1
|
Jalayeri Nia G, Selnes O, Cortegoso Valdivia P, Koulaouzidis A. An overview of emerging smart capsules using other-than-light technologies for colonic disease detection. Therap Adv Gastroenterol 2024; 17:17562848241255298. [PMID: 39050527 PMCID: PMC11268015 DOI: 10.1177/17562848241255298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/26/2024] [Indexed: 07/27/2024] Open
Abstract
Wireless capsule endoscopy (CE) has revolutionized gastrointestinal diagnostics, offering a non-invasive means to visualize and monitor the GI tract. This review traces the evolution of CE technology. Addressing the limitations of traditional white light (WL) CE, the paper explores non-WL technologies, integrating diverse sensing modalities and novel biomarkers to enhance diagnostic capabilities. Concluding with an assessment of Technology Readiness Levels, the paper emphasizes the transformative impact of non-WL colon CE devices on GI diagnostics, promising more precise, patient-centric, and accessible healthcare for GI disorders.
Collapse
Affiliation(s)
- Gohar Jalayeri Nia
- Department of Gastroenterology Queen Elizabeth Hospital and University Hospital Birmingham NHS Foundation Trust, Mindelsohn Way Edgbaston Birmingham, B15 2GW, UK
| | - Ola Selnes
- Surgical Research Unit, Odense University Hospital, Svendborg, Denmark
| | - Pablo Cortegoso Valdivia
- Gastroenterology and Endoscopy Unit, University Hospital of Parma, University of Parma, Parma, Italy
| | - Anastasios Koulaouzidis
- Department of Surgery, SATC-C, OUH Svendborg Sygehus, Svendborg, Denmark
- Department of Clinical Research, University of Southern Denmark (SDU), Odense, Denmark
- Department of Social Medicine and Public Health, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
2
|
Aggestrup AS, Svendsen SD, Præstegaard A, Løventoft P, Nørregaard L, Knorr U, Dam H, Frøkjær E, Danilenko K, Hageman I, Faurholt-Jepsen M, Kessing LV, Martiny K. Circadian Reinforcement Therapy in Combination With Electronic Self-Monitoring to Facilitate a Safe Postdischarge Period for Patients With Major Depression: Randomized Controlled Trial. JMIR Ment Health 2023; 10:e50072. [PMID: 37800194 DOI: 10.2196/50072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/10/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Patients with major depression exhibit circadian disturbance of sleep and mood, and when they are discharged from inpatient wards, this disturbance poses a risk of relapse. We developed a circadian reinforcement therapy (CRT) intervention to facilitate the transition from the inpatient ward to the home for these patients. CRT focuses on increasing the zeitgeber strength for the circadian clock through social contact, physical activity, diet, daylight exposure, and sleep timing. OBJECTIVE In this study, we aimed to prevent the worsening of depression after discharge by using CRT, supported by an electronic self-monitoring system, to advance and stabilize sleep and improve mood. The primary outcome, which was assessed by a blinded rater, was the change in the Hamilton Depression Rating Scale scores from baseline to the end point. METHODS Participants were contacted while in the inpatient ward and randomized 1:1 to the CRT or the treatment-as-usual (TAU) group. For 4 weeks, participants in both groups electronically self-monitored their daily mood, physical activity, sleep, and medication using the Monsenso Daybuilder (MDB) system. The MDB allowed investigators and participants to simultaneously view a graphical display of registrations. An investigator phoned all participants weekly to coinspect data entry. In the CRT group, participants were additionally phoned between the scheduled calls if specific predefined trigger points for mood and sleep were observed during the daily inspection. Participants in the CRT group were provided with specialized CRT psychoeducation sessions immediately after inclusion, focusing on increasing the zeitgeber input to the circadian system; a PowerPoint presentation was presented; paper-based informative materials and leaflets were reviewed with the participants; and the CRT principles were used during all telephone consultations. In the TAU group, phone calls focused on data entry in the MDB system. When discharged, all patients were treated at a specialized affective disorders service. RESULTS Overall, 103 participants were included. Participants in the CRT group had a significantly larger reduction in Hamilton Depression Scale score (P=.04) than those in the TAU group. The self-monitored MDB data showed significantly improved evening mood (P=.02) and sleep quality (P=.04), earlier sleep onset (P=.009), and longer sleep duration (P=.005) in the CRT group than in the TAU group. The day-to-day variability of the daily and evening mood, sleep offset, sleep onset, and sleep quality were significantly lower in the CRT group (all P<.001) than in the TAU group. The user evaluation was positive for the CRT method and the MDB system. CONCLUSIONS We found significantly lower depression levels and improved sleep quality in the CRT group than in the TAU group. We also found significantly lower day-to-day variability in daily sleep, mood parameters, and activity parameters in the CRT group than in the TAU group. The delivery of the CRT intervention should be further refined and tested. TRIAL REGISTRATION ClinicalTrials.gov NCT02679768; https://clinicaltrials.gov/study/NCT02679768. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) RR2-10.1186/s12888-019-2101-z.
Collapse
Affiliation(s)
- Anne Sofie Aggestrup
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Frederiksberg, Denmark
| | - Signe Dunker Svendsen
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne Præstegaard
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Frederiksberg, Denmark
| | - Philip Løventoft
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Frederiksberg, Denmark
| | - Lasse Nørregaard
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Frederiksberg, Denmark
| | - Ulla Knorr
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Frederiksberg, Denmark
| | - Henrik Dam
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Frederiksberg, Denmark
| | - Erik Frøkjær
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Ida Hageman
- Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
| | - Maria Faurholt-Jepsen
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Frederiksberg, Denmark
| | - Lars Vedel Kessing
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Frederiksberg, Denmark
| | - Klaus Martiny
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Frederiksberg, Denmark
| |
Collapse
|
3
|
Kim DW, Mayer C, Lee MP, Choi SW, Tewari M, Forger DB. Efficient assessment of real-world dynamics of circadian rhythms in heart rate and body temperature from wearable data. J R Soc Interface 2023; 20:20230030. [PMID: 37608712 PMCID: PMC10445022 DOI: 10.1098/rsif.2023.0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
Laboratory studies have made unprecedented progress in understanding circadian physiology. Quantifying circadian rhythms outside of laboratory settings is necessary to translate these findings into real-world clinical practice. Wearables have been considered promising way to measure these rhythms. However, their limited validation remains an open problem. One major barrier to implementing large-scale validation studies is the lack of reliable and efficient methods for circadian assessment from wearable data. Here, we propose an approximation-based least-squares method to extract underlying circadian rhythms from wearable measurements. Its computational cost is ∼ 300-fold lower than that of previous work, enabling its implementation in smartphones with low computing power. We test it on two large-scale real-world wearable datasets: [Formula: see text] of body temperature data from cancer patients and ∼ 184 000 days of heart rate and activity data collected from the 'Social Rhythms' mobile application. This shows successful extraction of real-world dynamics of circadian rhythms. We also identify a reasonable harmonic model to analyse wearable data. Lastly, we show our method has broad applicability in circadian studies by embedding it into a Kalman filter that infers the state space of the molecular clocks in tissues. Our approach facilitates the translation of scientific advances in circadian fields into actual improvements in health.
Collapse
Affiliation(s)
- Dae Wook Kim
- Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Caleb Mayer
- Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Minki P. Lee
- Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sung Won Choi
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Muneesh Tewari
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel B. Forger
- Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Blessing EM, Parekh A, Betensky RA, Babb J, Saba N, Debure L, Varga AW, Ayappa I, Rapoport DM, Butler TA, de Leon MJ, Wisniewski T, Lopresti BJ, Osorio RS. Association between lower body temperature and increased tau pathology in cognitively normal older adults. Neurobiol Dis 2022; 171:105748. [PMID: 35550158 PMCID: PMC9751849 DOI: 10.1016/j.nbd.2022.105748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/25/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Preclinical studies suggest body temperature (Tb) and consequently brain temperature has the potential to bidirectionally interact with tau pathology in Alzheimer's Disease (AD). Tau phosphorylation is substantially increased by a small (<1 °C) decrease in temperature within the human physiological range, and thermoregulatory nuclei are affected by tau pathology early in the AD continuum. In this study we evaluated whether Tb (as a proxy for brain temperature) is cross-sectionally associated with clinically utilized markers of tau pathology in cognitively normal older adults. METHODS Tb was continuously measured with ingestible telemetry sensors for 48 h. This period included two nights of nocturnal polysomnography to delineate whether Tb during waking vs sleep is differentially associated with tau pathology. Tau phosphorylation was assessed with plasma and cerebrospinal fluid (CSF) tau phosphorylated at threonine 181 (P-tau), sampled the day following Tb measurement. In addition, neurofibrillary tangle (NFT) burden in early Braak stage regions was imaged with PET-MR using the [18F]MK-6240 radiotracer on average one month later. RESULTS Lower Tb was associated with increased NFT burden, as well as increased plasma and CSF P-tau levels (p < 0.05). NFT burden was associated with lower Tb during waking (p < 0.05) but not during sleep intervals. Plasma and CSF P-tau levels were highly correlated with each other (p < 0.05), and both variables were correlated with tau tangle radiotracer uptake (p < 0.05). CONCLUSIONS These results, the first available for human, suggest that lower Tb in older adults may be associated with increased tau pathology. Our findings add to the substantial preclinical literature associating lower body and brain temperature with tau hyperphosphorylation. CLINICAL TRIAL NUMBER NCT03053908.
Collapse
Affiliation(s)
- Esther M Blessing
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, United States of America.
| | - Ankit Parekh
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States of America.
| | - Rebecca A Betensky
- Department of NYU School of Global Public Health, New York, NY 10016, United States of America.
| | - James Babb
- Alzheimer's Disease Research Center, Department of Neurology, NYU Grossman School of Medicine, New York, NY 10016, United States of America.
| | - Natalie Saba
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, United States of America.
| | - Ludovic Debure
- Alzheimer's Disease Research Center, Department of Neurology, NYU Grossman School of Medicine, New York, NY 10016, United States of America.
| | - Andrew W Varga
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States of America.
| | - Indu Ayappa
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States of America.
| | - David M Rapoport
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States of America.
| | - Tracy A Butler
- Department of Neurology, Weill Cornell Medicine, New York, NY 10065, United States of America.
| | - Mony J de Leon
- Department of Neurology, Weill Cornell Medicine, New York, NY 10065, United States of America.
| | - Thomas Wisniewski
- Alzheimer's Disease Research Center, Department of Neurology, NYU Grossman School of Medicine, New York, NY 10016, United States of America.
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America.
| | - Ricardo S Osorio
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, United States of America; Alzheimer's Disease Research Center, Department of Neurology, NYU Grossman School of Medicine, New York, NY 10016, United States of America.
| |
Collapse
|
5
|
Zhang Y, Cordina-Duverger E, Komarzynski S, Attari AM, Huang Q, Aristizabal G, Faraut B, Léger D, Adam R, Guénel P, Brettschneider JA, Finkenstädt BF, Lévi F. Digital circadian and sleep health in individual hospital shift workers: A cross sectional telemonitoring study. EBioMedicine 2022; 81:104121. [PMID: 35772217 PMCID: PMC9253495 DOI: 10.1016/j.ebiom.2022.104121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/25/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Telemonitoring of circadian and sleep cycles could identify shift workers at increased risk of poor health, including cancer and cardiovascular diseases, thus supporting personalized prevention. METHODS The Circadiem cross-sectional study aimed at determining early warning signals of risk of health alteration in hospital nightshifters (NS) versus dayshifters (DS, alternating morning and afternoon shifts). Circadian rhythmicity in activity, sleep, and temperature was telemonitored on work and free days for one week. Participants wore a bluetooth low energy thoracic accelerometry and temperature sensor that was wirelessly connected to a GPRS gateway and a health data hub server. Hidden Markov modelling of activity quantified Rhythm Index, rest quality (probability, p1-1, of remaining at rest), and rest duration. Spectral analyses determined periods in body surface temperature and accelerometry. Parameters were compared and predictors of circadian and sleep disruption were identified by multivariate analyses using information criteria-based model selection. Clusters of individual shift work response profiles were recognized. FINDINGS Of 140 per-protocol participants (133 females), there were 63 NS and 77 DS. Both groups had similar median rest amount, yet NS had significantly worse median rest-activity Rhythm Index (0·38 [IQR, 0·29-0·47] vs. 0·69 [0·60-0·77], p<0·0001) and rest quality p1-1 (0·94 [0·94-0·95] vs 0·96 [0·94-0·97], p<0·0001) over the whole study week. Only 48% of the NS displayed a circadian period in temperature, as compared to 70% of the DS (p=0·026). Poor p1-1 was associated with nightshift work on both work (p<0·0001) and free days (p=0·0098). The number of years of past night work exposure predicted poor rest-activity Rhythm Index jointly with shift type, age and chronotype on workdays (p= 0·0074), and singly on free days (p=0·0005). INTERPRETATION A dedicated analysis toolbox of streamed data from a wearable device identified circadian and sleep rhythm markers, that constitute surrogate candidate endpoints of poor health risk in shift-workers. FUNDING French Agency for Food, Environmental and Occupational Health & Safety (EST-2014/1/064), University of Warwick, Medical Research Council (United Kingdom, MR/M013170), Cancer Research UK(C53561/A19933).
Collapse
Affiliation(s)
- Yiyuan Zhang
- Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Emilie Cordina-Duverger
- Inserm, CESP, Team Exposome and Heredity, University Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Sandra Komarzynski
- Cancer Chronotherapy Team, Cancer Research Centre, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Amal M Attari
- UPR "Chronothérapie, Cancers, et Transplantation", Faculté de Médecine, Université Paris-Saclay, Villejuif, France; Cap Gemini, Velizy Villacoublay, France
| | - Qi Huang
- Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Guillen Aristizabal
- Inserm, CESP, Team Exposome and Heredity, University Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Brice Faraut
- Université de Paris, VIFASOM (EA 7330 Vigilance Fatigue, Sommeil et Santé Publique), Paris, France; Assistance Publique-Hôpitaux de Paris, APHP-Centre Université de Paris, Hôtel Dieu, Centre du Sommeil et de La Vigilance, Paris, France
| | - Damien Léger
- Université de Paris, VIFASOM (EA 7330 Vigilance Fatigue, Sommeil et Santé Publique), Paris, France; Assistance Publique-Hôpitaux de Paris, APHP-Centre Université de Paris, Hôtel Dieu, Centre du Sommeil et de La Vigilance, Paris, France
| | - René Adam
- UPR "Chronothérapie, Cancers, et Transplantation", Faculté de Médecine, Université Paris-Saclay, Villejuif, France; Hepato-Biliary Center, Paul Brousse Hospital, Assistance Publique-Hôpitaux de Paris, Villejuif, France
| | - Pascal Guénel
- Inserm, CESP, Team Exposome and Heredity, University Paris-Saclay, Gustave Roussy, Villejuif, France
| | | | | | - Francis Lévi
- Cancer Chronotherapy Team, Cancer Research Centre, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom; UPR "Chronothérapie, Cancers, et Transplantation", Faculté de Médecine, Université Paris-Saclay, Villejuif, France; Department of Medical Oncology, Paul Brousse Hospital, Assistance Publique-Hôpitaux de Paris, Villejuif, France.
| |
Collapse
|