1
|
Wang J, Liao S, Lin H, Wei H, Mao X, Wang Q, Chen H. Fem-1 Gene of Chinese White Pine Beetle ( Dendroctonus armandi): Function and Response to Environmental Treatments. Int J Mol Sci 2024; 25:10349. [PMID: 39408677 PMCID: PMC11477363 DOI: 10.3390/ijms251910349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Dendroctonus armandi (Tsai and Li) (Coleoptera: Curculionidae: Scolytinae) is regarded as the most destructive forest pest in the Qinling and Bashan Mountains of China. The sex determination of Dendroctonus armandi plays a significant role in the reproduction of its population. In recent years, the role of the fem-1 gene in sex determination in other insects has been reported. However, the function and expression of the fem-1 gene in Dendroctonus armandi remain uncertain. In this study, three fem-1 genes were cloned and characterized. These were named Dafem-1A, Dafem-1B, and Dafem-1C, respectively. The expression levels of these three Dafem-1 genes vary at different stages of development and between the sexes. In response to different environmental treatments, including temperature, nutrients, terpenoids, and feeding duration, significant differences were observed between the three Dafem-1 genes at different developmental stages and between males and females. Furthermore, injection of double-stranded RNA (dsRNA) targeting the expressions of the Dafem-1A, Dafem-1B, and Dafem-1C genes resulted in increased mortality, deformity, and decreased emergence rates, as well as an imbalance in the sex ratio. Following the interference with Dafem-1A and Dafem-1C, no notable difference was observed in the expression of the Dafem-1B gene. Similarly, after the interference with the Dafem-1B gene, no significant difference was evident in the expression levels of the Dafem-1A and Dafem-1C genes. However, the interference of either the Dafem-1A or Dafem-1C gene results in the downregulation of the other gene. The aforementioned results demonstrate that the Dafem-1A, Dafem-1B, and Dafem-1C genes play a pivotal role in the regulation of life development and sex determination. Furthermore, it can be concluded that external factors such as temperature, nutrition, terpenoids, and feeding have a significant impact on the expression levels of the Dafem-1A, Dafem-1B, and Dafem-1C genes. This provides a crucial theoretical foundation for further elucidating the sex determination mechanism of Dendroctonus armandi.
Collapse
Affiliation(s)
- Jiajin Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510462, China; (J.W.); (S.L.); (H.W.); (X.M.); (Q.W.)
| | - Songkai Liao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510462, China; (J.W.); (S.L.); (H.W.); (X.M.); (Q.W.)
| | - Haoyu Lin
- Forest Protection Research Institute, Fujian Academy of Forestry, Fuzhou 350011, China;
| | - Hongjian Wei
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510462, China; (J.W.); (S.L.); (H.W.); (X.M.); (Q.W.)
| | - Xinjie Mao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510462, China; (J.W.); (S.L.); (H.W.); (X.M.); (Q.W.)
| | - Qi Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510462, China; (J.W.); (S.L.); (H.W.); (X.M.); (Q.W.)
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510462, China; (J.W.); (S.L.); (H.W.); (X.M.); (Q.W.)
| |
Collapse
|
2
|
Yang Z, Wang W, Deng M, Xiao T, Ma W, Huang X, Lu K. Characterization of Neuropeptides from Spodoptera litura and Functional Analysis of NPF in Diet Intake. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10304-10313. [PMID: 38657164 DOI: 10.1021/acs.jafc.4c01465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Neuropeptides are involved in many biological processes in insects. However, it is unclear what role neuropeptides play in Spodoptera litura adaptation to phytochemical flavone. In this study, 63 neuropeptide precursors from 48 gene families were identified in S. litura, including two neuropeptide F genes (NPFs). NPFs played a positive role in feeding regulation in S. litura because knockdown of NPFs decreased larval diet intake. S. litura larvae reduced flavone intake by downregulating NPFs. Conversely, the flavone intake was increased if the larvae were treated with NPF mature peptides. The NPF receptor (NPFR) was susceptible to the fluctuation of NPFs. NPFR mediated NPF signaling by interacting with NPFs to regulate the larval diet intake. In conclusion, this study suggested that NPF signaling regulated diet intake to promote S. litura adaptation to flavone, which contributed to understanding insect adaptation mechanisms to host plants and provide more potential pesticidal targets for pest control.
Collapse
Affiliation(s)
- Zhiming Yang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wenxiu Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Mengqing Deng
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Tianxiang Xiao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wenling Ma
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xiaodan Huang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Kai Lu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
3
|
Identification and Functional Characterization of the Transcription Factors AhR/ARNT in Dendroctonus armandi. Cells 2022; 11:cells11233856. [PMID: 36497113 PMCID: PMC9736963 DOI: 10.3390/cells11233856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translocator (ARNT) belong to the bHLH-PAS (basic Helix-Loop-Helix-Period/ARNT/Single-minded) family of transcription factors, which participate in the sensing and transmitting stimuli of exogenous and endogenous chemical substances, and subsequently activates genes transcription involved in various detoxification and physiological functions. However, they have not been identified in Dendroctonus armandi, and their roles in the detoxification metabolism are unclear. In the present study, AhR and ARNT of D. armandi were characterized. Spatiotemporal expression profiling indicated that DaAhR and DaARNT were highly expressed in the adult and larval stages of D. armandi and mainly expressed in the midgut and Malpighian tubules of adults. Additionally, the expression of DaAhR and DaARNT significantly increased after exposure to (-)-𝛽-pinene, (+)-3-carene, and (±)-limonene. Silencing DaAhR and DaARNT increased the susceptibility of D. armandi to (-)-𝛽-pinene, (+)-3-carene, and (±)-limonene, and the activities of detoxification enzyme were also remarkably reduced. Moreover, DaCYP6DF1 and DaGSTs2 were significantly down-regulated after injections of dsAhR and dsARNT in the male and female adults, with the expression of DaCYP6DF1 decreasing by higher than 70%. The present study revealed that the transcription factors AhR and ARNT of D. armandi were induced by terpenoids and participated in the regulation of DaCYP6DF1 expression, which was associated with D. armandi's susceptibility to (-)-𝛽-pinene and (±)-limonene. These results may provide a theoretical basis for the integrated control of D. armandi and improve our comprehension of insect toxicology.
Collapse
|
4
|
Liu B, Tang M, Chen H. Activation of the ROS/CncC Signaling Pathway Regulates Cytochrome P450 CYP4BQ1 Responsible for (+)-α-Pinene Tolerance in Dendroctonus armandi. Int J Mol Sci 2022; 23:ijms231911578. [PMID: 36232876 PMCID: PMC9569712 DOI: 10.3390/ijms231911578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Bark beetles mainly rely on detoxification enzymes to resist the host tree's defense against oleoresin terpenes. Cytochrome P450 enzymes (CYPs) play an important role in the detoxification of plant allelochemicals and pesticides in insect. One P450 gene (DaCYP4BQ1) is associated with the response of (+)-α-pinene in Dendroctonus armandi. However, the regulatory mechanism of this P450 gene response to (+)-α-pinene is still unknown. In this study, spatiotemporal expression profiling indicated that CYP4BQ1 was highly expressed in adult and larval stages of D. armandi, and it was predominantly expressed in fat body, midgut, and Malpighian tubules of adults. Moreover, the expression of CYP4BQ1 significantly increased after exposure to (+)-α-pinene, and depletion of it decreased the tolerance of adults to (+)-α-pinene. In addition, (+)-α-pinene treatment induced the expression of the transcription factors cap 'n' collar isoform C (CncC) and its binding factor muscle aponeurosis fibromatosis (Maf), elevated the level of hydrogen peroxide (H2O2), and increased the activities of antioxidant enzymes. Silencing CncC suppressed CYP4BQ1 expression and enhanced the susceptibility of beetles to (+)-α-pinene. Similarly, application of the reactive oxygen species (ROS) scavenger N-acetylcysteine reduced the production and accumulation of H2O2, suppressed the expression of CncC, Maf, and CYP4BQ1 and led to decreased tolerance of adults to (+)-α-pinene. In contrast, ingestion of the CncC agonist curcumin elevated CYP4BQ1 expression and enhanced (+)-α-pinene tolerance. The results demonstrate that, in D. armandi, (+)-α-pinene induces CYP4BQ1 via activation of the ROS/CncC signaling pathway.
Collapse
Affiliation(s)
- Bin Liu
- College of Forestry, Northwest A&F University, Xianyang 712100, China
| | - Ming Tang
- College of Forestry, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Hui Chen
- College of Forestry, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
5
|
Liu B, Fu D, Ning H, Tang M, Chen H. Identification and functional characterization of the sulfakinin and sulfakinin receptor in the Chinese white pine beetle Dendroctonus armandi. Front Physiol 2022; 13:927890. [PMID: 36035480 PMCID: PMC9417412 DOI: 10.3389/fphys.2022.927890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/04/2022] [Indexed: 01/29/2023] Open
Abstract
The sulfakinin (SK) is an important signal molecule. As a neuromodulator, it mediates a variety of behavioral processes and physiological functions in invertebrates through the interaction with G-protein-coupled receptors (GPCRs). However, there is no report on the functional role of SK in the Chinese white pine beetle, Dendroctonus armandi. We have cloned and characterized SK and SKR genes in the D. armandi and carried out bioinformatics predictions on the basis of the deduced amino acid sequences, which are very similar to those from Dendroctonus ponderosa. The expression levels of the two genes were different between male and female adults, and there were significant changes in different developmental stages, tissues, and between starvation and following re-feeding states. Additionally, RNA-interference (RNAi) using double-stranded RNA to knock down SK and SKR reduced the transcription levels of the target genes and increased their body weight. In parallel, injection of SK caused a significant reduction in body weight and increase in mortality of D. armandi and also led to an increase in trehalose and a decrease in glycogen and free fatty acid. The results show that the SK signal pathway plays a positive and significant role in feeding regulation and provides a potential molecular target for the control of this pest.
Collapse
Affiliation(s)
- Bin Liu
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Danyang Fu
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Hang Ning
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Ming Tang
- College of Forestry, Northwest A&F University, Xianyang, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- *Correspondence: Ming Tang, ; Hui Chen,
| | - Hui Chen
- College of Forestry, Northwest A&F University, Xianyang, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- *Correspondence: Ming Tang, ; Hui Chen,
| |
Collapse
|
6
|
Sun YY, Fu DY, Liu B, Wang LJ, Chen H. Roles of Krüppel Homolog 1 and Broad-Complex in the Development of Dendroctonus armandi (Coleoptera: Scolytinae). Front Physiol 2022; 13:865442. [PMID: 35464080 PMCID: PMC9019567 DOI: 10.3389/fphys.2022.865442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
In insects, metamorphosis is controlled by juvenile hormone (JH) and 20-hydroxyecdysone (20E). Krüppel homolog 1 (Kr-h1), a key JH-early inducible gene, is responsible for the suppression of metamorphosis and the regulation of the Broad-Complex (Br-C) gene, which is induced by 20E and functions as a “pupal specifier”. In this study, we identified and characterized the expression patterns and tissue distribution of DaKr-h1 and DaBr-C at various developmental stages of Dendroctonus armandi. The expression of the two genes was induced by JH analog (JHA) methoprene and 20E, and their functions were investigated by RNA interference. DaKr-h1 and DaBr-C were predominantly expressed in the heads of larvae and were significantly downregulated during the molting stage. In contrast, the DaKr-h1 transcript level was highest in the adult anterior midgut. DaBr-C was mainly expressed in female adults, with the highest transcript levels in the ovaries. In the larval and pupal stages, both JHA and 20E significantly induced DaKr-h1, but only 20E significantly induced DaBr-C, indicating the importance of hormones in metamorphosis. DaKr-h1 knockdown in larvae upregulated DaBr-C expression, resulting in precocious metamorphosis from larvae to pupae and the formation of miniature pupae. DaKr-h1 knockdown in pupae suppressed DaBr-C expression, increased emergence, caused abnormal morphology, and caused the formation of small-winged adults. These results suggest that DaKr-h1 is required for the metamorphosis of D. armandi. Our findings provide insight into the roles of DaKr-h1 and DaBr-C in JH-induced transcriptional repression and highlight DaKr-h1 as a potential target for metamorphosis suppression in D. armandi.
Collapse
Affiliation(s)
- Ya-Ya Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Dan-Yang Fu
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Bin Liu
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Lin-Jun Wang
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Hui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- *Correspondence: Hui Chen,
| |
Collapse
|
7
|
Identification of the Short Neuropeptide F and Short Neuropeptide F Receptor Genes and Their Roles of Food Intake in Dendroctonus armandi. INSECTS 2021; 12:insects12090844. [PMID: 34564284 PMCID: PMC8469826 DOI: 10.3390/insects12090844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 02/02/2023]
Abstract
The short neuropeptide F (sNPF) is an essential signaling molecule that is evolutionarily conserved and involved in a broad range of physiological functions in the invertebrates, by interacting with sNPF receptors, which belong to G protein-coupled receptors (GPCR). However, the function of sNPF in regulating the food intake of Dendroctonus armandi has been unclear. In this study, we cloned and characterized cDNAs encoding sNPF and sNPF receptor in the D. armandi and made bioinformatics predictions on the deduced amino acid sequences. They had a high degree of similarity to that of Dendroctonus ponderosa. Quantitative real-time reverse transcription PCR (qRT-PCR) revealed that the transcript levels of both sNPF and sNPFR varied across developmental stages and body parts. In addition, the sNPF and sNPFR expression levels were upregulated in starved beetles, and the expression levels recovered after re-feeding. Furthermore, RNAi knockdown by the injection of sNPF and sNPFR dsRNA into beetles significantly increased mortality and reduced their food intake and body weight, and also caused decrease of glycogen and free fatty acid and increase of trehalose. These results indicate that sNPF signaling pathway plays an important role in the regulation of food intake and provides a potential molecular target for the eco-friendly control strategies of this pest.
Collapse
|