1
|
Elgazzaz M, Berdasco C, Garai J, Baddoo M, Lu S, Daoud H, Zabaleta J, Mauvais-Jarvis F, Lazartigues E. Maternal Western diet programs cardiometabolic dysfunction and hypothalamic inflammation via epigenetic mechanisms predominantly in the male offspring. Mol Metab 2024; 80:101864. [PMID: 38159883 PMCID: PMC10806294 DOI: 10.1016/j.molmet.2023.101864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024] Open
Abstract
OBJECTIVE Maternal exposure during pregnancy is a strong determinant of offspring health outcomes. Such exposure induces changes in the offspring epigenome resulting in gene expression and functional changes. In this study, we investigated the effect of maternal Western hypercaloric diet (HCD) programming during the perinatal period on neuronal plasticity and cardiometabolic health in adult offspring. METHODS C57BL/6J dams were fed HCD for 1 month prior to mating with regular diet (RD) sires and kept on the same diet throughout pregnancy and lactation. At weaning, offspring were maintained on either HCD or RD for 3 months resulting in 4 treatment groups that underwent cardiometabolic assessments. DNA and RNA were extracted from the hypothalamus to perform whole genome methylation, mRNA, and miRNA sequencing followed by bioinformatic analyses. RESULTS Maternal programming resulted in male-specific hypertension and hyperglycemia, with both males and females showing increased sympathetic tone to the vasculature. Surprisingly, programmed male offspring fed HCD in adulthood exhibited lower glucose levels, less insulin resistance, and leptin levels compared to non-programmed HCD-fed male mice. Hypothalamic genes involved in inflammation and type 2 diabetes were targeted by differentially expressed miRNA, while genes involved in glial and astrocytic differentiation were differentially methylated in programmed male offspring. These data were supported by our findings of astrogliosis, microgliosis and increased microglial activation in programmed males in the paraventricular nucleus (PVN). Programming induced a protective effect in male mice fed HCD in adulthood, resulting in lower protein levels of hypothalamic TGFβ2, NF-κB2, NF-κBp65, Ser-pIRS1, and GLP1R compared to non-programmed HCD-fed males. Although TGFβ2 was upregulated in male mice exposed to HCD pre- or post-natally, only blockade of the brain TGFβ receptor in RD-HCD mice improved glucose tolerance and a trend to weight loss. CONCLUSIONS Our study shows that maternal HCD programs neuronal plasticity in the offspring and results in male-specific hypertension and hyperglycemia associated with hypothalamic inflammation in mechanisms and pathways distinct from post-natal HCD exposure. Together, our data unmask a compensatory role of HCD programming, likely via priming of metabolic pathways to handle excess nutrients in a more efficient way.
Collapse
Affiliation(s)
- Mona Elgazzaz
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Clara Berdasco
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA
| | - Jone Garai
- Department of Interdisciplinary Oncology and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Melody Baddoo
- Department of Pathology and Laboratory Medicine/Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Shiping Lu
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Hisham Daoud
- School of Computer and Cyber Sciences, Augusta University, Augusta, GA 30901, USA
| | - Jovanny Zabaleta
- Department of Interdisciplinary Oncology and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Franck Mauvais-Jarvis
- Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Department of Medicine, Section of Endocrinology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Eric Lazartigues
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA; Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|
2
|
Liu HY, Lee CH, Hsu CN, Tain YL. Maternal High-Fat Diet Controls Offspring Kidney Health and Disease. Nutrients 2023; 15:2698. [PMID: 37375602 DOI: 10.3390/nu15122698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
A balanced diet during gestation is critical for fetal development, and excessive intake of saturated fats during gestation and lactation is related to an increased risk of offspring kidney disease. Emerging evidence indicates that a maternal high-fat diet influences kidney health and disease of the offspring via so-called renal programming. This review summarizes preclinical research documenting the connection between a maternal high-fat diet during gestation and lactation and offspring kidney disease, as well as the molecular mechanisms behind renal programming, and early-life interventions to offset adverse programming processes. Animal models indicate that offspring kidney health can be improved via perinatal polyunsaturated fatty acid supplementation, gut microbiota changes, and modulation of nutrient-sensing signals. These findings reinforce the significance of a balanced maternal diet for the kidney health of offspring.
Collapse
Affiliation(s)
- Hsi-Yun Liu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chen-Hao Lee
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
3
|
Wang H, Brey CW, Wang Y, Gaugler R, Hashmi S. KLF regulation of insulin pathway genes. 3 Biotech 2023; 13:87. [PMID: 36816753 PMCID: PMC9935763 DOI: 10.1007/s13205-023-03502-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
Alteration in lipid metabolism can result in fat accumulation in adipose tissues, which may lead to two most important human diseases, obesity and diabetes. A shift in lipid metabolism deregulates signaling pathways which regulates obesity and/or diabetes. In this study, we examined the components of insulin/ TGF-β pathways and their genetic interaction with Krüppel-like transcription factors (KLFs). Their role in energy homeostasis were discussed. We separately created klf/daf genes double mutants by carrying out klfs RNAi on daf-2 (e1391), daf-4 (e1364), daf-7 (e1372); dpy-1 (e1), daf-14 (m77), daf-16 (mgDf50) mutants. And then conducted Oil O Red staining to assay the klf/daf RNAi worms for fat deposits and examine genetic interaction between klfs and daf genes. The results showed that worms bearing klf-1, 2, or 3 and daf-2, or daf-4 mutations deposit large, but similar fat levels as individual mutants. The results suggested that they target the same molecular pathway of fat storage. klf-1, 2 or 3 RNAi /daf-7 worms showed higher fat deposits in klf-1, 2, or 3 RNAi/daf-7 worms than klf-1, 2, or 3 RNAi or daf-7 mutants alone, which showed a functional interaction between klfs and daf-7 in perhaps TGF-β-like pathway. Altogether our study suggests a direct role of klfs in insulin signaling pathway.
Collapse
Affiliation(s)
- Huan Wang
- College of Bioscience and Biotechnology, Shenyang Agriculture University, Shanyang, 110866 China
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, USA
| | | | - Yi Wang
- Laboratory of Developmental Biology, Center for Vector Biology, Rutgers University, 180 Jones Avenue, New Brunswick, NJ 08901 USA
| | - Randy Gaugler
- Laboratory of Developmental Biology, Center for Vector Biology, Rutgers University, 180 Jones Avenue, New Brunswick, NJ 08901 USA
| | - Sarwar Hashmi
- Laboratory of Developmental Biology, Center for Vector Biology, Rutgers University, 180 Jones Avenue, New Brunswick, NJ 08901 USA
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, USA
| |
Collapse
|
4
|
Xue B, Johnson AK. Sensitization of Hypertension: The Impact of Earlier Life Challenges: Excellence Award for Hypertension Research 2021. Hypertension 2023; 80:1-12. [PMID: 36069195 DOI: 10.1161/hypertensionaha.122.18550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Hypertension affects over 1 billion individuals worldwide. Because the cause of hypertension is known only in a small fraction of patients, most individuals with high blood pressure are diagnosed as having essential hypertension. Elevated sympathetic nervous system activity has been identified in a large portion of hypertensive patients. However, the root cause for this sympathetic overdrive is unknown. A more complete understanding of the breadth of the functional capabilities of the sympathetic nervous system may lead to new insights into the cause of essential hypertension. By employing a unique experimental paradigm, we have recently discovered that the neural network controlling sympathetic drive is more reactive after rats are exposed to mild challenges (stressors) and that the hypertensive response can be sensitized (ie, hypertensive response sensitization [HTRS]). We have also found that the induction of HTRS involves plasticity in the neural network controlling sympathetic drive. The induction and maintenance of the latent HTRS state also require the functional integrity of the brain renin-angiotensin-aldosterone system and the presence of several central inflammatory factors. In this review, we will discuss the induction and expression of HTRS in adult animals and in the progeny of mothers with prenatal obesity/overnutrition or with maternal gestational hypertension. Also, interventions that reverse the effects of stressor-induced HTRS will be reviewed. Understanding the mechanisms underlying HTRS and identifying the beneficial effects of maternal or offspring early-life interventions that prevent or reverse the sensitized state can provide insights into therapeutic strategies for interrupting the vicious cycle of transgenerational hypertension.
Collapse
Affiliation(s)
- Baojian Xue
- Department of Psychological and Brain Sciences (B.X., A.K.J.), University of Iowa, Iowa City
| | - Alan Kim Johnson
- Department of Psychological and Brain Sciences (B.X., A.K.J.), University of Iowa, Iowa City.,Neuroscience and Pharmacology (A.K.J.), University of Iowa, Iowa City.,Health and Human Physiology (A.K.J.), University of Iowa, Iowa City.,François M. Abboud Cardiovascular Research Center (A.K.J.), University of Iowa, Iowa City
| |
Collapse
|
5
|
Mo J, Liu X, Huang Y, He R, Zhang Y, Huang H. Developmental origins of adult diseases. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:450-470. [PMID: 37724166 PMCID: PMC10388800 DOI: 10.1515/mr-2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/11/2022] [Indexed: 09/20/2023]
Abstract
The occurrence and mechanisms of developmental adult diseases have gradually attracted attention in recent years. Exposure of gametes and embryos to adverse environments, especially during plastic development, can alter the expression of certain tissue-specific genes, leading to increased susceptibility to certain diseases in adulthood, such as diabetes, cardiovascular disease, neuropsychiatric, and reproductive system diseases, etc. The occurrence of chronic disease in adulthood is partly due to genetic factors, and the remaining risk is partly due to environmental-dependent epigenetic information alteration, including DNA methylation, histone modifications, and noncoding RNAs. Changes in this epigenetic information potentially damage our health, which has also been supported by numerous epidemiological and animal studies in recent years. Environmental factors functionally affect embryo development through epimutation, transmitting diseases to offspring and even later generations. This review mainly elaborated on the concept of developmental origins of adult diseases, and revealed the epigenetic mechanisms underlying these events, discussed the theoretical basis for the prevention and treatment of related diseases.
Collapse
Affiliation(s)
- Jiaying Mo
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, China
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xuanqi Liu
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yutong Huang
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Renke He
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, China
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yu Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Hefeng Huang
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, China
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
| |
Collapse
|
6
|
Maternal High-Fat Diet and Offspring Hypertension. Int J Mol Sci 2022; 23:ijms23158179. [PMID: 35897755 PMCID: PMC9332200 DOI: 10.3390/ijms23158179] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 12/11/2022] Open
Abstract
The incidence of hypertension has increased to epidemic levels in the past decades. Increasing evidence reveals that maternal dietary habits play a crucial role in the development of hypertension in adult offspring. In humans, increased fat consumption has been considered responsible for obesity and associated diseases. Maternal diets rich in saturated fats have been widely employed in animal models to study various adverse offspring outcomes. In this review, we discussed current evidence linking maternal high-fat diet to offspring hypertension. We also provided an in-depth overview of the potential mechanisms underlying hypertension of developmental origins that are programmed by maternal high-fat intake from animal studies. Furthermore, this review also presented an overview of how reprogramming interventions can prevent maternal high-fat-diet-induced hypertension in adult offspring. Overall, recent advances in understanding mechanisms behind programming and reprogramming of maternal high-fat diet on hypertension of developmental origins might provide the answers to curtail this epidemic. Still, more research is needed to translate research findings into practice.
Collapse
|
7
|
Ferreira ARO, Ribeiro MVG, Peres MNC, Piovan S, Gonçalves GD, Saavedra LPJ, Martins JNDL, Junior MDF, Cavalcante KVN, Lopes GKG, Carneiro M, Almeida DL, Gomes RM, Comar JF, Armitage JA, Mathias PCDF, Palma-Rigo K. Protein Restriction in the Peri-Pubertal Period Induces Autonomic Dysfunction and Cardiac and Vascular Structural Changes in Adult Rats. Front Physiol 2022; 13:840179. [PMID: 35574445 PMCID: PMC9095958 DOI: 10.3389/fphys.2022.840179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/22/2022] [Indexed: 11/30/2022] Open
Abstract
Perturbations to nutrition during critical periods are associated with changes in embryonic, fetal or postnatal developmental patterns that may render the offspring more likely to develop cardiovascular disease in later life. The aim of this study was to evaluate whether autonomic nervous system imbalance underpins in the long-term hypertension induced by dietary protein restriction during peri-pubertal period. Male Wistar rats were assigned to groups fed with a low protein (4% protein, LP) or control diet (20.5% protein; NP) during peri-puberty, from post-natal day (PN) 30 until PN60, and then all were returned to a normal protein diet until evaluation of cardiovascular and autonomic function at PN120. LP rats showed long-term increased mean arterial pressure (p = 0.002) and sympathetic arousal; increased power of the low frequency (LF) band of the arterial pressure spectral (p = 0.080) compared with NP animals. The depressor response to the ganglion blocker hexamethonium was increased in LP compared with control animals (p = 0.006). Pulse interval variability showed an increase in the LF band and LF/HF ratio (p = 0.062 and p = 0.048) in LP animals. The cardiac response to atenolol and/or methylatropine and the baroreflex sensitivity were similar between groups. LP animals showed ventricular hypertrophy (p = 0.044) and increased interstitial fibrosis (p = 0.028) compared with controls. Reduced protein carbonyls (PC) (p = 0.030) and catalase activity (p = 0.001) were observed in hearts from LP animals compared with control. In the brainstem, the levels of PC (p = 0.002) and the activity of superoxide dismutase and catalase (p = 0.044 and p = 0.012) were reduced in LP animals, while the levels of GSH and total glutathione were higher (p = 0.039 and p = 0.038) compared with NP animals. Protein restriction during peri-pubertal period leads to hypertension later in life accompanied by sustained sympathetic arousal, which may be associated with a disorganization of brain and cardiac redox state and structural cardiac alteration.
Collapse
Affiliation(s)
- Anna Rebeka Oliveira Ferreira
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Maiara Vanusa Guedes Ribeiro
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Maria Natalia Chimirri Peres
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Silvano Piovan
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Géssica Dutra Gonçalves
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Lucas Paulo Jacinto Saavedra
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Juliana Nunes de Lima Martins
- Laboratory of Liver Metabolism and Radioisotopes, Department of Biochemistry, State University of Maringa, Maringa, Brazil
| | - Marcos Divino Ferreira Junior
- Laboratory of Endocrine Physiology and Metabolism, Department of Physiological Sciences, Federal University of Goias, Goiania, Brazil
| | - Keilah Valeria Naves Cavalcante
- Laboratory of Endocrine Physiology and Metabolism, Department of Physiological Sciences, Federal University of Goias, Goiania, Brazil
| | - Gabriel kian Guimarães Lopes
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Mariane Carneiro
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Douglas Lopes Almeida
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Rodrigo Mello Gomes
- Laboratory of Endocrine Physiology and Metabolism, Department of Physiological Sciences, Federal University of Goias, Goiania, Brazil
| | - Jurandir Fernando Comar
- Laboratory of Liver Metabolism and Radioisotopes, Department of Biochemistry, State University of Maringa, Maringa, Brazil
| | | | - Paulo Cezar de Freitas Mathias
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
| | - Kesia Palma-Rigo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Brazil
- Adventist College of Parana, Ivatuba, Brazil
- *Correspondence: Kesia Palma-Rigo,
| |
Collapse
|