1
|
Romann SW, Giannitsis E, Frey N, Lehmann LH. Troponin Elevation in Asymptomatic Cancer Patients: Unveiling Connections and Clinical Implications. Curr Heart Fail Rep 2024; 21:505-514. [PMID: 39254897 PMCID: PMC11511716 DOI: 10.1007/s11897-024-00681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2024] [Indexed: 09/11/2024]
Abstract
PURPOSE OF THE REVIEW Elevated troponin levels are well established e.g., for the diagnosis of suspected acute coronary syndrome in symptomatic patients. In contrast, troponin elevations in asymptomatic cancer patients emerge as a complex phenomenon, challenging traditional perceptions of its association solely with cardiac events. RECENT FINDINGS Recent data support the predictive value of cardiac biomarker for all-cause mortality and cardiotoxicity in cancer patients. This review gives an overview about the current literature about cardiac troponins in prediction and identification of high-risk cancer patients. The overview is focusing on diagnostic challenges, biomarker significance, and gaps of knowledge. Latest publications highlight the relevance of cardiac troponin in risk analysis before cancer treatment as well as a potential diagnostic gatekeeper for further cardiological diagnostics and therapy.
Collapse
Affiliation(s)
- Sebastian W Romann
- Department of Internal Medicine III: Cardiology, Angiology & Pulmonology, Cardio-Oncology Unit, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Evangelos Giannitsis
- Department of Internal Medicine III: Cardiology, Angiology & Pulmonology, Cardio-Oncology Unit, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Norbert Frey
- Department of Internal Medicine III: Cardiology, Angiology & Pulmonology, Cardio-Oncology Unit, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Lorenz H Lehmann
- Department of Internal Medicine III: Cardiology, Angiology & Pulmonology, Cardio-Oncology Unit, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany.
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Dong T, Zhu W, Yang Z, Matos Pires NM, Lin Q, Jing W, Zhao L, Wei X, Jiang Z. Advances in heart failure monitoring: Biosensors targeting molecular markers in peripheral bio-fluids. Biosens Bioelectron 2024; 255:116090. [PMID: 38569250 DOI: 10.1016/j.bios.2024.116090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/10/2024] [Accepted: 01/28/2024] [Indexed: 04/05/2024]
Abstract
Cardiovascular diseases (CVDs), especially chronic heart failure, threaten many patients' lives worldwide. Because of its slow course and complex causes, its clinical screening, diagnosis, and prognosis are essential challenges. Clinical biomarkers and biosensor technologies can rapidly screen and diagnose. Multiple types of biomarkers are employed for screening purposes, precise diagnosis, and treatment follow-up. This article provides an up-to-date overview of the biomarkers associated with the six main heart failure etiology pathways. Plasma natriuretic peptides (BNP and NT-proBNP) and cardiac troponins (cTnT, cTnl) are still analyzed as gold-standard markers for heart failure. Other complementary biomarkers include growth differentiation factor 15 (GDF-15), circulating Galactose Lectin 3 (Gal-3), soluble interleukin (sST2), C-reactive protein (CRP), and tumor necrosis factor-alpha (TNF-α). For these biomarkers, the electrochemical biosensors have exhibited sufficient sensitivity, detection limit, and specificity. This review systematically summarizes the latest molecular biomarkers and sensors for heart failure, which will provide comprehensive and cutting-edge authoritative scientific information for biomedical and electronic-sensing researchers in the field of heart failure, as well as patients. In addition, our proposed future outlook may provide new research ideas for researchers.
Collapse
Affiliation(s)
- Tao Dong
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Mechanical Engincering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China; X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China; Department of Microsystems- IMS, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway-USN, P.O. Box 235, Kongsberg, 3603, Norway
| | - Wangang Zhu
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Mechanical Engincering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China; X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Mechanical Engincering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Nuno Miguel Matos Pires
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, School of Mechanical Engincering, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Qijing Lin
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weixuan Jing
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Libo Zhao
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xueyong Wei
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhuangde Jiang
- X Multidisciplinary Research Institute, Faculty of Instrumentation Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
3
|
Said R, Hernández-Losa J, Jenni R, de Haro RSL, Moline T, Zouari S, Blel A, Rammeh S, Derouiche A, Ouerhani S. An insight into the diagnostic, prognostic, and taxanes resistance of double zinc finger and homeodomain factor 's expression in naïve prostate cancer. 3 Biotech 2024; 14:106. [PMID: 38476644 PMCID: PMC10925581 DOI: 10.1007/s13205-024-03941-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/28/2024] [Indexed: 03/14/2024] Open
Abstract
Currently, clinical biomarkers are urgently needed to improve patient management to guide personal therapy for cancer. In this study, we investigate the deregulation of Zeb-1 in prostate cancer (PC) Tunisian patients. Expression patterns of the Zeb-1 were investigated in prostate adenocarcinoma and benign prostate biopsies using quantitative real-time reverse transcription-polymerase chain reaction (RT-qPCR) and 2-ΔΔCt method. Statistical analysis was used to identify differences across groups depending on gene expression level. Furthermore, we exploited a follow-up over 15 years to correlate Zeb-1 deregulation and clinical outcomes in PC patients. Based on ROC curve analyses, the AUC was found in discriminating PC patients from controls (AUC = 0.757; p < 0.001). In addition, the higher expression level was significantly associated with PSA, Digital Rectal Examination, Gleason score, tumor stage, and distant lymph node metastases. Moreover, Zeb-1 overexpression was correlated with shorter overall survival (OS) (p = 0.042), poor progression-free survival (PFS) (p = 0.007), and with resistance to taxanes (p = 0.012). Our data provide the aberrant expression of Zeb-1 in PC patients suggesting its potential diagnostic, prognostic, and theranostic role. Further functional studies are mandatory to strengthen these results and to uncover the molecular mechanism of this neoplasm. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03941-8.
Collapse
Affiliation(s)
- Rahma Said
- Laboratory of Protein Engineering and Bio-Active Molecules, National Institute of Applied Science and Technology - University of Carthage, Tunis, Tunisia
- Molecular Biology Laboratory, Department of Pathology, Hospital Universitari Vall d’Hebron, Passeig Vall d´Hebron, 119-129, 08035 Barcelona, Spain
| | - Javier Hernández-Losa
- Molecular Biology Laboratory, Department of Pathology, Hospital Universitari Vall d’Hebron, Passeig Vall d´Hebron, 119-129, 08035 Barcelona, Spain
| | - Rim Jenni
- Laboratory of Protein Engineering and Bio-Active Molecules, National Institute of Applied Science and Technology - University of Carthage, Tunis, Tunisia
| | - Rosa Somoza Lopez de Haro
- Molecular Biology Laboratory, Department of Pathology, Hospital Universitari Vall d’Hebron, Passeig Vall d´Hebron, 119-129, 08035 Barcelona, Spain
| | - Teresa Moline
- Molecular Biology Laboratory, Department of Pathology, Hospital Universitari Vall d’Hebron, Passeig Vall d´Hebron, 119-129, 08035 Barcelona, Spain
| | - Skander Zouari
- Urology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Ahlem Blel
- Pathology Anatomy and Cytology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Soumaya Rammeh
- Pathology Anatomy and Cytology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Amine Derouiche
- Urology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Slah Ouerhani
- Laboratory of Protein Engineering and Bio-Active Molecules, National Institute of Applied Science and Technology - University of Carthage, Tunis, Tunisia
| |
Collapse
|
4
|
Sulumer AN, Palabıyık E, Avcı B, Uguz H, Demir Y, Serhat Özaslan M, Aşkın H. Protective effect of bromelain on some metabolic enzyme activities in tyloxapol-induced hyperlipidemic rats. Biotechnol Appl Biochem 2024; 71:17-27. [PMID: 37749825 DOI: 10.1002/bab.2517] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
Elevation of one or more plasma lipids, such as phospholipids, cholesterol esters, cholesterol, and triglycerides, is known as hyperlipidemia. In humans and experimental animals, bromelain, the primary active ingredient isolated from pineapple stems, has several positive effects, including anti-tumor growth, anticoagulation, and anti-inflammation. Hence, the purpose of this study was to determine the possible protective impact of bromelain on some metabolic enzymes (paraoxonase-1, glutathione S-transferase, glutathione reductase, sorbitol dehydrogenase [SDH], aldose reductase [AR], butyrylcholinesterase [BChE], and acetylcholinesterase [AChE]), activity in the heart, kidney, and liver of rats with tyloxapol-induced hyperlipidemia. Rats were divided into three groups: control group, HL-control group (tyloxapol 400 mg/kg, i.p. administered group), and HL+bromelain (group receiving bromelain 250 mg/kg/o.d. prior to administration of tyloxapol 400 mg/kg, i.p.). BChE, SDH, and AR enzyme activities were significantly increased in all tissues in HL-control compared to the control, whereas the activity of other studied enzymes was significantly decreased. Bromelain had a regulatory effect on all tissues and enzyme activities. In conclusion, these results prove that bromelain is a new mediator that decreases hyperlipidemia.
Collapse
Affiliation(s)
- Ayşe Nurseli Sulumer
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Esra Palabıyık
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Bahri Avcı
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Handan Uguz
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Muhammet Serhat Özaslan
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Hakan Aşkın
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
5
|
Mitchell JD, Laurie M, Xia Q, Dreyfus B, Jain N, Jain A, Lane D, Lenihan DJ. Risk profiles and incidence of cardiovascular events across different cancer types. ESMO Open 2023; 8:101830. [PMID: 37979325 PMCID: PMC10774883 DOI: 10.1016/j.esmoop.2023.101830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/04/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Cancer survivors are at increased risk for cardiovascular (CV) disease, although additional data are needed to better understand the incidence of CV events across different malignancies. This study sought to characterize the incidence of major adverse CV events [myocardial infarction, stroke, unstable angina (MACE), or heart failure (HF)] across multiple cancer types after cancer diagnosis. PATIENTS AND METHODS Patients were identified from a USA-based administrative claims database who had index cancer diagnoses of breast, lung, prostate, melanoma, myeloma, kidney, colorectal, leukemia, or lymphoma between 2011 and 2019, with continuous enrollment for ≥12 months before diagnosis. Baseline CV risk factors and incidence rates of CV events post-index were identified for each cancer. Multivariable Cox hazards models assessed the cumulative incidence of MACE, accounting for baseline risk factors. RESULTS Among 839 934 patients across nine cancer types, CV risk factors were prevalent. The cumulative incidence of MACE was highest in lung cancer and myeloma, and lowest in breast cancer, prostate cancer, and melanoma. MACE cumulative incidence for lung cancer was 26% by 4 years (2.7-fold higher relative to breast cancer). The incidence of stroke was especially pronounced in lung cancer, while HF was highest in myeloma and lung cancer. CONCLUSIONS CV events were especially increased following certain cancer diagnoses, even after accounting for baseline risk factors. Understanding the variable patient characteristics and associated CV events across different cancers can help target appropriate CV risk factor modification and develop strategies to minimize adverse CV events and improve patient outcomes.
Collapse
Affiliation(s)
- J D Mitchell
- Cardio-Oncology Center of Excellence, Washington University in St. Louis, St. Louis, USA; International Cardio-Oncology Society, Tampa, USA.
| | - M Laurie
- Bristol Myers Squibb, Lawrenceville, USA
| | - Q Xia
- Bristol Myers Squibb, Lawrenceville, USA
| | - B Dreyfus
- Bristol Myers Squibb, Lawrenceville, USA
| | - N Jain
- Mu Sigma, Northbrook, USA
| | - A Jain
- Mu Sigma, Northbrook, USA
| | - D Lane
- Bristol Myers Squibb, Lawrenceville, USA
| | - D J Lenihan
- International Cardio-Oncology Society, Tampa, USA; Cape Cardiology Group, Saint Francis Healthcare, Cape Girardeau, USA
| |
Collapse
|
6
|
Morón-Ros S, Blasco-Roset A, Navarro-Gascon A, Rupérez C, Zamora M, Crispi F, Uriarte I, Fernández-Barrena MG, Avila M, Ferrer-Curriu G, Lupón J, Bayés-Genis A, Villarroya F, Gavaldà-Navarro A, Planavila A. A new FGF15/19-mediated gut-to-heart axis controls cardiac hypertrophy. J Pathol 2023; 261:335-348. [PMID: 37650293 DOI: 10.1002/path.6193] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/26/2023] [Accepted: 07/21/2023] [Indexed: 09/01/2023]
Abstract
FGF15 and its human orthologue, FGF19, are members of the endocrine FGF family and are secreted by ileal enterocytes in response to bile acids. FGF15/19 mainly targets the liver, but recent studies indicate that it also regulates skeletal muscle mass and adipose tissue plasticity. The aim of this study was to determine the role(s) of the enterokine FGF15/19 during the development of cardiac hypertrophy. Studies in a cohort of humans suffering from heart failure showed increased circulating levels of FGF19 compared with control individuals. We found that mice lacking FGF15 did not develop cardiac hypertrophy in response to three different pathophysiological stimuli (high-fat diet, isoproterenol, or cold exposure). The heart weight/tibia length ratio and the cardiomyocyte area (as measures of cardiac hypertrophy development) under hypertrophy-inducing conditions were lower in Fgf15-null mice than in wild-type mice, whereas the levels of the cardiac damage marker atrial natriuretic factor (Nppa) were up-regulated. Echocardiographic measurements showed similar results. Moreover, the genes involved in fatty acid metabolism were down-regulated in Fgf15-null mice. Conversely, experimental increases in FGF15 induced cardiac hypertrophy in vivo, without changes in Nppa and up-regulation of metabolic genes. Finally, in vitro studies using cardiomyocytes showed that FGF19 had a direct effect on these cells promoting hypertrophy. We have identified herein an inter-organ signaling pathway that runs from the gut to the heart, acts through the enterokine FGF15/19, and is involved in cardiac hypertrophy development and regulation of fatty acid metabolism in the myocardium. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Samantha Morón-Ros
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Albert Blasco-Roset
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Artur Navarro-Gascon
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Celia Rupérez
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Monica Zamora
- Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clinic and Hospital San Juan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatalogia, Institut d'Investigacions Biomediques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Fatima Crispi
- Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clinic and Hospital San Juan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatalogia, Institut d'Investigacions Biomediques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Iker Uriarte
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
| | - Maite G Fernández-Barrena
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Matias Avila
- Hepatology Program, CIMA, Universidad de Navarra, Pamplona, Spain
- CIBERehd, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Gemma Ferrer-Curriu
- Heart Institute, Germans Trias i Pujol University Hospital, CIBERCV, Badalona, Spain
| | - Josep Lupón
- Heart Institute, Germans Trias i Pujol University Hospital, CIBERCV, Badalona, Spain
| | - Antoni Bayés-Genis
- Heart Institute, Germans Trias i Pujol University Hospital, CIBERCV, Badalona, Spain
| | - Francesc Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Aleix Gavaldà-Navarro
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Anna Planavila
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| |
Collapse
|
7
|
Flore F, Scacciavillani R, Iannaccone G, Narducci ML, Pinnacchio G, Bencardino G, Perna F, Spera FR, Comerci G, Camilli M, Lombardo A, Lanza GA, Crea F, Pelargonio G. Mechanisms, prevalence and management of cardiac arrhythmias in cancer patients: a comprehensive review. Future Cardiol 2023; 19:707-718. [PMID: 37929680 DOI: 10.2217/fca-2023-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
Recently, prognosis and survival of cancer patients has improved due to progression and refinement of cancer therapies; however, cardiovascular sequelae in this population augmented and now represent the second cause of death in oncological patients. Initially, the main issue was represented by heart failure and coronary artery disease, but a growing body of evidence has now shed light on the increased arrhythmic risk of this population, atrial fibrillation being the most frequently encountered. Awareness of arrhythmic complications of cancer and its treatments may help oncologists and cardiologists to develop targeted approaches for the management of arrhythmias in this population. In this review, we provide an updated overview of the mechanisms triggering cardiac arrhythmias in cancer patients, their prevalence and management.
Collapse
Affiliation(s)
- Francesco Flore
- Department of Cardiovascular & Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Roberto Scacciavillani
- Department of Cardiovascular & Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Giulia Iannaccone
- Department of Cardiovascular & Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Lucia Narducci
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Gaetano Pinnacchio
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Gianluigi Bencardino
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Perna
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | | | - Gianluca Comerci
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Massimiliano Camilli
- Department of Cardiovascular & Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Antonella Lombardo
- Department of Cardiovascular & Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Gaetano Antonio Lanza
- Department of Cardiovascular & Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Filippo Crea
- Department of Cardiovascular & Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Gemma Pelargonio
- Department of Cardiovascular & Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
8
|
Tichy L, Parry TL. The pathophysiology of cancer-mediated cardiac cachexia and novel treatment strategies: A narrative review. Cancer Med 2023; 12:17706-17717. [PMID: 37654192 PMCID: PMC10524052 DOI: 10.1002/cam4.6388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/15/2023] [Accepted: 07/19/2023] [Indexed: 09/02/2023] Open
Abstract
SIGNIFICANCE Two of the leading causes of death worldwide are cancer and cardiovascular diseases. Most cancer patients suffer from a metabolic wasting syndrome known as cancer-induced cardiac cachexia, resulting in death in up to 30% of cancer patients. Main symptoms of this disease are severe cardiac muscle wasting, cardiac remodeling, and cardiac dysfunction. Metabolic alterations, increased inflammation, and imbalance of protein homeostasis contribute to the progression of this multifactorial syndrome, ultimately resulting in heart failure and death. Cancer-induced cardiac cachexia is associated with decreased quality of life, increased fatiguability, and decreased tolerance to therapeutic interventions. RECENT ADVANCES While molecular mechanisms of this disease are not fully understood, researchers have identified different stages of progression of this disease, as well as potential biomarkers to detect and monitor the development. Preclinical and clinical studies have shown positive results when implementing certain pharmacological and non-pharmacological therapy interventions. CRITICAL ISSUES There are still no clear diagnostic criteria for cancer-mediated cardiac cachexia and the condition remains untreated, leaving cancer patients with irreversible effects of this syndrome. While traditional cardiovascular therapy interventions, such as beta-blockers, have shown some positive results in preclinical and clinical research studies, recent preclinical studies have shown more successful results with certain non-traditional treatment options that have not been further evaluated yet. There is still no clinical standard of care or approved FDA drug to aid in the prevention or treatment of cancer-induced cardiac cachexia. This review aims to revisit the still not fully understood pathophysiological mechanisms of cancer-induced cardiac cachexia and explore recent studies using novel treatment strategies. FUTURE DIRECTIONS While research has progressed, further investigations might provide novel diagnostic techniques, potential biomarkers to monitor the progression of the disease, as well as viable pharmacological and non-pharmacological treatment options to increase quality of life and reduce cancer-induced cardiac cachexia-related mortality.
Collapse
Affiliation(s)
- Louisa Tichy
- Department of KinesiologyUniversity of North Carolina GreensboroGreensboroNorth CarolinaUSA
| | - Traci L. Parry
- Department of KinesiologyUniversity of North Carolina GreensboroGreensboroNorth CarolinaUSA
| |
Collapse
|
9
|
Zhao Y, Jia H, Hua X, An T, Song J. Cardio-oncology: Shared Genetic, Metabolic, and Pharmacologic Mechanism. Curr Cardiol Rep 2023; 25:863-878. [PMID: 37493874 PMCID: PMC10403418 DOI: 10.1007/s11886-023-01906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2023] [Indexed: 07/27/2023]
Abstract
PURPOSE OF REVIEW The article aims to investigate the complex relationship between cancer and cardiovascular disease (CVD), with a focus on the effects of cancer treatment on cardiac health. RECENT FINDINGS Advances in cancer treatment have improved long-term survival rates, but CVD has emerged as a leading cause of morbidity and mortality in cancer patients. The interplay between cancer itself, treatment methods, homeostatic changes, and lifestyle modifications contributes to this comorbidity. Recent research in the field of cardio-oncology has revealed common genetic mutations, risk factors, and metabolic features associated with the co-occurrence of cancer and CVD. This article provides a comprehensive review of the latest research in cardio-oncology, including common genetic mutations, risk factors, and metabolic features, and explores the interactions between cancer treatment and CVD drugs, proposing novel approaches for the management of cancer and CVD.
Collapse
Affiliation(s)
- Yiqi Zhao
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| | - Tao An
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| |
Collapse
|
10
|
Finke D, Heckmann MB, Wilhelm S, Entenmann L, Hund H, Bougatf N, Katus HA, Frey N, Lehmann LH. Coronary artery disease, left ventricular function and cardiac biomarkers determine all-cause mortality in cancer patients-a large monocenter cohort study. Clin Res Cardiol 2023; 112:203-214. [PMID: 35312818 PMCID: PMC9898338 DOI: 10.1007/s00392-022-02001-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/01/2022] [Indexed: 02/06/2023]
Abstract
Cancer patients are at risk of suffering from cardiovascular diseases (CVD). Nevertheless, the impact of cardiovascular comorbidity on all-cause mortality (ACM) in large clinical cohorts is not well investigated. In this retrospective cohort study, we collected data from 40,329 patients who were subjected to cardiac catherization from 01/2006 to 12/2017 at University Hospital Heidelberg. The study population included 3666 patients with a diagnosis of cancer prior to catherization and 3666 propensity-score matched non-cancer patients according to age, gender, diabetes and hypertension. 5-year ACM in cancer patients was higher with a reduced left ventricular function (LVEF < 50%; 68.0% vs 50.9%) or cardiac biomarker elevation (high-sensitivity cardiac troponin T (hs-cTnT; 64.6% vs 44.6%) and N-terminal brain natriuretic peptide (NT-proBNP; 62.9% vs 41.4%) compared to cancer patients without cardiac risk. Compared to non-cancer patients, NT-proBNP was found to be significantly higher (median NT-proBNP cancer: 881 ng/L, IQR [254; 3983 ng/L] vs non-cancer: 668 ng/L, IQR [179; 2704 ng/L]; p < 0.001, Wilcoxon-rank sum test) and turned out to predict ACM more accurately than hs-cTnT (NT-proBNP: AUC: 0.74; hs-cTnT: AUC: 0.63; p < 0.001, DeLong's test) in cancer patients. Risk factors for atherosclerosis, such as diabetes and age (> 65 years) were significant predictors for increased ACM in cancer patients in a multivariate analysis (OR diabetes: 1.96 (1.39-2.75); p < 0.001; OR age > 65 years: 2.95 (1.68-5.4); p < 0.001, logistic regression). Our data support the notion, that overall outcome in cancer patients who underwent cardiac catherization depends on cardiovascular comorbidities. Therefore, particularly cancer patients may benefit from standardized cardiac care.
Collapse
Affiliation(s)
- Daniel Finke
- Department of Cardiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany ,German Centre for Cardiovascular Research (DZHK) Partner Site, Heidelberg/Mannheim, Germany
| | - Markus B. Heckmann
- Department of Cardiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany ,German Centre for Cardiovascular Research (DZHK) Partner Site, Heidelberg/Mannheim, Germany
| | - Susanna Wilhelm
- Department of Cardiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Lukas Entenmann
- Department of Cardiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Hauke Hund
- Department of Cardiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Nina Bougatf
- Nationales Tumorzentrum Heidelberg (NCT), Heidelberg, Germany
| | - Hugo A. Katus
- Department of Cardiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany ,German Centre for Cardiovascular Research (DZHK) Partner Site, Heidelberg/Mannheim, Germany
| | - Norbert Frey
- Department of Cardiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany ,German Centre for Cardiovascular Research (DZHK) Partner Site, Heidelberg/Mannheim, Germany
| | - Lorenz H. Lehmann
- Department of Cardiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany ,German Centre for Cardiovascular Research (DZHK) Partner Site, Heidelberg/Mannheim, Germany ,Deutsches Krebsforschungszentrum Heidelberg (DKFZ), Heidelberg, Germany
| |
Collapse
|
11
|
Wang Y, An Z, Lin D, Jin W. Targeting cancer cachexia: Molecular mechanisms and clinical study. MedComm (Beijing) 2022; 3:e164. [PMID: 36105371 PMCID: PMC9464063 DOI: 10.1002/mco2.164] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/12/2022] Open
Abstract
Cancer cachexia is a complex systemic catabolism syndrome characterized by muscle wasting. It affects multiple distant organs and their crosstalk with cancer constitute cancer cachexia environment. During the occurrence and progression of cancer cachexia, interactions of aberrant organs with cancer cells or other organs in a cancer cachexia environment initiate a cascade of stress reactions and destroy multiple organs including the liver, heart, pancreas, intestine, brain, bone, and spleen in metabolism, neural, and immune homeostasis. The role of involved organs turned from inhibiting tumor growth into promoting cancer cachexia in cancer progression. In this review, we depicted the complicated relationship of cancer cachexia with the metabolism, neural, and immune homeostasis imbalance in multiple organs in a cancer cachexia environment and summarized the treatment progress in recent years. And we discussed the molecular mechanism and clinical study of cancer cachexia from the perspective of multiple organs metabolic, neurological, and immunological abnormalities. Updated understanding of cancer cachexia might facilitate the exploration of biomarkers and novel therapeutic targets of cancer cachexia.
Collapse
Affiliation(s)
- Yong‐Fei Wang
- The First Clinical Medical College of Lanzhou UniversityLanzhouChina
- Institute of Cancer NeuroscienceMedical Frontier Innovation Research CenterThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Zi‐Yi An
- The First Clinical Medical College of Lanzhou UniversityLanzhouChina
- Institute of Cancer NeuroscienceMedical Frontier Innovation Research CenterThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Dong‐Hai Lin
- Key Laboratory for Chemical Biology of Fujian ProvinceMOE Key Laboratory of Spectrochemical Analysis and InstrumentationCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina
| | - Wei‐Lin Jin
- The First Clinical Medical College of Lanzhou UniversityLanzhouChina
- Institute of Cancer NeuroscienceMedical Frontier Innovation Research CenterThe First Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
12
|
Van Linthout S, Volk HD. Immuno-cardio-oncology: Killing two birds with one stone? Front Immunol 2022; 13:1018772. [PMID: 36466820 PMCID: PMC9714344 DOI: 10.3389/fimmu.2022.1018772] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/26/2022] [Indexed: 07/28/2023] Open
Abstract
Inflammation and a dysregulated immune system are common denominators of cancer and cardiovascular disease (CVD). Immuno-cardio-oncology addresses the interconnected immunological aspect in both cancer and CVD and the integration of immunotherapies and anti-inflammatory therapies in both distinct disease entities. Building on prominent examples of convergent inflammation (IL-1ß biology) and immune disbalance (CD20 cells) in cancer and CVD/heart failure, the review tackles both the roadblocks and opportunities of repurposed use of IL-1ß drugs and anti-CD20 antibodies in both fields, and discusses the use of advanced therapies e.g. chimeric antigen receptor (CAR) T cells, that can address the raising burden of both cancer and CVD. Finally, it is discussed how inspired by precision medicine in oncology, the use of biomarker-driven patient stratification is needed to better guide anti-inflammatory/immunomodulatory therapeutic interventions in cardiology.
Collapse
Affiliation(s)
- Sophie Van Linthout
- Berlin Institute of Health (BIH) at Charité-University Medicine Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health (BIH) at Charité-University Medicine Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Institute of Medical Immunology, Charité-University Medicine Berlin, Berlin, Germany
| |
Collapse
|
13
|
Boyang C, Yuexing L, Yiping Y, Haiyang Y, Xufei Z, Liancheng G, Yunzhi C. Construction and analysis of heart failure diagnosis model based on random forest and artificial neural network. Medicine (Baltimore) 2022; 101:e31097. [PMID: 36254001 PMCID: PMC9575800 DOI: 10.1097/md.0000000000031097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Heart failure is a global health problem and the number of sufferers is increasing as the population grows and ages. Existing diagnostic techniques for heart failure have various limitations in the clinical setting and there is a need to develop a new diagnostic model to complement the existing diagnostic methods. In recent years, with the development and improvement of gene sequencing technology, more genes associated with heart failure have been identified. We screened for differentially expressed genes in heart failure using available gene expression data from the Gene Expression Omnibus database and identified 6 important genes by a random forest classifier (ASPN, MXRA5, LUM, GLUL, CNN1, and SERPINA3). And we have successfully constructed a new heart failure diagnostic model using an artificial neural network and validated its diagnostic efficacy in a public dataset. We calculated heart failure-related differentially expressed genes and obtained 24 candidate genes by random forest classification, and selected the top 6 genes as important genes for subsequent analysis. The prediction weights of the genes of interest were determined by the neural network model and the model scores were evaluated in 2 independent sample datasets (GSE16499 and GSE57338 datasets). Since the weights of RNA-seq predictions for constructing neural network models were theoretically more suitable for disease classification of RNA-seq data, the GSE57338 dataset had the best performance in the validation results. The diagnostic model derived from our study can be of clinical value in determining the likelihood of HF occurring through cardiac biopsy. In the meantime, we need to further investigate the accuracy of the diagnostic model based on the results of our study.
Collapse
Affiliation(s)
- Chen Boyang
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Li Yuexing
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yan Yiping
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yu Haiyang
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Zhang Xufei
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Guan Liancheng
- Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Chen Yunzhi
- School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- * Correspondence: Chen Yunzhi, School of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China (e-mail: )
| |
Collapse
|
14
|
CCN1/Integrin α 5β 1 Instigates Free Fatty Acid-Induced Hepatocyte Lipid Accumulation and Pyroptosis through NLRP3 Inflammasome Activation. Nutrients 2022; 14:nu14183871. [PMID: 36145246 PMCID: PMC9505842 DOI: 10.3390/nu14183871] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 12/20/2022] Open
Abstract
Hyperlipidemia with high blood levels of free fatty acids (FFA) is the leading cause of non-alcoholic steatohepatitis. CCN1 is a secreted matricellular protein that drives various cellular functions, including proliferation, migration, and differentiation. However, its role in mediating FFA-induced pro-inflammatory cell death and its underlying molecular mechanisms have not been characterized. In this study, we demonstrated that CCN1 was upregulated in the livers of obese mice. The increase in FFA-induced CCN1 was evaluated in vitro by treating hepatocytes with a combination of oleic acid and palmitic acid (2:1). Gene silencing using specific small interfering RNAs (siRNA) revealed that CCN1 participated in FFA-induced intracellular lipid accumulation, caspase-1 activation, and hepatocyte pyroptosis. Next, we identified integrin α5β1 as a potential receptor of CCN1. Co-immunoprecipitation demonstrated that the binding between CCN1 and integrin α5β1 increased in hepatocytes upon FFA stimulation in the livers of obese mice. Similarly, the protein levels of integrin α5 and β1 were increased in vitro and in vivo. Experiments with specific siRNAs confirmed that integrin α5β1 played a part in FFA-induced intracellular lipid accumulation, NLRP3 inflammasome activation, and pyroptosis in hepatocytes. In conclusion, these results provide novel evidence that the CCN1/integrin α5β1 is a novel mediator that drives hepatic lipotoxicity via NLRP3-dependent pyroptosis.
Collapse
|
15
|
Nutritional Sensor REDD1 in Cancer and Inflammation: Friend or Foe? Int J Mol Sci 2022; 23:ijms23179686. [PMID: 36077083 PMCID: PMC9456073 DOI: 10.3390/ijms23179686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
Regulated in Development and DNA Damage Response 1 (REDD1)/DNA Damage-Induced Transcript 4 (DDIT4) is an immediate early response gene activated by different stress conditions, including growth factor depletion, hypoxia, DNA damage, and stress hormones, i.e., glucocorticoids. The most known functions of REDD1 are the inhibition of proliferative signaling and the regulation of metabolism via the repression of the central regulator of these processes, the mammalian target of rapamycin (mTOR). The involvement of REDD1 in cell growth, apoptosis, metabolism, and oxidative stress implies its role in various pathological conditions, including cancer and inflammatory diseases. Recently, REDD1 was identified as one of the central genes mechanistically involved in undesirable atrophic effects induced by chronic topical and systemic glucocorticoids widely used for the treatment of blood cancer and inflammatory diseases. In this review, we discuss the role of REDD1 in the regulation of cell signaling and processes in normal and cancer cells, its involvement in the pathogenesis of different diseases, and the approach to safer glucocorticoid receptor (GR)-targeted therapies via a combination of glucocorticoids and REDD1 inhibitors to decrease the adverse atrophogenic effects of these steroids.
Collapse
|
16
|
Matz I, Pappritz K, Springer J, Van Linthout S. Left ventricle- and skeletal muscle-derived fibroblasts exhibit a differential inflammatory and metabolic responsiveness to interleukin-6. Front Immunol 2022; 13:947267. [PMID: 35967380 PMCID: PMC9366145 DOI: 10.3389/fimmu.2022.947267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Interleukin-6 (IL-6) is an important player in chronic inflammation associated with heart failure and tumor-induced cachexia. Fibroblasts are salient mediators of both inflammation and fibrosis. Whereas the general outcome of IL-6 on the heart’s function and muscle wasting has been intensively studied, the influence of IL-6 on fibroblasts of the heart and skeletal muscle (SM) has not been analyzed so far. We illustrate that SM-derived fibroblasts exhibit higher basal mRNA expression of α-SMA, extracellular matrix molecules (collagen1a1/3a1/5a1), and chemokines (CCL2, CCL7, and CX3CL1) as compared to the left ventricle (LV)-derived fibroblasts. IL-6 drives the transdifferentiation of fibroblasts into myofibroblasts as indicated by an increase in α-SMA expression and upregulates NLRP3 inflammasome activity in both LV- and SM-derived fibroblasts. IL-6 increases the release of CCL7 to CX3CL1 in the supernatant of SM-derived fibroblasts associated with the attraction of more pro(Ly6Chi) versus anti(Ly6Clo) inflammatory monocytes as compared to unstimulated fibroblasts. IL-6-stimulated LV-derived fibroblasts attract less Ly6Chi to Ly6Clo monocytes compared to IL-6-stimulated SM-derived fibroblasts. In addition, SM-derived fibroblasts have a higher mitochondrial energy turnover and lower glycolytic activity versus LV-derived fibroblasts under basal and IL-6 conditions. In conclusion, IL-6 modulates the inflammatory and metabolic phenotype of LV- and SM-originated fibroblasts.
Collapse
Affiliation(s)
- Isabell Matz
- Berlin Institute of Health at Charité - Universitätmedizin Berlin, Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Kathleen Pappritz
- Berlin Institute of Health at Charité - Universitätmedizin Berlin, Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Jochen Springer
- Berlin Institute of Health at Charité - Universitätmedizin Berlin, Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Sophie Van Linthout
- Berlin Institute of Health at Charité - Universitätmedizin Berlin, Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- *Correspondence: Sophie Van Linthout,
| |
Collapse
|
17
|
Turk A, Kunej T. Shared Genetic Risk Factors Between Cancer and Cardiovascular Diseases. Front Cardiovasc Med 2022; 9:931917. [PMID: 35872888 PMCID: PMC9300967 DOI: 10.3389/fcvm.2022.931917] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022] Open
Abstract
Cancer and cardiovascular diseases (CVD) account for approximately 27.5 million deaths every year. While they share some common environmental risk factors, their shared genetic risk factors are not yet fully understood. The aim of the present study was to aggregate genetic risk factors associated with the comorbidity of cancer and CVDs. For this purpose, we: (1) created a catalog of genes associated with cancer and CVDs, (2) visualized retrieved data as a gene-disease network, and (3) performed a pathway enrichment analysis. We performed screening of PubMed database for literature reporting genetic risk factors in patients with both cancer and CVD. The gene-disease network was visualized using Cytoscape and the enrichment analysis was conducted using Enrichr software. We manually reviewed the 181 articles fitting the search criteria and included 13 articles in the study. Data visualization revealed a highly interconnected network containing a single subnetwork with 56 nodes and 146 edges. Genes in the network with the highest number of disease interactions were JAK2, TTN, TET2, and ATM. The pathway enrichment analysis revealed that genes included in the study were significantly enriched in DNA damage repair (DDR) pathways, such as homologous recombination. The role of DDR mechanisms in the development of CVDs has been studied in previously published research; however, additional functional studies are required to elucidate their contribution to the pathophysiology to CVDs.
Collapse
|
18
|
Mamtimin M, Pinarci A, Han C, Braun A, Anders HJ, Gudermann T, Mammadova-Bach E. Extracellular DNA Traps: Origin, Function and Implications for Anti-Cancer Therapies. Front Oncol 2022; 12:869706. [PMID: 35574410 PMCID: PMC9092261 DOI: 10.3389/fonc.2022.869706] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
Extracellular DNA may serve as marker in liquid biopsies to determine individual diagnosis and prognosis in cancer patients. Cell death or active release from various cell types, including immune cells can result in the release of DNA into the extracellular milieu. Neutrophils are important components of the innate immune system, controlling pathogens through phagocytosis and/or the release of neutrophil extracellular traps (NETs). NETs also promote tumor progression and metastasis, by modulating angiogenesis, anti-tumor immunity, blood clotting and inflammation and providing a supportive niche for metastasizing cancer cells. Besides neutrophils, other immune cells such as eosinophils, dendritic cells, monocytes/macrophages, mast cells, basophils and lymphocytes can also form extracellular traps (ETs) during cancer progression, indicating possible multiple origins of extracellular DNA in cancer. In this review, we summarize the pathomechanisms of ET formation generated by different cell types, and analyze these processes in the context of cancer. We also critically discuss potential ET-inhibiting agents, which may open new therapeutic strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Medina Mamtimin
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Akif Pinarci
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Chao Han
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Hans-Joachim Anders
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research, Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
19
|
Cardiac Complications: The Understudied Aspect of Cancer Cachexia. Cardiovasc Toxicol 2022; 22:254-267. [PMID: 35171467 DOI: 10.1007/s12012-022-09727-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/03/2022] [Indexed: 12/17/2022]
Abstract
The global burden of cancer cachexia is increasing along with drastic increase in cancer patients. Cancer itself leads to cachexia, and cachexia development is associated with events like altered hemodynamics, and reduced functional capacity of the heart among others which lead to failure of the heart and are called cardiovascular complications associated with cancer cachexia. In some patients, the anti-cancer therapy also leads to this cardiovascular complications. So, in this review, an attempt is made to understand the mechanisms, pathophysiology of cardiovascular events in cachectic patients. Important processes which cause cardiovascular complications include alterations in the structure of the heart, loss of cardiac mass and functioning, cardiac fibrosis and cardiac remodeling, apoptosis, cardiac muscle atrophy, and mitochondrial alterations. Previously, the available treatment options were limited to nutraceuticals and physical exercise. Recently, studies with some prospective agents that can improve cardiac health have been reported, but whether their action is effective in cardiovascular complications associated with cancer cachexia is not known or are under trial.
Collapse
|