1
|
Dardi P, Coutinho CP, de Oliveira S, Teixeira SA, Gacek RRF, Purgatto E, Vinolo MAR, Muscará MN, Rossoni LV. Changes in the intestinal microbiota induced by the postnatal environment and their association with hypertension. Pharmacol Res 2025; 212:107621. [PMID: 39848350 DOI: 10.1016/j.phrs.2025.107621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
It has been established that cross-fostering impacts the development of hypertension in spontaneously hypertensive rats (SHR). However, the ability of the cross-fostering protocol to shape gut microbiota profile in SHR and impact hypertension is not known. In this sense, the current study explored the influence of normotensive and hypertensive postnatal environments on the intestinal microbiota structure, composition, and functional capacity of SHR and Wistar rats. Our findings revealed significant differences in the microbiota's composition and its metabolic activity in young non-fostered SHR (SS) vs. Wistar (WW) rats, even before hypertension onset, characterized by a reduction of the "low-abundance" bacterial genera, a diminished availability of fecal butyrate and elevated hydrogen sulfide (H2S) production by the SS gut microbiota. Despite influencing the microbiota of both strains, cross-fostering did not fully replicate the microbiota composition of the naturally reared groups in the SHR nursed by Wistar mothers (SW), or in the Wistar rats breastfed by SHR mothers (WS). The SW group had fewer significant genera identified at the Partial Least Squares Discriminant Analysis (PLS-DA), despite resembling the genera profile identified in the normotensive group. While sharing bacterial genera with both SS and WW groups, the WS group is distinguished by its unique microbial composition, particularly by a greater diversity of the 'low-abundance' bacterial genera. Moreover, decreased systolic blood pressure was observed in the SW group compared to the SS group in adulthood. Thus, we could establish a link between microbiota composition and hypertension development, associating it with the loss of the "low-abundance" bacterial taxa. Our data suggest that the postnatal environment is pivotal to promoting gut microbiota compositional changes and contributes to hypertension development.
Collapse
Affiliation(s)
- Patrizia Dardi
- Laboratory of Vascular Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Camille Perella Coutinho
- Department of Food and Experimental Nutrition /FoRC - Food Research Center, University of Sao Paulo, Sao Paulo, Brazil
| | - Sarah de Oliveira
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Simone Aparecida Teixeira
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Eduardo Purgatto
- Department of Food and Experimental Nutrition /FoRC - Food Research Center, University of Sao Paulo, Sao Paulo, Brazil
| | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcelo Nicolás Muscará
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Luciana Venturini Rossoni
- Laboratory of Vascular Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
2
|
Arendshorst WJ, Vendrov AE, Kumar N, Ganesh SK, Madamanchi NR. Oxidative Stress in Kidney Injury and Hypertension. Antioxidants (Basel) 2024; 13:1454. [PMID: 39765782 PMCID: PMC11672783 DOI: 10.3390/antiox13121454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
Hypertension (HTN) is a major contributor to kidney damage, leading to conditions such as nephrosclerosis and hypertensive nephropathy, significant causes of chronic kidney disease (CKD) and end-stage renal disease (ESRD). HTN is also a risk factor for stroke and coronary heart disease. Oxidative stress, inflammation, and activation of the renin-angiotensin-aldosterone system (RAAS) play critical roles in causing kidney injury in HTN. Genetic and environmental factors influence the susceptibility to hypertensive renal damage, with African American populations having a higher tendency due to genetic variants. Managing blood pressure (BP) effectively with treatments targeting RAAS activation, oxidative stress, and inflammation is crucial in preventing renal damage and the progression of HTN-related CKD and ESRD. Interactions between genetic and environmental factors impacting kidney function abnormalities are central to HTN development. Animal studies indicate that genetic factors significantly influence BP regulation. Anti-natriuretic mechanisms can reset the pressure-natriuresis relationship, requiring a higher BP to excrete sodium matched to intake. Activation of intrarenal angiotensin II receptors contributes to sodium retention and high BP. In HTN, the gut microbiome can affect BP by influencing energy metabolism and inflammatory pathways. Animal models, such as the spontaneously hypertensive rat and the chronic angiotensin II infusion model, mirror human essential hypertension and highlight the significance of the kidney in HTN pathogenesis. Overproduction of reactive oxygen species (ROS) plays a crucial role in the development and progression of HTN, impacting renal function and BP regulation. Targeting specific NADPH oxidase (NOX) isoforms to inhibit ROS production and enhance antioxidant mechanisms may improve renal structure and function while lowering blood pressure. Therapies like SGLT2 inhibitors and mineralocorticoid receptor antagonists have shown promise in reducing oxidative stress, inflammation, and RAAS activity, offering renal and antihypertensive protection in managing HTN and CKD. This review emphasizes the critical role of NOX in the development and progression of HTN, focusing on its impact on renal function and BP regulation. Effective BP management and targeting oxidative stress, inflammation, and RAAS activation, is crucial in preventing renal damage and the progression of HTN-related CKD and ESRD.
Collapse
Affiliation(s)
- Willaim J. Arendshorst
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Aleksandr E. Vendrov
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (A.E.V.); (N.K.); (S.K.G.)
| | - Nitin Kumar
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (A.E.V.); (N.K.); (S.K.G.)
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Santhi K. Ganesh
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (A.E.V.); (N.K.); (S.K.G.)
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nageswara R. Madamanchi
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (A.E.V.); (N.K.); (S.K.G.)
| |
Collapse
|
3
|
Yin X, Shi Y, Sheng T, Ji C. Early-Life Gut Microbiota: A Possible Link Between Maternal Exposure to Non-Nutritive Sweeteners and Metabolic Syndrome in Offspring. Nutr Rev 2024:nuae140. [PMID: 39348276 DOI: 10.1093/nutrit/nuae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024] Open
Abstract
Metabolic syndrome (MetS) is recognized as a group of metabolic abnormalities, characterized by clustered interconnected traits that elevate the risks of obesity, cardiovascular and atherosclerotic diseases, hyperlipidemia, and type 2 diabetes mellitus. Non-nutritive sweeteners (NNS) are commonly consumed by those with imbalanced calorie intake, especially in the perinatal period. In the past, accumulating evidence showed the transgenerational and mediated roles of human microbiota in the development of early-life MetS. Maternal exposure to NNS has been recognized as a risk factor for filial metabolic disturbance through various mechanisms, among which gut microbiota and derived metabolites function as nodes linking NNS and MetS in early life. Despite the widespread consumption of NNS, there remain growing concerns about their transgenerational impact on metabolic health. There is growing evidence of NNS being implicated in the development of metabolic abnormalities. Intricate complexities exist and a comprehensive understanding of how the gut microbiota interacts with mechanisms related to maternal NNS intake and disrupts metabolic homeostasis of offspring is critical to realize its full potential in preventing early-life MetS. This review aims to elucidate the effects of early-life gut microbiota and links to maternal NNS exposure and imbalanced offspring metabolic homeostasis and discusses potential perspectives and challenges, which may provide enlightenment and understanding into optimal perinatal nutritional management.
Collapse
Affiliation(s)
- Xiaoxiao Yin
- Nanjing Medical Research Center for Women and Children, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu 210004, China
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yujie Shi
- Nanjing Medical Research Center for Women and Children, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu 210004, China
| | - Tongtong Sheng
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chenbo Ji
- Nanjing Medical Research Center for Women and Children, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu 210004, China
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
4
|
Alatan H, Liang S, Shimodaira Y, Wu X, Hu X, Wang T, Luo J, Iijima K, Jin F. Supplementation with Lactobacillus helveticus NS8 alleviated behavioral, neural, endocrine, and microbiota abnormalities in an endogenous rat model of depression. Front Immunol 2024; 15:1407620. [PMID: 39346901 PMCID: PMC11428200 DOI: 10.3389/fimmu.2024.1407620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/13/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction Major depressive disorder is a condition involving microbiota-gut-brain axis dysfunction. Increasing research aims to improve depression through gut microbiota regulation, including interventions such as probiotics, prebiotics, and fecal microbiota transplants. However, most research focuses on exogenous depression induced by chronic stress or drugs, with less attention given to endogenous depression. Additionally, research on gut mycobiota in depression is significantly less than that on gut bacteria. Methods In the present study, Wistar-Kyoto rats were used as an endogenous depression and treatment-resistant depression model, while Wistar rats served as controls. Differences between the two rat strains in behavior, gut bacteria, gut mycobiota, nervous system, endocrine system, immune system, and gut barrier were evaluated. Additionally, the effects of Lactobacillus helveticus NS8 supplementation were investigated. Results Wistar-Kyoto rats demonstrated increased depressive-like behaviors in the forced swimming test, reduced sucrose preference in the sucrose preference test, and decreased locomotor activity in the open field test. They also exhibited abnormal gut bacteria and mycobiota, characterized by higher bacterial α-diversity but lower fungal α-diversity, along with increased butyrate, L-tyrosine, and L-phenylalanine biosynthesis from bacteria. Furthermore, these rats showed dysfunction in the microbiota-gut-brain axis, evidenced by a hypo-serotonergic system, hyper-noradrenergic system, defective hypothalamic-pituitary-adrenal axis, compromised gut barrier integrity, heightened serum inflammation, and diminished gut immunity. A 1-month L. helveticus NS8 intervention increased the fecal abundance of L. helveticus; reduced the abundance of Bilophila and Debaryomycetaceae; decreased immobility time but increased climbing time in the forced swimming test; reduced hippocampal corticotropin-releasing hormone levels; decreased hypothalamic norepinephrine levels; increased hippocampal glucocorticoid receptor, brain-derived neurotrophic factor dopamine, and 5-hydroxyindoleacetic acid content; and improved the gut microbiota, serotonergic, and noradrenergic system. Conclusion The depressive phenotype of Wistar-Kyoto rats is not only attributed to their genetic context but also closely related to their gut microbiota. Abnormal gut microbiota and a dysfunctional microbiota-gut-brain axis play important roles in endogenous depression, just as they do in exogenous depression. Supplementing with probiotics such as L. helveticus NS8 is likely a promising approach to improve endogenous depression and treatment-resistant depression.
Collapse
Affiliation(s)
- Husile Alatan
- Department of Gastroenterology and Neurology, Akita University Graduate School of Medicine, Akita, Japan
| | - Shan Liang
- Mirai Food Academic Institute of Japan, Akita, Japan
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Yosuke Shimodaira
- Department of Gastroenterology and Neurology, Akita University Graduate School of Medicine, Akita, Japan
| | - Xiaoli Wu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Xu Hu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Jia Luo
- Psychology College, Sichuan Normal University, Chengdu, China
| | - Katsunori Iijima
- Department of Gastroenterology and Neurology, Akita University Graduate School of Medicine, Akita, Japan
| | - Feng Jin
- Mirai Food Academic Institute of Japan, Akita, Japan
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Cui X, Zhang T, Xie T, Guo FX, Zhang YY, Deng YJ, Wang Q, Guo YX, Dong MH, Luo XT. Research Progress on the Correlation Between Hypertension and Gut Microbiota. J Multidiscip Healthc 2024; 17:2371-2387. [PMID: 38770171 PMCID: PMC11104380 DOI: 10.2147/jmdh.s463880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
Among cardiovascular diseases, hypertension is the most important risk factor for morbidity and mortality worldwide, and its pathogenesis is complex, involving genetic, dietary and environmental factors. The characteristics of the gut microbiota can vary in response to increased blood pressure (BP) and influence the development and progression of hypertension. This paper describes five aspects of the relationship between hypertension and the gut microbiota, namely, the different types of gut microbiota, metabolites of the gut microbiota, sympathetic activation, gut-brain interactions, the effects of exercise and dietary patterns and the treatment of the gut microbiota through probiotics, faecal microbiota transplantation (FMT) and herbal remedies, providing new clues for the future prevention of hypertension. Diet, exercise and traditional Chinese medicine may contribute to long-term improvements in hypertension, although the effects of probiotics and FMT still need to be validated in large populations.
Collapse
Affiliation(s)
- Xiaomei Cui
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Ting Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Tao Xie
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Fang-xi Guo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Yu-ying Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Yuan-jia Deng
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Qi Wang
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Yi-xing Guo
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Ming-hua Dong
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Xiao-ting Luo
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of General Medicine, Gannan Medical University, Ganzhou, People’s Republic of China
| |
Collapse
|
6
|
Ding W, Liu S, Yang Q, Bai Y, Perez-Donado CE, Rose DJ. Influence of overcooking on in vitro digestion and fermentation of ground beef and whole wheat bread. Food Res Int 2024; 178:113953. [PMID: 38309875 DOI: 10.1016/j.foodres.2024.113953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
Areas of char or overcooking commonly appear in foods people consume. It has been reported that overcooked food is harmful to human health. However, little research exists on the effect of overcooking on digestible protein and starch content and gut microbial fermentation. This study aimed to reveal the connection between overcooking and the content of digestible protein and starch, as well as its impact on gut microbial fermentation. Digestible protein in the standard cooked ground beef patty was significantly higher than the overcooked samples (p = 0.009). Standard-cooked whole wheat bread also showed a significantly higher digestible protein content compared with overcooked (p = 0.009). A significant difference was also found in digestible starch content between standard cooked and overcooked bread samples (p = 0.02). Overcooking decreased acetate, propionate, iso-butyrate, iso-valerate and ammonia production by the gut microbiota during fermentation of the beef sample, and decreased propionate and ammonia production during fermentation of the bread sample (p < 0.05). Interestingly, overcooking enhanced butyrate production by the microbiota during fermentation of the bread sample (24 h of fermentation, p < 0.001; 48 h of fermentation, p = 0.02), while no significant difference was found between overcooked and standard cooked beef samples (24 h of fermentation, p = 0.15; 48 h of fermentation, p = 0.4). Overcooking resulted in reductions in many Pseudomonadota and favored several Bacillota, especially Ruminococcaceae and Oscillospiraceae, which contain butyrate producers. Overall, overcooking reduced digestible protein, digestible starch, and fermentation of proteins. Unexpectedly, overcooking induced several purportedly favorable effects on the gut microbiota due to the decreased protein fermentation, which, in future studies, should be weighed against the previous reports that overcooking is deleterious to human health.
Collapse
Affiliation(s)
- Wensheng Ding
- Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln NE, USA; Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Sujun Liu
- Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln NE, USA; Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Qinnan Yang
- Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln NE, USA; Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Yichen Bai
- Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln NE, USA; Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Carmen E Perez-Donado
- Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln NE, USA; Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Devin J Rose
- Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln NE, USA; Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
7
|
Aryal S, Manandhar I, Mei X, Yeoh BS, Tummala R, Saha P, Osman I, Zubcevic J, Durgan DJ, Vijay-Kumar M, Joe B. Combating hypertension beyond genome-wide association studies: Microbiome and artificial intelligence as opportunities for precision medicine. CAMBRIDGE PRISMS. PRECISION MEDICINE 2023; 1:e26. [PMID: 38550938 PMCID: PMC10953772 DOI: 10.1017/pcm.2023.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/15/2023] [Accepted: 04/04/2023] [Indexed: 11/03/2024]
Abstract
The single largest contributor to human mortality is cardiovascular disease, the top risk factor for which is hypertension (HTN). The last two decades have placed much emphasis on the identification of genetic factors contributing to HTN. As a result, over 1,500 genetic alleles have been associated with human HTN. Mapping studies using genetic models of HTN have yielded hundreds of blood pressure (BP) loci but their individual effects on BP are minor, which limits opportunities to target them in the clinic. The value of collecting genome-wide association data is evident in ongoing research, which is beginning to utilize these data at individual-level genetic disparities combined with artificial intelligence (AI) strategies to develop a polygenic risk score (PRS) for the prediction of HTN. However, PRS alone may or may not be sufficient to account for the incidence and progression of HTN because genetics is responsible for <30% of the risk factors influencing the etiology of HTN pathogenesis. Therefore, integrating data from other nongenetic factors influencing BP regulation will be important to enhance the power of PRS. One such factor is the composition of gut microbiota, which constitute a more recently discovered important contributor to HTN. Studies to-date have clearly demonstrated that the transition from normal BP homeostasis to a state of elevated BP is linked to compositional changes in gut microbiota and its interaction with the host. Here, we first document evidence from studies on gut dysbiosis in animal models and patients with HTN followed by a discussion on the prospects of using microbiota data to develop a metagenomic risk score (MRS) for HTN to be combined with PRS and a clinical risk score (CRS). Finally, we propose that integrating AI to learn from the combined PRS, MRS and CRS may further enhance predictive power for the susceptibility and progression of HTN.
Collapse
Affiliation(s)
- Sachin Aryal
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Ishan Manandhar
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Xue Mei
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Beng S. Yeoh
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Ramakumar Tummala
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Piu Saha
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Islam Osman
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Jasenka Zubcevic
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - David J. Durgan
- Integrative Physiology & Anesthesiology, Baylor College of Medicine, Houston, TX, USA
| | - Matam Vijay-Kumar
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Bina Joe
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| |
Collapse
|
8
|
Gómez-Contreras A, Franco-Ávila T, Miró L, Juan ME, Moretó M, Planas JM. Dietary intake of table olives exerts antihypertensive effects in association with changes in gut microbiota in spontaneously hypertensive rats. Food Funct 2023; 14:2793-2806. [PMID: 36861461 DOI: 10.1039/d2fo02928f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Arbequina table olive (AO) consumption lowers blood pressure (BP) in spontaneously hypertensive rats (SHR). This study evaluates whether dietary supplementation with AO induced changes in the gut microbiota that are consistent with the purported antihypertensive effects. Wistar-Kyoto rats (WKY-c) and SHR-c received water, while SHR-o were supplemented by gavage with AO (3.85 g kg-1) for 7 weeks. Faecal microbiota was analysed by 16S rRNA gene sequencing. SHR-c showed increased Firmicutes and decreased Bacteroidetes compared to WKY-c. AO supplementation in SHR-o decreased BP by approximately 19 mmHg, and reduced plasmatic concentrations of malondialdehyde and angiotensin II. Moreover, reshaped faecal microbiota associated with antihypertensive activity by lowering Peptoniphilus and increasing Akkermansia, Sutterella, Allobaculum, Ruminococcus, and Oscillospira. Also promoted the growth of probiotic strains of Lactobacillus and Bifidobacterium and modified the relationship of Lactobacillus with other microorganisms, from competitive to symbiotic. In SHR, AO promotes a microbiota profile compatible with the antihypertensive effects of this food.
Collapse
Affiliation(s)
- Aldo Gómez-Contreras
- Grup de Fisiologia i Nutrició Experimental, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB, Maria de Maeztu Unit of Excellence), Universitat de Barcelona (UB), and Food Innovation Network (XIA), Av. Joan XXIII 27-31, 08028-Barcelona, Spain.
| | - Talia Franco-Ávila
- Grup de Fisiologia i Nutrició Experimental, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB, Maria de Maeztu Unit of Excellence), Universitat de Barcelona (UB), and Food Innovation Network (XIA), Av. Joan XXIII 27-31, 08028-Barcelona, Spain.
| | - Lluïsa Miró
- Grup de Fisiologia i Nutrició Experimental, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB, Maria de Maeztu Unit of Excellence), Universitat de Barcelona (UB), and Food Innovation Network (XIA), Av. Joan XXIII 27-31, 08028-Barcelona, Spain.
| | - M Emília Juan
- Grup de Fisiologia i Nutrició Experimental, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB, Maria de Maeztu Unit of Excellence), Universitat de Barcelona (UB), and Food Innovation Network (XIA), Av. Joan XXIII 27-31, 08028-Barcelona, Spain.
| | - Miquel Moretó
- Grup de Fisiologia i Nutrició Experimental, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB, Maria de Maeztu Unit of Excellence), Universitat de Barcelona (UB), and Food Innovation Network (XIA), Av. Joan XXIII 27-31, 08028-Barcelona, Spain.
| | - Joana M Planas
- Grup de Fisiologia i Nutrició Experimental, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació and Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB, Maria de Maeztu Unit of Excellence), Universitat de Barcelona (UB), and Food Innovation Network (XIA), Av. Joan XXIII 27-31, 08028-Barcelona, Spain.
| |
Collapse
|
9
|
Campbell C, Kandalgaonkar MR, Golonka RM, Yeoh BS, Vijay-Kumar M, Saha P. Crosstalk between Gut Microbiota and Host Immunity: Impact on Inflammation and Immunotherapy. Biomedicines 2023; 11:294. [PMID: 36830830 PMCID: PMC9953403 DOI: 10.3390/biomedicines11020294] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Gut microbes and their metabolites are actively involved in the development and regulation of host immunity, which can influence disease susceptibility. Herein, we review the most recent research advancements in the gut microbiota-immune axis. We discuss in detail how the gut microbiota is a tipping point for neonatal immune development as indicated by newly uncovered phenomenon, such as maternal imprinting, in utero intestinal metabolome, and weaning reaction. We describe how the gut microbiota shapes both innate and adaptive immunity with emphasis on the metabolites short-chain fatty acids and secondary bile acids. We also comprehensively delineate how disruption in the microbiota-immune axis results in immune-mediated diseases, such as gastrointestinal infections, inflammatory bowel diseases, cardiometabolic disorders (e.g., cardiovascular diseases, diabetes, and hypertension), autoimmunity (e.g., rheumatoid arthritis), hypersensitivity (e.g., asthma and allergies), psychological disorders (e.g., anxiety), and cancer (e.g., colorectal and hepatic). We further encompass the role of fecal microbiota transplantation, probiotics, prebiotics, and dietary polyphenols in reshaping the gut microbiota and their therapeutic potential. Continuing, we examine how the gut microbiota modulates immune therapies, including immune checkpoint inhibitors, JAK inhibitors, and anti-TNF therapies. We lastly mention the current challenges in metagenomics, germ-free models, and microbiota recapitulation to a achieve fundamental understanding for how gut microbiota regulates immunity. Altogether, this review proposes improving immunotherapy efficacy from the perspective of microbiome-targeted interventions.
Collapse
Affiliation(s)
- Connor Campbell
- Department of Physiology & Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Mrunmayee R. Kandalgaonkar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Rachel M. Golonka
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Beng San Yeoh
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Piu Saha
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
10
|
Liang Y, Zhang H, Tian L, Shi C, Zheng Y, Wang J, Tan Y, Luo Y, Hong H. Gut microbiota and metabolic profile as affected by Maillard reaction products derived from bighead carp meat hydrolysates with galactose and galacto-oligosaccharides during in vitro pig fecal fermentation. Food Chem 2023; 398:133905. [DOI: 10.1016/j.foodchem.2022.133905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/31/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
|
11
|
Navaneethabalakrishnan S, Smith HL, Arenaz CM, Goodlett BL, McDermott JG, Mitchell BM. Update on Immune Mechanisms in Hypertension. Am J Hypertens 2022; 35:842-851. [PMID: 35704473 PMCID: PMC9527774 DOI: 10.1093/ajh/hpac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/02/2023] Open
Abstract
The contribution of immune cells in the initiation and maintenance of hypertension is undeniable. Several studies have established the association between hypertension, inflammation, and immune cells from the innate and adaptive immune systems. Here, we provide an update to our 2017 American Journal of Hypertension review on the overview of the cellular immune responses involved in hypertension. Further, we discuss the activation of immune cells and their contribution to the pathogenesis of hypertension in different in vivo models. We also highlight existing gaps in the field of hypertension that need attention. The main goal of this review is to provide a knowledge base for translational research to develop therapeutic strategies that can improve cardiovascular health in humans.
Collapse
Affiliation(s)
| | - Hannah L Smith
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, Texas, USA
| | - Cristina M Arenaz
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, Texas, USA
| | - Bethany L Goodlett
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, Texas, USA
| | - Justin G McDermott
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, Texas, USA
| | - Brett M Mitchell
- Department of Medical Physiology, Texas A&M College of Medicine, Bryan, Texas, USA
| |
Collapse
|
12
|
Lakshmanan AP, Murugesan S, Al Khodor S, Terranegra A. The potential impact of a probiotic: Akkermansia muciniphila in the regulation of blood pressure—the current facts and evidence. Lab Invest 2022; 20:430. [PMID: 36153618 PMCID: PMC9509630 DOI: 10.1186/s12967-022-03631-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
Abstract
Akkermansia muciniphila (A. muciniphila) is present in the human gut microbiota from infancy and gradually increases in adulthood. The potential impact of the abundance of A. muciniphila has been studied in major cardiovascular diseases including elevated blood pressure or hypertension (HTN). HTN is a major factor in premature death worldwide, and approximately 1.28 billion adults aged 30–79 years have hypertension. A. muciniphila is being considered a next-generation probiotic and though numerous studies had highlighted the positive role of A. muciniphila in lowering/controlling the HTN, however, few studies had highlighted the negative impact of increased abundance of A. muciniphila in the management of HTN. Thus, in the review, we aimed to discuss the current facts, evidence, and controversy about the role of A. muciniphila in the pathophysiology of HTN and its potential effect on HTN management/regulation, which could be beneficial in identifying the drug target for the management of HTN.
Collapse
|
13
|
Shi H, Nelson JW, Phillips S, Petrosino JF, Bryan RM, Durgan DJ. Alterations of the gut microbial community structure and function with aging in the spontaneously hypertensive stroke prone rat. Sci Rep 2022; 12:8534. [PMID: 35595870 PMCID: PMC9122926 DOI: 10.1038/s41598-022-12578-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/11/2022] [Indexed: 01/04/2023] Open
Abstract
Gut dysbiosis, a pathological imbalance of bacteria, has been shown to contribute to the development of hypertension (HT), systemic- and neuro-inflammation, and blood-brain barrier (BBB) disruption in spontaneously hypertensive stroke prone rats (SHRSP). However, to date individual species that contribute to HT in the SHRSP model have not been identified. One potential reason, is that nearly all studies of the SHRSP gut microbiota have analyzed samples from rats with established HT. The goal of this study was to examine the SHRSP gut microbiota before, during, and after the onset of hypertension, and in normotensive WKY control rats over the same age range. We hypothesized that we could identify key microbes involved in the development of HT by comparing WKY and SHRSP microbiota during the pre-hypertensive state and longitudinally. Systolic blood pressure (SBP) was measured by tail-cuff plethysmography and fecal microbiota analyzed by16S rRNA gene sequencing. SHRSP showed significant elevations in SBP, as compared to WKY, beginning at 8 weeks of age (p < 0.05 at each time point). Bacterial community structure was significantly different between WKY and SHRSP as early as 4 weeks of age, and remained different throughout the study (p = 0.001-0.01). At the phylum level we observed significantly reduced Firmicutes and Deferribacterota, and elevated Bacteroidota, Verrucomicrobiota, and Proteobacteria, in pre-hypertensive SHRSP, as compared to WKY. At the genus level we identified 18 bacteria whose relative abundance was significantly different in SHRSP versus WKY at the pre-hypertensive ages of 4 or 6 weeks. In an attempt to further refine bacterial candidates that might contribute to the SHRSP phenotype, we compared the functional capacity of WKY versus SHRSP microbial communities. We identified significant differences in amino acid metabolism. Using untargeted metabolomics we found significant reductions in metabolites of the tryptophan-kynurenine pathway and increased indole metabolites in SHRSP versus WKY plasma. Overall, we provide further evidence that gut dysbiosis contributes to hypertension in the SHRSP model, and suggest for the first time the potential involvement of tryptophan metabolizing microbes.
Collapse
Affiliation(s)
- Huanan Shi
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - James W Nelson
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Integrated Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sharon Phillips
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Joseph F Petrosino
- Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- The Alkek Center for Metagenomics and Microbiota Research, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Robert M Bryan
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David J Durgan
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|