of α-SMA, collagen I, and collagen III. Suppression of DOCK2 mitigated Ang II induced migration of CFs. DOCK2 inhibition reduced the activity of the PI3K/Akt and Wnt/β-catenin pathways, while this change could be reversed by the pathway activators, SC79 and SKL2001. In summary, DOCK2 suppression improves cardiac dysfunction and attenuates cardiac fibrosis after MI via attenuating PI3K/Akt and Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Guangquan Hu
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P. R. China
| | - Jin Chen
- Department of Medical Technology, Anhui Medical College, Hefei, Anhui, P. R. China
| | - Min Chen
- Department of Cardiology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, P. R. China
| | - Kai Yang
- Department of Medical Technology, Anhui Medical College, Hefei, Anhui, P. R. China
| | - Yuchen Wang
- Department of Neurology, Anhui Children's Hospital, Hefei, Anhui, P. R. China
| | - Ziyang Ma
- Department of Medical Technology, Anhui Medical College, Hefei, Anhui, P. R. China
| | - Huangxin Bao
- Department of Medical Technology, Anhui Medical College, Hefei, Anhui, P. R. China
| | - Xiaojie Ding
- Department of Endocrinology, Anhui No.2 Provincial People's Hospital, Hefei, Anhui, P. R. China.
| |
Collapse
|
3
|
Omran E, Alzahrani AR, Ezzat SF, Ellithy G, Tarek M, Khairy E, Ghit MM, Elgeushy A, Ibrahim Al-Hazani TM, Aziz Ibrahim IA, Falemban AH, Bamagous GA, Elhawary NA, Jaremko M, Saied EM, Mohamed DI. Deciphering the therapeutic potential of trimetazidine in rheumatoid arthritis via targeting mi-RNA128a, TLR4 signaling pathway, and adenosine-induced FADD-microvesicular shedding: In vivo and in silico study. Front Pharmacol 2024; 15:1406939. [PMID: 38919260 PMCID: PMC11196411 DOI: 10.3389/fphar.2024.1406939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Rheumatoid arthritis (RA) is a debilitating autoimmune condition characterized by chronic synovitis, joint damage, and inflammation, leading to impaired joint functionality. Existing RA treatments, although effective to some extent, are not without side effects, prompting a search for more potent therapies. Recent research has revealed the critical role of FAS-associated death domain protein (FADD) microvesicular shedding in RA pathogenesis, expanding its scope beyond apoptosis to include inflammatory and immune pathways. This study aimed to investigate the intricate relationship between mi-RNA 128a, autoimmune and inflammatory pathways, and adenosine levels in modulating FADD expression and microvesicular shedding in a Freund's complete adjuvant (FCA) induced RA rat model and further explore the antirheumatoid potency of trimetazidine (TMZ). The FCA treated model exhibited significantly elevated levels of serum fibrogenic, inflammatory, immunological and rheumatological diagnostic markers, confirming successful RA induction. Our results revealed that the FCA-induced RA model showed a significant reduction in the expression of FADD in paw tissue and increased microvesicular FADD shedding in synovial fluid, which was attributed to the significant increase in the expression of the epigenetic miRNA 128a gene in addition to the downregulation of adenosine levels. These findings were further supported by the significant activation of the TLR4/MYD88 pathway and its downstream inflammatory IkB/NFB markers. Interestingly, TMZ administration significantly improved, with a potency similar to methotrexate (MTX), the deterioration effect of FCA treatment, as evidenced by a significant attenuation of fibrogenic, inflammatory, immunological, and rheumatological markers. Our investigations indicated that TMZ uniquely acted by targeting epigenetic miRNA128a expression and elevating adenosine levels in paw tissue, leading to increased expression of FADD of paw tissue and mitigated FADD microvesicular shedding in synovial fluid. Furthermore, the group treated with TMZ showed significant downregulation of TLR4/MYD88 and their downstream TRAF6, IRAK and NF-kB. Together, our study unveils the significant potential of TMZ as an antirheumatoid candidate, offering anti-inflammatory effects through various mechanisms, including modulation of the FADD-epigenetic regulator mi-RNA 128a, adenosine levels, and the TLR4 signaling pathway in joint tissue, but also attenuation of FADD microvesicular shedding in synovial fluid. These findings further highlight the synergistic administration of TMZ and MTX as a potential approach to reduce adverse effects of MTX while improving therapeutic efficacy.
Collapse
Affiliation(s)
- Enas Omran
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Abdullah R. Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Samar F. Ezzat
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ghada Ellithy
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Tarek
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman Khairy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Clinical Biochemistry, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohamed M. Ghit
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Ahmed Elgeushy
- Orthopedic Department, Faculty of Medicine, Alazhar University Hospitals, Cairo, Egypt
| | | | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa Hisham Falemban
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghazi A. Bamagous
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nasser A. Elhawary
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| | - Doaa I. Mohamed
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Shan T, Li X, Xie W, Wang S, Gao Y, Zheng Y, Su G, Li Y, Zhao Z. Rap1GAP exacerbates myocardial infarction by regulating the AMPK/SIRT1/NF-κB signaling pathway. Cell Signal 2024; 117:111080. [PMID: 38320624 DOI: 10.1016/j.cellsig.2024.111080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/11/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
Rap1 GTPase-activating protein (Rap1GAP) is an important tumor suppressor. The purpose of this study was to investigate the role of Rap1GAP in myocardial infarction (MI) and its potential mechanism. Left anterior descending coronary artery ligation was performed on cardiac-specific Rap1GAP conditional knockout (Rap1GAP-CKO) mice and control mice with MI. Seven days after MI, Rap1GAP expression in the hearts of control mice peaked, the expression of proapoptotic markers (Bax and cleaved caspase-3) increased, the expression of antiapoptotic factors (Bcl-2) decreased, and the expression of the inflammatory factors IL-6 and TNF-α increased; thus, apoptosis occurred, inflammation, infarct size, and left ventricular dysfunction increased, while the heart changes caused by MI were alleviated in Rap1GAP-CKO mice. Mouse heart tissue was obtained for transcriptome sequencing, and gene set enrichment analysis (GSEA) was used to analyze Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. We found that Rap1GAP was associated with the AMPK and NF-κB signaling pathways and that Rap1GAP inhibited AMPK/SIRT1 and activated the NF-κB signaling pathway in model animals. Similar results were observed in primary rat myocardial cells subjected to oxygen-glucose deprivation (OGD) to induce ischemia and hypoxia. Activating AMPK with the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) reversed the damage caused by Rap1GAP overexpression in cardiomyocytes. In addition, the coimmunoprecipitation results showed that exogenous Rap1GAP interacted with AMPK. Rap1GAP was verified to regulate the AMPK SIRT1/NF-κB signaling pathway and exacerbate the damage to myocardial cells caused by ischemia and hypoxia. In conclusion, our results suggest that Rap1GAP promotes MI by modulating the AMPK/SIRT1/NF-κB signaling pathway and that Rap1GAP may be a therapeutic target for MI treatment in the future.
Collapse
Affiliation(s)
- Tiantian Shan
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan 250013, China; Research Center of Translational Medicine, Central Hospital Affiliated Shandong First Medical University, Jinan 250013, China
| | - Xiaoying Li
- Research Center of Translational Medicine, Central Hospital Affiliated Shandong First Medical University, Jinan 250013, China; Department of Emergency, Jinan Central Hospital, Jinan 250013, China; Department of Emergency, Central Hospital Affiliated Shandong First Medical University, Jinan 250013, China
| | - Wenzhi Xie
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan 250013, China; Department of Cardiology, Central Hospital Affiliated Shandong First Medical University, Jinan 250013, China
| | - Shaoqin Wang
- Department of Emergency, Jinan Central Hospital, Jinan 250013, China; Department of Emergency, Central Hospital Affiliated Shandong First Medical University, Jinan 250013, China
| | - Yan Gao
- Department of Cardiology, Qingdao Medical College, Qingdao University, Qingdao 266073, China
| | - Yan Zheng
- Research Center of Translational Medicine, Central Hospital Affiliated Shandong First Medical University, Jinan 250013, China
| | - Guohai Su
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan 250013, China; Department of Cardiology, Central Hospital Affiliated Shandong First Medical University, Jinan 250013, China
| | - Ying Li
- Research Center of Translational Medicine, Central Hospital Affiliated Shandong First Medical University, Jinan 250013, China
| | - Zhuo Zhao
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan 250013, China; Department of Cardiology, Central Hospital Affiliated Shandong First Medical University, Jinan 250013, China.
| |
Collapse
|
5
|
Pușcaș A, Ștefănescu R, Vari CE, Ősz BE, Filip C, Bitzan JK, Buț MG, Tero-Vescan A. Biochemical Aspects That Lead to Abusive Use of Trimetazidine in Performance Athletes: A Mini-Review. Int J Mol Sci 2024; 25:1605. [PMID: 38338885 PMCID: PMC10855343 DOI: 10.3390/ijms25031605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Trimetazidine (TMZ), used for treating stable angina pectoris, has garnered attention in the realm of sports due to its potential performance-enhancing properties, and the World Anti-Doping Agency (WADA) has classified TMZ on the S4 list of prohibited substances since 2014. The purpose of this narrative mini-review is to emphasize the biochemical aspects underlying the abusive use of TMZ among athletes as a metabolic modulator of cardiac energy metabolism. The myocardium's ability to adapt its energy substrate utilization between glucose and fatty acids is crucial for maintaining cardiac function under various conditions, such as rest, moderate exercise, and intense effort. TMZ acts as a partial inhibitor of fatty acid oxidation by inhibiting 3-ketoacyl-CoA thiolase (KAT), shifting energy production from long-chain fatty acids to glucose, reducing oxygen consumption, improving cardiac function, and enhancing exercise capacity. Furthermore, TMZ modulates pyruvate dehydrogenase (PDH) activity, promoting glucose oxidation while lowering lactate production, and ultimately stabilizing myocardial function. TMZs role in reducing oxidative stress is notable, as it activates antioxidant enzymes like glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD). In conclusion, TMZs biochemical mechanisms make it an attractive but controversial option for athletes seeking a competitive edge.
Collapse
Affiliation(s)
- Amalia Pușcaș
- Biochemistry and Chemistry of the Environmental Factors Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (A.P.); (C.F.)
| | - Ruxandra Ștefănescu
- Pharmacognosy and Phytotherapy Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
| | - Camil-Eugen Vari
- Pharmacology and Clinical Pharmacy Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (C.-E.V.); (B.-E.Ő.)
| | - Bianca-Eugenia Ősz
- Pharmacology and Clinical Pharmacy Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (C.-E.V.); (B.-E.Ő.)
| | - Cristina Filip
- Biochemistry and Chemistry of the Environmental Factors Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (A.P.); (C.F.)
| | - Jana Karlina Bitzan
- Medical Chemistry and Biochemistry Department, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Campus Hamburg—UMCH, 22761 Hamburg, Germany;
| | - Mădălina-Georgiana Buț
- Medical Chemistry and Biochemistry Department, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (M.-G.B.); (A.T.-V.)
| | - Amelia Tero-Vescan
- Medical Chemistry and Biochemistry Department, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (M.-G.B.); (A.T.-V.)
| |
Collapse
|
6
|
Li Q, Zhang S, Yang G, Wang X, Liu F, Li Y, Chen Y, Zhou T, Xie D, Liu Y, Zhang L. Energy metabolism: A critical target of cardiovascular injury. Biomed Pharmacother 2023; 165:115271. [PMID: 37544284 DOI: 10.1016/j.biopha.2023.115271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
Cardiovascular diseases are the main killers threatening human health. Many studies have shown that abnormal energy metabolism plays a key role in the occurrence and development of acute and chronic cardiovascular diseases. Regulating cardiac energy metabolism is a frontier topic in the treatment of cardiovascular diseases. However, we are not very clear about the choice of different substrates, the specific mechanism of energy metabolism participating in the course of cardiovascular disease, and how to develop appropriate drugs to regulate energy metabolism to treat cardiovascular disease. Therefore, this paper reviews how energy metabolism participates in cardiovascular pathophysiological processes and potential drugs aimed at interfering energy metabolism.It is expected to provide good suggestions for promoting the clinical prevention and treatment of cardiovascular diseases from the perspective of energy metabolism.
Collapse
Affiliation(s)
- Qiyang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shangzu Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Gengqiang Yang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xin Wang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Fuxian Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yangyang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yan Chen
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Ting Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Dingxiong Xie
- Gansu Institute of Cardiovascular Diseases, LanZhou, China.
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medicine and Transformation Ministry of Education, China.
| | - Liying Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; Gansu Institute of Cardiovascular Diseases, LanZhou, China.
| |
Collapse
|
7
|
Zhang Q, Zhang Y, Xie B, Liu D, Wang Y, Zhou Z, Zhang Y, King E, Tse G, Liu T. Resveratrol activation of SIRT1/MFN2 can improve mitochondria function, alleviating doxorubicin-induced myocardial injury. CANCER INNOVATION 2023; 2:253-264. [PMID: 38089747 PMCID: PMC10686119 DOI: 10.1002/cai2.64] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 10/11/2023]
Abstract
Background Doxorubicin is a widely used cytotoxic chemotherapy agent for treating different malignancies. However, its use is associated with dose-dependent cardiotoxicity, causing irreversible myocardial damage and significantly reducing the patient's quality of life and survival. In this study, an animal model of doxorubicin-induced cardiomyopathy was used to investigate the pathogenesis of doxorubicin-induced myocardial injury. This study also investigated a possible treatment strategy for alleviating myocardial injury through resveratrol therapy in vitro. Methods Adult male C57BL/6J mice were randomly divided into a control group and a doxorubicin group. Body weight, echocardiography, surface electrocardiogram, and myocardial histomorphology were measured. The mechanisms of doxorubicin cardiotoxicity in H9c2 cell lines were explored by comparing three groups (phosphate-buffered saline, doxorubicin, and doxorubicin with resveratrol). Results Compared to the control group, the doxorubicin group showed a lower body weight and higher systolic arterial pressure, associated with reduced left ventricular ejection fraction and left ventricular fractional shortening, prolonged PR interval, and QT interval. These abnormalities were associated with vacuolation and increased disorder in the mitochondria of cardiomyocytes, increased protein expression levels of α-smooth muscle actin and caspase 3, and reduced protein expression levels of Mitofusin2 (MFN2) and Sirtuin1 (SIRT1). Compared to the doxorubicin group, doxorubicin + resveratrol treatment reduced caspase 3 and manganese superoxide dismutase, and increased MFN2 and SIRT1 expression levels. Conclusion Doxorubicin toxicity leads to abnormal mitochondrial morphology and dysfunction in cardiomyocytes and induces apoptosis by interfering with mitochondrial fusion. Resveratrol ameliorates doxorubicin-induced cardiotoxicity by activating SIRT1/MFN2 to improve mitochondria function.
Collapse
Affiliation(s)
- Qingling Zhang
- Department of Cardiology, Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Yunpeng Zhang
- Department of Cardiology, Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Bingxin Xie
- Department of Cardiology, Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Daiqi Liu
- Department of Cardiology, Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Yueying Wang
- Department of Cardiology, Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Zandong Zhou
- Department of Cardiology, Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Yue Zhang
- Department of Cardiology, Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Emma King
- Epidemiology Research Unit, Cardiovascular Analytics GroupChina‐UK CollaborationHong KongChina
| | - Gary Tse
- Department of Cardiology, Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
- Epidemiology Research Unit, Cardiovascular Analytics GroupChina‐UK CollaborationHong KongChina
- Kent and Medway Medical SchoolCanterburyKentUK
| | - Tong Liu
- Department of Cardiology, Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| |
Collapse
|
8
|
Sun X, Han Y, Dong C, Qu H, Yu Y, Ju J, Bai Y, Yang B. Daming capsule protects against myocardial infarction by promoting mitophagy via the SIRT1/AMPK signaling pathway. Biomed Pharmacother 2022; 151:113162. [PMID: 35676781 DOI: 10.1016/j.biopha.2022.113162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/02/2022] Open
Abstract
Myocardial infarction (MI) is a myocardial injury caused by coronary thrombosis or persistent ischemia and hypoxia. Due to its high morbidity and mortality, a safer and more effective treatment strategy is urgently needed. Daming capsule (DMC), a hypolipidemic drug, reportedly exerts cardioprotective effects in clinical and basic research, although its protective mechanism remains unknown. To investigate the mechanism underlying DMC-mediated improvement of cardiac function post-MI, C57/BL6 mice subjected to coronary artery ligation were administered DMC for 4 weeks. Our data demonstrated that DMC significantly improved cardiac structure and function compared to the saline group. Moreover, DMC inhibited inflammatory response and oxidative stress and improved mitochondrial structure and function in MI mice and hypoxia-stressed cardiomyocytes. Next, our research proved that DMC increased the expression of mitophagy receptor NLRX1. Interestingly, with the administration of DMC and siNLRX1, NLRX1 expression, mitochondria and lysosome colocalization, and mitochondrial membrane potential decreased, while mitochondrial ROS accumulation increased, suggesting that DMC promoted mitophagy to improve mitochondrial function via NLRX1 regulation. Further analysis showed that DMC activated the SIRT1/AMPK signaling pathway in vivo and in vitro. Our data showed that SIRT1 knockdown downregulated NLRX1 expression, leading to structural damage and functional impairment in mitochondria, as well as increased oxidative stress, inflammatory response, and decreased cardiac function in MI mice. Collectively, our findings reveal that DMC improves cardiac function post-MI by increasing mitophagy and inhibiting oxidative stress and inflammotory response in cardiomyocytes through the SIRT1/AMPK signaling pathway.
Collapse
Affiliation(s)
- Xi Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China.
| | - Yanna Han
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China.
| | - Chaorun Dong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, PR China.
| | - Huan Qu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China.
| | - Yahan Yu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China.
| | - Jiaming Ju
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, PR China.
| | - Yunlong Bai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, PR China.
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, PR China.
| |
Collapse
|
9
|
Liu B, Chen D, Wang Y, Li Q, Zhu L, Yang Z, Chen X. Adipose improves muscular atrophy caused by Sirtuin1 deficiency by promoting mitochondria synthesis. Int J Biochem Cell Biol 2022; 149:106246. [PMID: 35738524 DOI: 10.1016/j.biocel.2022.106246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 05/30/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
Muscular dysplasia is a common muscle disease, but its pathological mechanism is still unclear. Adipose is originally identified as a highly conservative and widely expressed anti-obesity gene, and our previous study has reported that Adipose is also a positive regulator of myogenesis. Considering the vital role of during muscle development, this study was to demonstrate a potential relationship between Sirtuin1 and Adipose and clarified the mechanism by which Adipose regulated muscle development. Our results showed that the muscle fiber cross-sectional area and myosin heavy chain protein level were significantly reduced in Sirtuin1+/- mice. Moreover, the longitudinal section of muscle fibers was obviously irregular. Sirtuin1 knockdown significantly reduced the expression levels of Adipose and its upstream transcriptional regulator Kruppel like factor 15 and notably inhibited the AMP-activated protein kinase α-peroxisome proliferator-activated receptor gamma coactivator 1α signaling pathway in skeletal muscle. However, Adipose over-expression activated this signaling pathway and promoted mitochondrial biosynthesis in C2C12 myoblasts. Adipose over-expression also enhanced glucose absorption of C2C12 cells, suggesting the increased needs for cells for metabolic substrates. In C2C12 cells with hydrogen peroxide treatment, Adipose over-expression repressed hydrogen peroxide-elicited apoptosis and mitochondrial loss, while Sirtuin1-specific inhibitor dramatically weakened these roles of Adipose. Taken together, our findings reveal that Adipose rescues the adverse effects of Sirtuin1 deficiency or hydrogen peroxide on muscle development by activating the AMP-activated protein kinase α- peroxisome proliferator-activated receptor gamma coactivator 1α pathway to promote mitochondria synthesis, which provides theoretical basis for developing new therapeutic targets against some muscle diseases.
Collapse
Affiliation(s)
- Bingbing Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongqin Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinjin Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Lin Zhu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zaiqing Yang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaodong Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology &College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
10
|
Mitić B, Jovanović A, Nikolić VN, Stokanović D, Andrejić OM, Vučić RM, Pavlović M, Ignjatović A, Momčilović S. Trend of Galectin-3 Levels in Patients with Non-ST-Elevation and ST-Elevation Myocardial Infarction. Medicina (B Aires) 2022; 58:medicina58020286. [PMID: 35208606 PMCID: PMC8874376 DOI: 10.3390/medicina58020286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 11/27/2022] Open
Abstract
Background and Objectives: Given the fact that galectin-3 has a predictive significance on the development of myocardial dysfunction after acute myocardial infarction, the aim of our study was to examine potential factors that could be important for the dynamics of the concentration of this biomarker in the early postinfarction period. Materials and Methods: This study included 89 patients with a diagnosis of stable angina pectoris (SAP) or the first non-ST elevation (NSTEMI) or ST-elevation (STEMI) myocardial infarction, who underwent percutaneous coronary intervention (PCI). The study group included 23 patients with the first NSTEMI and 42 patients with STEMI, while the control group consisted of 24 patients with SAP hospitalized for elective PCI without a previous MI. All patients had preserved left ventricular ejection fraction. Galectin-3 levels were determined on days 1, 5, and 30 after PCI. The significance of various independent variables as predictors of galectin-3 concentration was analyzed after a series of univariate linear regression modeling in a multivariate linear regression model. Results: The average patients’ age was 63.99 ± 9.13 years. Statistically significantly higher values of C-reactive protein were established in STEMI compared to SAP (p < 0.01) or NSTEMI (p < 0.001), whereas WBC count was significantly lower in SAP than in STEMI (p < 0.001) and NSTEMI (p < 0.01) group. Although there were no statistically significant differences in measured galectin-3 concentrations between the examined groups on days 1, 5, and 30 after PCI, HTA, triglyceride level, LA size, treatment with trimetazidine and long-acting nitrates, as well as percentage of LM stenosis and E/A ratio were identified as independent predictors of galectin-3 concentration. Conclusions: In the post-MI period, very early values of galectin-3 correlate mostly with atherosclerosis factors, while on day 30 this biomarker correlates with diastolic dysfunction and “announces” left ventricular remodeling.
Collapse
Affiliation(s)
- Branka Mitić
- Department of Internal Medicine-Nephrology, Faculty of Medicine, University of Nis, Blvd Zorana Djindjića 81, 18000 Nis, Serbia; (B.M.); (A.J.)
| | - Andriana Jovanović
- Department of Internal Medicine-Nephrology, Faculty of Medicine, University of Nis, Blvd Zorana Djindjića 81, 18000 Nis, Serbia; (B.M.); (A.J.)
| | - Valentina N. Nikolić
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Nis, Blvd Zorana Djindjića 81, 18000 Nis, Serbia; (V.N.N.); (D.S.)
| | - Dragana Stokanović
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Nis, Blvd Zorana Djindjića 81, 18000 Nis, Serbia; (V.N.N.); (D.S.)
| | - Olivera M. Andrejić
- Clinic for Pulmonary Diseases, University Clinical Center Kragujevac, Zmaj Jovina Street 30, 34000 Kragujevac, Serbia;
| | - Rada M. Vučić
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica Street 69, 34000 Kragujevac, Serbia;
| | - Milan Pavlović
- Department of Internal Medicine-Cardiology, Faculty of Medicine, University of Nis, Blvd Zorana Djindjića 81, 18000 Nis, Serbia;
| | - Aleksandra Ignjatović
- Department of Medical Statistics, Faculty of Medicine, University of Nis, Blvd Zorana Djindjica 81, 18000 Nis, Serbia;
| | - Stefan Momčilović
- Plastic and Reconstructive Surgery Clinic, University Clinical Center Nis, Blvd Zorana Djindjica 48, 18000 Nis, Serbia
- Correspondence: ; Tel.: +381-605-263-654
| |
Collapse
|