1
|
Hameed S, Karim N, Wasay M, Venketasubramanian N. Emerging Stroke Risk Factors: A Focus on Infectious and Environmental Determinants. J Cardiovasc Dev Dis 2024; 11:19. [PMID: 38248889 PMCID: PMC10816862 DOI: 10.3390/jcdd11010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
This review focuses on emerging risk factors for stroke, including air pollution and climate change, gut microbiota, high altitude, and systemic infection. Up to 14% of all stroke-associated mortality is attributed to air pollution and is more pronounced in developing countries. Fine particulate matter and other air pollutants contribute to an increased stroke risk, and this risk appears to increase with higher levels and duration of exposure. Short term air pollution exposure has also been reported to increase the stroke risk. The gut microbiota is a complex ecosystem of bacteria and other microorganisms that reside in the digestive system and affect multiple body systems. Disruptions in the gut microbiota may contribute to stroke development, possibly by promoting inflammation and atherosclerosis. High altitudes have been associated with erythrocytosis and cerebrovascular sinus thrombosis, but several studies have reported an increased risk of thrombosis and ischemic stroke at high altitudes, typically above 3000 m. Systemic infection, particularly infections caused by viruses and bacteria, can also increase the risk of stroke. The risk seems to be greatest in the days to weeks following the infection, and the pathophysiology is complex. All these emerging risk factors are modifiable, and interventions to address them could potentially reduce stroke incidence.
Collapse
Affiliation(s)
- Sajid Hameed
- Department of Neurology, University of Virginia, Charlottesville, VA 22903, USA;
| | - Nurose Karim
- Department of Neurology, East Carolina University, Greenville, NC 27834, USA;
| | - Mohammad Wasay
- Department of Neurology, Aga Khan University, Karachi 74800, Pakistan;
| | | |
Collapse
|
2
|
Raberin A, Burtscher J, Burtscher M, Millet GP. Hypoxia and the Aging Cardiovascular System. Aging Dis 2023; 14:2051-2070. [PMID: 37199587 PMCID: PMC10676797 DOI: 10.14336/ad.2023.0424] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Older individuals represent a growing population, in industrialized countries, particularly those with cardiovascular diseases, which remain the leading cause of death in western societies. Aging constitutes one of the largest risks for cardiovascular diseases. On the other hand, oxygen consumption is the foundation of cardiorespiratory fitness, which in turn is linearly related to mortality, quality of life and numerous morbidities. Therefore, hypoxia is a stressor that induces beneficial or harmful adaptations, depending on the dose. While severe hypoxia can exert detrimental effects, such as high-altitude illnesses, moderate and controlled oxygen exposure can potentially be used therapeutically. It can improve numerous pathological conditions, including vascular abnormalities, and potentially slows down the progression of various age-related disorders. Hypoxia can exert beneficial effects on inflammation, oxidative stress, mitochondrial functions, and cell survival, which are all increased with age and have been discussed as main promotors of aging. This narrative review discusses specificities of the aging cardiovascular system in hypoxia. It draws upon an extensive literature search on the effects of hypoxia/altitude interventions (acute, prolonged, or intermittent exposure) on the cardiovascular system in older individuals (over 50 years old). Special attention is directed toward the use of hypoxia exposure to improve cardiovascular health in older individuals.
Collapse
Affiliation(s)
- Antoine Raberin
- Institute of Sport Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, A-6020, Austria.
| | - Grégoire P. Millet
- Institute of Sport Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
3
|
Zheng B, Luo Y, Li Y, Gu G, Jiang J, Chen C, Chen Z, Wang J. Prevalence and risk factors of stroke in high-altitude areas: a systematic review and meta-analysis. BMJ Open 2023; 13:e071433. [PMID: 37734891 PMCID: PMC10514645 DOI: 10.1136/bmjopen-2022-071433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVE The primary objective of this study is to investigate the prevalence and risk factors of stroke in high-altitude areas through a comprehensive systematic review and meta-analysis. DESIGN This study adopts a systematic review and meta-analysis design. DATA SOURCES A thorough search was conducted on databases including PubMed, Web of Science, Embase, Cochrane Library, MEDLINE and SCOPUS, covering the period up to June 2023. ELIGIBILITY CRITERIA Studies reporting the prevalence of stroke in high-altitude areas and exploring related risk factors were included, regardless of whether they involved clinical samples or the general population. Studies with incomplete, outdated or duplicate data were excluded. DATA EXTRACTION AND SYNTHESIS We performed eligibility screening, data extraction and quality evaluation of the retrieved articles. Meta-analysis was employed to estimate the prevalence and risk factors of stroke in high-altitude areas. The Newcastle-Ottawa Scale was used to assess the risk of bias. RESULTS A total of 17 studies encompassing 8 566 042 participants from four continents were included, with altitudes ranging from 1500 m to nearly 5000 m. The pooled prevalence of stroke in high-altitude areas was found to be 0.5% (95% CI 0.3%-7%). Notably, the prevalence was higher in clinical samples (1.2%; 0.4%-2.5%) compared with the general population (0.3%; 95% CI 0.1%-0.6%). When considering geographic regions, the aggregated data indicated that stroke prevalence in the Eurasia plate was 0.3% (0.2%-0.4%), while in the American region, it was 0.8% (0.4%-1.3%). Age (OR, 14.891), gender (OR, 1.289), hypertension (OR, 3.158) and obesity (OR, 1.502) were identified as significant risk factors for stroke in high-altitude areas. CONCLUSIONS The findings of this study provide insights into the pooled prevalence of stroke in high-altitude areas, highlighting variations based on geographic regions and sampling type. Moreover, age, gender, hypertension and obesity were found to be associated with the occurrence of stroke. PROSPERO REGISTRATION NUMBER CRD42022381541.
Collapse
Affiliation(s)
- Bo Zheng
- Department of Neurology, Ya'an Peoples Hospital, Ya'an, People's Republic of China
| | - Yuding Luo
- Department of Neurology, Ya'an Peoples Hospital, Ya'an, People's Republic of China
- Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Yan Li
- Department of Neurology, Ya'an Peoples Hospital, Ya'an, People's Republic of China
| | - Gangfeng Gu
- Department of Neurology, Ya'an Peoples Hospital, Ya'an, People's Republic of China
| | - Junyao Jiang
- Department of Neurology, Ya'an Peoples Hospital, Ya'an, People's Republic of China
| | - Chuanli Chen
- Department of Neurology, Ya'an Peoples Hospital, Ya'an, People's Republic of China
| | - Zhao Chen
- Department of Neurology, Ya'an Peoples Hospital, Ya'an, People's Republic of China
| | - Jian Wang
- Department of Neurology, Ya'an Peoples Hospital, Ya'an, People's Republic of China
| |
Collapse
|
4
|
Jiang Y, Ping J, Lu H, Zhang H, Liu M, Li Y, Zhou G. Associations between high-altitude adaptation and risk of cardiovascular diseases: a bidirectional Mendelian randomization study. Mol Genet Genomics 2023; 298:1007-1021. [PMID: 37233799 DOI: 10.1007/s00438-023-02035-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
High-altitude adaptation (HAA) was reported to be significantly associated with reduced risks for multiple cardiovascular diseases (CVDs). However, the causality and direction of the associations are largely uncharacterized. We aimed to examine the potential causal relationships between HAA and six types of CVD, including coronary artery disease (CAD), cerebral aneurysm, ischemic stroke, peripheral artery disease, arrhythmia and atrial fibrillation. We obtained the summary data from largest available genome-wide association study of HAA and six types of CVD. Two-sample bidirectional Mendelian randomization (MR) analyses were performed to infer the causality between them. In the sensitivity analyses, MR-Egger regression analyses and MR-Pleiotropy RESidual Sum and Outlier (MR-PRESSO) global analyses were used to assess the pleiotropic effects; Cochran's Q tests were used to test the heterogeneity by inverse variance-weighted (IVW) and MR-Egger methods; and the leave-one-out analyses were used to examine whether some single nucleotide polymorphisms (SNPs) could influence the results independently. The MR main analyses showed that the genetically instrumented HAA was significantly causally associated with the reduced risks of CAD (odds ratio [OR] = 0.029; 95% confidence interval [CI] = 0.004-0.234; P = 8.64 × 10-4). In contrast, there was no statistically significant relationship between CVDs and HAA. Our findings provide evidence for the causal effects of HAA on the reduced risks of CAD. However, there is no causality of CVDs on HAA. These findings might be helpful in developing the prevention and intervention strategies for CAD.
Collapse
Affiliation(s)
- Yuqing Jiang
- Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, Jiangsu Province, 211166, People's Republic of China
| | - Jie Ping
- Department of Genetics and Integrative Omics, State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Hao Lu
- Department of Genetics and Integrative Omics, State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Haoxiang Zhang
- The No. 954 Hospital of PLA, Shannan City, 856100, People's Republic of China
| | - Mengyu Liu
- Department of Genetics and Integrative Omics, State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Yuanfeng Li
- Department of Genetics and Integrative Omics, State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| | - Gangqiao Zhou
- Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, Jiangsu Province, 211166, People's Republic of China.
- Department of Genetics and Integrative Omics, State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| |
Collapse
|
5
|
Fukunaga A, Koyama H, Fuse T, Haraguchi A. The onset of cerebral infarction may be affected by differences in atmospheric pressure distribution patterns. Front Neurol 2023; 14:1230574. [PMID: 37583952 PMCID: PMC10423876 DOI: 10.3389/fneur.2023.1230574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
Background Some papers have highlighted a possible causal relationship between the onset of ischemic stroke and weather conditions. This study aimed to elucidate the onset mechanism of cerebral infarction from a meteorological approach. We focused on the atmospheric pressure distribution patterns (APDPs). Methods The subjects are 221 cases diagnosed as cardiogenic cerebral embolism (Group A) and 612 cases diagnosed as atherosclerotic cerebral thrombosis (Group B). We investigated the APDP on the date closest to the date and time of onset of cerebral infarction in each patient on the website and chose the most similar one from the reported 11 APDPs. Groups A and B were compared for clinical characteristics and the appearance rate of each APDP in each group. Results The clinical characteristics of Groups A and B were consistent with some previously reported clinical characteristics of cerebral embolism and cerebral thrombosis except for smoking. The appearance rate of the other high-pressure type, which cannot be classified as either the anticyclone belt type or the migratory anticyclone type, in Group B was statistically significantly higher than that in Group A, and the appearance rate of the anticyclone belt type in Group A was statistically significantly higher than that in Group B (p < 0.05, Fisher's exact probability method, respectively). Conclusions Cerebral embolism and cerebral thrombosis exhibited significant differences in APDPs on the day of onset. Dehydration particularly in the other high-pressure type or in the anticyclone belt type should be prevented. Further investigation should focus on the other meteorological factors.
Collapse
|
6
|
Czuba-Pakuła E, Głowiński S, Wójcik S, Lietzau G, Zabielska-Kaczorowska M, Kowiański P. The extent of damage to the blood-brain barrier in the hypercholesterolemic LDLR -/-/Apo E -/- double knockout mice depends on the animal's age, duration of pathology and brain area. Mol Cell Neurosci 2023; 125:103860. [PMID: 37182573 DOI: 10.1016/j.mcn.2023.103860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023] Open
Abstract
One of the effects of hypercholesterolemia (Hch) exerted on the central nervous system (CNS) is damage to the blood-brain barrier (BBB). Increased permeability of BBB results from structural changes in the vascular wall, loss of the tight junctions and barrier function, as well as alterations in the concentration of proteins located in the layers of the vascular wall. These changes occur in the course of metabolic and neurodegenerative diseases. The important role in the course of these processes is attributed to agrin, matrix metalloproteinase-9, and aquaporin-4. In this study, we aimed to determine: 1) the extent of Hch-induced damage to the BBB during maturation, and 2) the distribution of the above-mentioned markers in the vascular wall. Immunohistochemical staining and confocal microscopy were used for vascular wall protein assessment. The size of BBB damage was studied based on perivascular leakage of fluorescently labeled dextran. Three- and twelve-month-old male LDLR-/-/Apo E-/- double knockout mice (EX) developing Hch were used in the study. Age-matched male wild-type (WT) C57BL/6 mice were used as a control group. Differences in the concentration of studied markers coexisted with BBB disintegration, especially in younger mice. A relationship between the maturation of the vascular system and reduction of the BBB damage was also observed. We conclude that the extent of BBB permeability depends on animal age, duration of Hch, and brain region. These may explain different susceptibility of various brain areas to Hch, and different presentation of this pathology depending on age and its duration.
Collapse
Affiliation(s)
- Ewelina Czuba-Pakuła
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland.
| | - Sebastian Głowiński
- Institute of Health Sciences, Pomeranian University in Słupsk, Bohaterów Westerplatte 64, 76-200 Słupsk, Poland.
| | - Sławomir Wójcik
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland.
| | - Grażyna Lietzau
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland.
| | - Magdalena Zabielska-Kaczorowska
- Department of Physiology, Medical University of Gdańsk, 1 Dębinki Str., 80-211 Gdańsk, Poland; Department of Biochemistry, Medical University of Gdańsk, 1 Dębinki Str., 80-211 Gdańsk, Poland.
| | - Przemysław Kowiański
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland; Institute of Health Sciences, Pomeranian University in Słupsk, Bohaterów Westerplatte 64, 76-200 Słupsk, Poland.
| |
Collapse
|
7
|
Midha AD, Zhou Y, Queliconi BB, Barrios AM, Haribowo AG, Chew BTL, Fong COY, Blecha JE, VanBrocklin H, Seo Y, Jain IH. Organ-specific fuel rewiring in acute and chronic hypoxia redistributes glucose and fatty acid metabolism. Cell Metab 2023; 35:504-516.e5. [PMID: 36889284 PMCID: PMC10077660 DOI: 10.1016/j.cmet.2023.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/20/2022] [Accepted: 02/08/2023] [Indexed: 03/09/2023]
Abstract
Oxygen deprivation can be detrimental. However, chronic hypoxia is also associated with decreased incidence of metabolic syndrome and cardiovascular disease in high-altitude populations. Previously, hypoxic fuel rewiring has primarily been studied in immortalized cells. Here, we describe how systemic hypoxia rewires fuel metabolism to optimize whole-body adaptation. Acclimatization to hypoxia coincided with dramatically lower blood glucose and adiposity. Using in vivo fuel uptake and flux measurements, we found that organs partitioned fuels differently during hypoxia adaption. Acutely, most organs increased glucose uptake and suppressed aerobic glucose oxidation, consistent with previous in vitro investigations. In contrast, brown adipose tissue and skeletal muscle became "glucose savers," suppressing glucose uptake by 3-5-fold. Interestingly, chronic hypoxia produced distinct patterns: the heart relied increasingly on glucose oxidation, and unexpectedly, the brain, kidney, and liver increased fatty acid uptake and oxidation. Hypoxia-induced metabolic plasticity carries therapeutic implications for chronic metabolic diseases and acute hypoxic injuries.
Collapse
Affiliation(s)
- Ayush D Midha
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuyin Zhou
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bruno B Queliconi
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alec M Barrios
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Augustinus G Haribowo
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brandon T L Chew
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Cyril O Y Fong
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Joseph E Blecha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Henry VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Isha H Jain
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
8
|
Vásconez-González J, Izquierdo-Condoy JS, Fernandez-Naranjo R, Gamez-Rivera E, Tello-De-la-Torre A, Guerrero-Castillo GS, Ruiz-Sosa C, Ortiz-Prado E. Severe Chagas disease in Ecuador: a countrywide geodemographic epidemiological analysis from 2011 to 2021. Front Public Health 2023; 11:1172955. [PMID: 37143984 PMCID: PMC10151800 DOI: 10.3389/fpubh.2023.1172955] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/04/2023] [Indexed: 05/06/2023] Open
Abstract
Background Chagas disease is a neglected and often forgotten tropical disease caused by the Trypanosoma cruzi. This parasite can be transmitted through the direct contact of human skin with feces and urine of the triatomine insect. According to the World Health Organization (WHO), an estimated 6-7 million people are infected worldwide, killing at least 14,000 every year. The disease has been reported in 20 of the 24 provinces of Ecuador, with El Oro, Guayas, and Loja being the most affected. Methodology We analyzed the morbidity and mortality rates of severe Chagas disease in Ecuador on a nationwide, population-based level. Hospitalization cases and deaths were also examined based on altitude, including low (< 2,500 m) and high (> 2,500 m) altitudes, according to the International Society. Data was retrieved from the National Institute of Statistics and Census hospital admissions and in-hospital mortality databases from 2011 to 2021. Results A total of 118 patients have been hospitalized in Ecuador since 2011 due to Chagas disease. The overall in-hospital mortality rate was 69.4% (N = 82). Men have a higher incidence rate (4.8/1,000,000) than women, although women have a significantly higher mortality rate than men (6.9/1,000,000). Conclusion Chagas disease is a severe parasitic condition that primarily affects rural and poorer areas of Ecuador. Men are more likely to be infected due to differences in work and sociocultural activities. Using average elevation data, we conducted a geodemographic analysis to assess incidence rates by altitude. Our findings indicate that the disease is more common at low and moderate altitudes, but recent increases in cases at higher altitudes suggest that environmental changes, such as global warming, could be driving the proliferation of disease-carrying vectors in previously unaffected areas.
Collapse
Affiliation(s)
- Jorge Vásconez-González
- One Health Research Group, Faculty of Health Science, Universidad de Las Americas, Quito, Ecuador
| | - Juan S. Izquierdo-Condoy
- One Health Research Group, Faculty of Health Science, Universidad de Las Americas, Quito, Ecuador
| | - Raul Fernandez-Naranjo
- One Health Research Group, Faculty of Health Science, Universidad de Las Americas, Quito, Ecuador
| | - Esteban Gamez-Rivera
- One Health Research Group, Faculty of Health Science, Universidad de Las Americas, Quito, Ecuador
| | - Andrea Tello-De-la-Torre
- One Health Research Group, Faculty of Health Science, Universidad de Las Americas, Quito, Ecuador
| | | | - Carlos Ruiz-Sosa
- Postgraduate in Gastroenterology and Digestive Endoscopy, Faculty of Medicine, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Esteban Ortiz-Prado
- One Health Research Group, Faculty of Health Science, Universidad de Las Americas, Quito, Ecuador
- *Correspondence: Esteban Ortiz-Prado,
| |
Collapse
|
9
|
Shu J, Fei W, Zhang J, Li F, Hao Y, Ding Z, Tseyang, Drolma, Ji S, Zhao W, Hu Y, Sun W, Huang Y, Zhao Y, Zhang W. Cerebral small-vessel disease at high altitude: A comparison of patients from plateau and plain. Front Neurol 2023; 14:1086476. [PMID: 36970535 PMCID: PMC10034167 DOI: 10.3389/fneur.2023.1086476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Background and purpose Cerebral small-vessel disease (CSVD) is prevalent worldwide and one of the major causes of stroke and dementia. For patients with CSVD at high altitude, a special environmental status, limited information is known about their clinical phenotype and specific neuroimaging change. We investigated the clinical and neuroimaging features of patients residing at high altitude by comparing with those in the plain, trying to explore the impact of high altitude environment on CSVD. Methods Two cohorts of CSVD patients from the Tibet Autonomous Region and Beijing were recruited retrospectively. In addition to the collection of clinical diagnoses, demographic information and traditional vascular risk factors, the presence, location, and severity of lacunes and white matter hyperintensities were assessed by manual counting and using age-related white matter changes (ARWMC) rating scale. Differences between the two groups and influence of long-term residing in the plateau were analyzed. Results A total of 169 patients in Tibet (high altitude) and 310 patients in Beijing (low altitude) were enrolled. Fewer patients in high altitude group were found with acute cerebrovascular events and concomitant traditional vascular risk factors. The median (quartiles) ARWMC score was 10 (4, 15) in high altitude group and 6 (3, 12) in low altitude group. Less lacunes were detected in high altitude group [0 (0, 4)] than in low altitude group [2 (0, 5)]. In both groups, most lesions located in the subcortical (especially frontal) and basal ganglia regions. Logistic regressions showed that age, hypertension, family history of stroke, and plateau resident were independently associated with severe white matter hyperintensities, while plateau resident was negatively correlated with lacunes. Conclusion Patients of CSVD residing at high altitude showed more severe WMH but less acute cerebrovascular events and lacunes in neuroimaging, comparing to patients residing at low altitude. Our findings suggest potential biphasic effect of high altitude on the occurrence and progression of CSVD.
Collapse
Affiliation(s)
- Junlong Shu
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Wen Fei
- Department of Neurology, People's Hospital of Tibet Autonomous Region, Lhasa, China
| | - Jing Zhang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Fan Li
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yu Hao
- Department of Neurology, People's Hospital of Tibet Autonomous Region, Lhasa, China
| | - Zhijie Ding
- Department of Neurology, People's Hospital of Tibet Autonomous Region, Lhasa, China
| | - Tseyang
- Department of Neurology, People's Hospital of Tibet Autonomous Region, Lhasa, China
| | - Drolma
- Department of Neurology, People's Hospital of Tibet Autonomous Region, Lhasa, China
| | - Shiyong Ji
- Department of Neurology, People's Hospital of Tibet Autonomous Region, Lhasa, China
| | - Weiwei Zhao
- Department of Neurology, People's Hospital of Tibet Autonomous Region, Lhasa, China
| | - Yaxiong Hu
- Department of Neurology, People's Hospital of Tibet Autonomous Region, Lhasa, China
| | - Wei Sun
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Yuhua Zhao
- Department of Neurology, People's Hospital of Tibet Autonomous Region, Lhasa, China
- Yuhua Zhao
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
- *Correspondence: Wei Zhang
| |
Collapse
|
10
|
Zegarra-Rodríguez CA, Plasencia-Dueñas NR, Failoc-Rojas VE. Disparities in the prevalence of screened depression at different altitudes in Peru: A retrospective analysis of the ENDES 2019. PLoS One 2022; 17:e0278947. [PMID: 36542597 PMCID: PMC9770421 DOI: 10.1371/journal.pone.0278947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Depression is a public health concern, nearing 1.5 million cases and accounting for 9.7% of years lost due to disability. Several factors, including altitude, contribute to its development. Altitude has become a topic for recent research, but its association with depressive symptoms has not been fully clarified. Therefore, this study aimed to determine the association between altitude and depressive symptoms in the Peruvian population. METHODS A retrospective, cross-sectional study of the 2019 Demographic and Family Health Survey (ENDES in Spanish) was conducted. The dependent variable, depressive symptoms, was measured using the Patient Health Questionnaire (PHQ-9) and the independent variable, altitude, was categorized into: <1500 meters above sea level (masl), 1500-2499 masl and ≥2500 masl. To evaluate the association between altitude and depressive symptoms, we used Poisson regression model, constructing crude and multiple models. RESULTS Of those living at 1500 to 2499 masl and ≥2500 masl, 7.23% and 7.12% had depressive symptoms, respectively. After adjusting for confounding variables, high altitude was found to be associated with depressive symptoms (prevalence ratio adjusted (aPR): 1.38, 95% confidence interval: 1.04-1.84; aPR 1.41, 95% CI: 1.20-1.66). CONCLUSIONS A statistically significant association was found between high altitude and depressive symptoms. This may be attributable to hypobaric hypoxia that occurs at high altitudes and its effects on brain function. This study's findings should be considered to identify the population at risk and expand the coverage of preventive and therapeutic measures in high-altitude areas of Peru with poor access to health services.
Collapse
Affiliation(s)
- Cynthia Alejandra Zegarra-Rodríguez
- School of Medicine, Universidad Nacional Pedro Ruiz Gallo, Lambayeque, Peru
- Sociedad Científica de Estudiantes de Medicina de la Universidad Nacional Pedro Ruiz Gallo (SOCIEM-UNPRG), Lambayeque, Peru
| | - Nahún Raphael Plasencia-Dueñas
- School of Medicine, Universidad Nacional Pedro Ruiz Gallo, Lambayeque, Peru
- Sociedad Científica de Estudiantes de Medicina de la Universidad Nacional Pedro Ruiz Gallo (SOCIEM-UNPRG), Lambayeque, Peru
| | | |
Collapse
|
11
|
Duan M, Lu Y, Li Y, Wei J, Qian H, Lin B, Liu L. Indoor dryness and humidification-induced arsenic inhalation exposure above 4200 m in Ngari, China. INDOOR AIR 2022; 32:e13133. [PMID: 36305059 DOI: 10.1111/ina.13133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Ngari Prefecture, Tibet, China, features its ultrahigh altitude above 4200 m, very little annual precipitation and extremely low relative humidity. Residents who have migrated to Tibet from the plains use indoor humidification to reduce the respiratory discomfort caused by prolonged exposure to dry indoor air. In this study, field investigations and analysis of residential indoor environments and humidification methods in Ngari Prefecture revealed that ninety-eight percent of humidifier consumers in the prefecture used low-cost ultrasonic humidifiers filled with indoor tap water. The results revealed that the arsenic (As) concentration of the tap water was 41.6 μg/L, over four times China's standards for drinking water quality (10 μg/L). The source As concentration in the air humidified by the tap water-filled ultrasonic humidifier is (619.8 ± 59.1) (ng/m3 ·air), while no As was detected in the air humidified by the evaporative humidifier. For ultrasonic humidifier with tap water-filled, the inhalation dose of a healthy adult was 45.4 ng/d. The minute ventilation volume of migrated residents who had been in Ngari for less than two years (12.5 ± 4.3 L/min) was greater than those of the long-term residents (10.0 ± 4.5 L/min), which may exacerbate the short-term inhalation exposure risk for migrated residents. To reduce the health risks associated with As exposure, evaporative humidifiers are recommended for households using domestic water. If ultrasonic humidifiers are used, the tap water must be purified with terminal filters.
Collapse
Affiliation(s)
- Mengjie Duan
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Department of Building Science, Tsinghua University, Beijing, China
- Laboratory of Eco-Planning & Green Building, Ministry of Education, Tsinghua University, Beijing, China
| | - Yiran Lu
- Department of Building Science, Tsinghua University, Beijing, China
- Laboratory of Eco-Planning & Green Building, Ministry of Education, Tsinghua University, Beijing, China
| | - Yifan Li
- Department of Building Science, Tsinghua University, Beijing, China
- Laboratory of Eco-Planning & Green Building, Ministry of Education, Tsinghua University, Beijing, China
| | - Jianjian Wei
- Institute of Refrigeration and Cryogenics, Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Borong Lin
- Department of Building Science, Tsinghua University, Beijing, China
- Laboratory of Eco-Planning & Green Building, Ministry of Education, Tsinghua University, Beijing, China
| | - Li Liu
- Department of Building Science, Tsinghua University, Beijing, China
- Laboratory of Eco-Planning & Green Building, Ministry of Education, Tsinghua University, Beijing, China
| |
Collapse
|
12
|
Hypoxia and hemorheological properties in older individuals. Ageing Res Rev 2022; 79:101650. [PMID: 35597435 DOI: 10.1016/j.arr.2022.101650] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/20/2022] [Accepted: 05/13/2022] [Indexed: 12/17/2022]
Abstract
Hypoxia is caused by insufficient oxygen availability for the organism leading to reduced oxygen delivery to tissues and cells. It has been regarded as a severe threat to human health and it is indeed implicated in pathophysiological mechanisms involved in the development and progression of many diseases. Nevertheless, the potential of controlled hypoxia interventions (i.e. hypoxia conditioning) for improving cardio-vascular health is gaining increased attention. However, blood rheology is often a forgotten factor for vascular health while aging and hypoxia exposure are both suspected to alter hemorheological properties. These changes in blood rheology may influence the benefits-risks balance of hypoxia exposure in older individuals. The benefits of hypoxia exposure for vascular health are mainly reported for healthy populations and the combined impact of aging and hypoxia on blood rheology could therefore be deleterious in older individuals. This review discusses evidence of hypoxia-related and aging-related changes in blood viscosity and its determinants. It draws upon an extensive literature search on the effects of hypoxia/altitude and aging on blood rheology. Aging increases blood viscosity mainly through a rise in plasma viscosity, red blood cell (RBC) aggregation and a decrease in RBC deformability. Hypoxia also causes an increase in RBC aggregation and plasma viscosity. In addition, hypoxia exposure may increase hematocrit and modulate RBC deformability, depending on the hypoxic dose, i.e, beneficial effect of intermittent hypoxia with moderate dose vs deleterious effect of chronic continuous or intermittent hypoxia or if the hypoxic dose is too high. Special attention is directed toward the risks vs. benefits of hemorheological changes during hypoxia exposure in older individuals, and its clinical relevance for vascular disorders.
Collapse
|
13
|
Ortiz-Prado E, Cordovez SP, Vasconez E, Viscor G, Roderick P. Chronic high-altitude exposure and the epidemiology of ischaemic stroke: a systematic review. BMJ Open 2022; 12:e051777. [PMID: 35487749 PMCID: PMC9058702 DOI: 10.1136/bmjopen-2021-051777] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION About 5.7% of the world population resides above 1500 m. It has been hypothesised that acute exposure to high-altitude locations can increase stroke risk, while chronic hypoxia can reduce stroke-related mortality. OBJECTIVE This review aims to provide an overview of the available evidence on the association between long-term high-altitude exposure and ischaemic stroke. DESIGN A systematic review was performed from 1 January 1960 to 1 December 2021 to assess the possible link between high-altitude exposure and ischaemic stroke. The AMED, EMBASE, Cochrane Library, PubMed, MEDLINE, the Europe PubMed Central and the Latin-American bibliographic database Scielo were accessed using the University of Southampton library tool Delphis. In this review, we included population and individual-based observational studies, including cross-sectional and longitudinal studies except for those merely descriptive individual-based case reports. Studies were limited to humans living or visiting high-altitude locations for at least 28 days as a cut-off point for chronic exposure. RESULTS We reviewed a total of 1890 abstracts retrieved during the first step of the literature review process. The authors acquired in full text as potentially relevant 204 studies. Only 17 documents met the inclusion criteria and were finally included. Ten studies clearly suggest that living at high altitudes may be associated with an increased risk of stroke; however, five studies suggest that altitude may act as a protective factor for the development of stroke, while two studies report ambiguous results. CONCLUSIONS This review suggests that the most robust studies are more likely to find that prolonged living at higher altitudes reduces the risk of developing stroke or dying from it. Increased irrigation due to angiogenesis and increased vascular perfusion might be the reason behind improved survival profiles among those living within this altitude range. In contrast, residing above 3500 m seems to be associated with an apparent increased risk of developing stroke, probably linked to the presence of polycythaemia and other associated factors such as increased blood viscosity.
Collapse
Affiliation(s)
- Esteban Ortiz-Prado
- One Health Research Group, Universidad de Las Américas, Quito, Ecuador
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Simone Pierina Cordovez
- One Health Research Group, Universidad de Las Américas, Quito, Ecuador
- Facultad de Medicina, Universidad San Gregorio de Portoviejo, Portoviejo, Manabi, Ecuador
| | - Eduardo Vasconez
- One Health Research Group, Universidad de Las Américas, Quito, Ecuador
| | - Ginés Viscor
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Paul Roderick
- Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
14
|
Simbaña-Rivera K, Jaramillo PRM, Silva JVV, Gómez-Barreno L, Campoverde ABV, Novillo Cevallos JF, Guanoquiza WEA, Guevara SLC, Castro LGI, Puerta NAM, Guayta Valladares AW, Lister A, Ortiz-Prado E. High-altitude is associated with better short-term survival in critically ill COVID-19 patients admitted to the ICU. PLoS One 2022; 17:e0262423. [PMID: 35358185 PMCID: PMC8970356 DOI: 10.1371/journal.pone.0262423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 12/26/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Multiple studies have attempted to elucidate the relationship between chronic hypoxia and SARS-CoV-2 infection. It seems that high-altitude is associated with lower COVID-19 related mortality and incidence rates; nevertheless, all the data came from observational studies, being this the first one looking into prospectively collected clinical data from severely ill patients residing at two significantly different altitudes. METHODS A prospective cohort, a two-center study among COVID-19 confirmed adult patients admitted to a low (sea level) and high-altitude (2,850 m) ICU unit in Ecuador was conducted. Two hundred and thirty confirmed patients were enrolled from March 15th to July 15th, 2020. RESULTS From 230 patients, 149 were men (64.8%) and 81 women (35.2%). The median age of all the patients was 60 years, and at least 105 (45.7%) of patients had at least one underlying comorbidity, including hypertension (33.5%), diabetes (16.5%), and chronic kidney failure (5.7%). The APACHE II scale (Score that estimates ICU mortality) at 72 hours was especially higher in the low altitude group with a median of 18 points (IQR: 9.5-24.0), compared to 9 points (IQR: 5.0-22.0) obtained in the high-altitude group. There is evidence of a difference in survival in favor of the high-altitude group (p = 0.006), the median survival being 39 days, compared to 21 days in the low altitude group. CONCLUSION There has been a substantial improvement in survival amongst people admitted to the high-altitude ICU. Residing at high-altitudes was associated with improved survival, especially among patients with no comorbidities. COVID-19 patients admitted to the high-altitude ICU unit have improved severity-of-disease classification system scores at 72 hours.
Collapse
Affiliation(s)
- Katherine Simbaña-Rivera
- One Health Research Group, Faculty of Health Science, Universidad de Las Americas, Quito, Ecuador
| | | | | | - Lenin Gómez-Barreno
- One Health Research Group, Faculty of Health Science, Universidad de Las Americas, Quito, Ecuador
| | | | | | | | | | | | | | | | - Alex Lister
- University Hospital Southampton NHS FT, Southampton, United Kingdom
| | - Esteban Ortiz-Prado
- One Health Research Group, Faculty of Health Science, Universidad de Las Americas, Quito, Ecuador
- Biomedicine Program, Department of Cell Biology, Physiology and Immunology Universidad de Barcelona, Barcelona, Spain
| |
Collapse
|
15
|
Hernández-Vásquez A, Vargas-Fernández R, Chacón-Diaz M. Association between Altitude and the Framingham Risk Score: A Cross-Sectional Study in the Peruvian Adult Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19073838. [PMID: 35409522 PMCID: PMC8998056 DOI: 10.3390/ijerph19073838] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022]
Abstract
To determine the association between altitude and the Framingham risk score in the Peruvian population, we performed a cross-sectional analytical study of data collected by the 2017–2018 Food and Nutrition Surveillance by Life Stages survey. The outcome of this study was the Framingham 10-year cardiovascular disease event risk prediction, which is composed of six modifiable and non-modifiable coronary risk factors. A generalized linear model (GLM) of the gamma family and log link function was used to report the crude and adjusted β coefficients. Several sensitivity analyses were performed to assess the association of interest. Data from a total of 833 surveyed participants were included. After adjusting for educational level, poverty level, alcohol consumption, physical activity level, the presence of any limitation, obesity, and area of residence, it was observed that altitude ≥ 2500 m above sea level (β = −0.42 [95% CI: −0.69 to −0.16]) was negatively and significantly associated with a decrease in the Framingham 10-year risk score. High altitude was significantly and negatively associated with Framingham 10-year risk scores. Our results will allow prevention strategies considering modifiable risk factors to avoid the development of cardiovascular diseases, especially in people living at low altitudes.
Collapse
Affiliation(s)
- Akram Hernández-Vásquez
- Centro de Excelencia en Investigaciones Económicas y Sociales en Salud, Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima 15024, Peru
- Correspondence: ; Tel.: +51-(01)-3171000
| | | | | |
Collapse
|