1
|
Zhang X, Du X, Cui Y. The Lymphatic Highway: How Lymphatics Drive Lung Health and Disease. Lung 2024; 202:487-499. [PMID: 39164594 DOI: 10.1007/s00408-024-00739-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024]
Abstract
The pulmonary lymphatic system has emerged as a critical regulator of lung homeostasis and a key contributor to the pathogenesis of respiratory diseases. As the primary conduit responsible for maintaining fluid balance and facilitating immune cell trafficking, the integrity of lymphatic vessels is essential for preserving normal pulmonary structure and function. Lymphatic abnormalities manifest across a broad spectrum of pulmonary disorders, underscoring their significance in respiratory health and disease. This review provides an overview of pulmonary lymphatic biology and delves into the involvement of lymphatics in four major lung diseases: chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), asthma, and lung transplant rejection. We examine how lymphatic abnormalities manifest in each of these conditions and investigate the mechanisms through which lymphatic remodeling and dysfunction contribute to disease progression. Furthermore, we explore the therapeutic potential of targeting the lymphatic system to ameliorate these debilitating respiratory conditions. Despite the current knowledge, several crucial questions remain unanswered, such as the spatial and temporal dynamics of lymphatic changes, the molecular crosstalk between lymphatics and the lung microenvironment, and the distinction between protective versus detrimental lymphatic phenotypes. Unraveling these mysteries holds the promise of identifying novel molecular regulators, characterizing lymphatic endothelial phenotypes, and uncovering bioactive mediators. By harnessing this knowledge, we can pave the way for the development of innovative disease-modifying therapies targeting the lymphatic highway in lung disorders.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, #10 Xi Tou Tiao, You An Men Wai, Fengtai District, Beijing, 100069, People's Republic of China
| | - Xinqian Du
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, #10 Xi Tou Tiao, You An Men Wai, Fengtai District, Beijing, 100069, People's Republic of China
| | - Ye Cui
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, #10 Xi Tou Tiao, You An Men Wai, Fengtai District, Beijing, 100069, People's Republic of China.
| |
Collapse
|
2
|
Miserocchi G. Physiopathology of High-Altitude Pulmonary Edema. High Alt Med Biol 2024. [PMID: 39331568 DOI: 10.1089/ham.2024.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
The air-blood barrier is well designed to accomplish the matching of gas diffusion with blood flow. This function is achieved by maintaining its thickness at ∼0.5 µm, a feature implying to keep extravascular lung water to the minimum. Exposure to hypobaric hypoxia, especially when associated with exercise, is a condition potentially leading to the development of the so-called high-altitude pulmonary edema (HAPE). This article presents a view of the physiopathology of HAPE by merging available data in humans exposed to high altitude with data from animal experimental approaches. A model is also presented to characterize HAPE nonsusceptible versus susceptible individuals based on the efficiency of alveolar-capillary oxygen uptake and estimated morphology of the air-blood barrier.
Collapse
Affiliation(s)
- Giuseppe Miserocchi
- Department of Medicine and Surgery, School of Medicine, University of Milano Bicocca, Monza, Italy
| |
Collapse
|
3
|
Miserocchi G, Rezoagli E, Muñoz-Del-Carpio-Toia A, Paricahua-Yucra LP, Zubieta-DeUrioste N, Zubieta-Calleja G, Beretta E. Modelling lung diffusion-perfusion limitation in mechanically ventilated SARS-CoV-2 patients. Front Physiol 2024; 15:1408531. [PMID: 39072215 PMCID: PMC11272564 DOI: 10.3389/fphys.2024.1408531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/18/2024] [Indexed: 07/30/2024] Open
Abstract
This is the first study to describe the daytime evolution of respiratory parameters in mechanically ventilated COVID-19 patients. The data base refers to patients hospitalised in the intensive care unit (ICU) at Arequipa Hospital (Peru, 2335 m) in 2021. In both survivors (S) and non-survivors (NS) patients, a remarkable decrease in respiratory compliance was observed, revealing a proportional decrease in inflatable alveolar units. The S and NS patients were all hyperventilated and their SatO2 was maintained at >90%. However, while S remained normocapnic, NS developed progressive hypercapnia. We compared the efficiency of O2 uptake and CO2 removal in the air blood barrier relying on a model allowing to partition between diffusion and perfusion limitations to gas exchange. The decrease in O2 uptake was interpreted as diffusion limitation, while the impairment in CO2 removal was modelled by progressive perfusion limitation. The latter correlated with the increase in positive end-expiratory pressure (PEEP) and plateau pressure (Pplat), leading to capillary compression, increased blood velocity, and considerable shortening of the air-blood contact time.
Collapse
Affiliation(s)
- Giuseppe Miserocchi
- Dipartimento di Medicina e Chirurgia, Università Milano-Bicocca, Monza, Italy
| | - Emanuele Rezoagli
- Dipartimento di Medicina e Chirurgia, Università Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | | | | | | | | | - Egidio Beretta
- Dipartimento di Medicina e Chirurgia, Università Milano-Bicocca, Monza, Italy
| |
Collapse
|
4
|
Zimmermann R, Roeder F, Ruppert C, Smith BJ, Knudsen L. Low-volume ventilation of preinjured lungs degrades lung function via stress concentration and progressive alveolar collapse. Am J Physiol Lung Cell Mol Physiol 2024; 327:L19-L39. [PMID: 38712429 DOI: 10.1152/ajplung.00323.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024] Open
Abstract
Mechanical ventilation can cause ventilation-induced lung injury (VILI). The concept of stress concentrations suggests that surfactant dysfunction-induced microatelectases might impose injurious stresses on adjacent, open alveoli and function as germinal centers for injury propagation. The aim of the present study was to quantify the histopathological pattern of VILI progression and to test the hypothesis that injury progresses at the interface between microatelectases and ventilated lung parenchyma during low-positive end-expiratory pressure (PEEP) ventilation. Bleomycin was used to induce lung injury with microatelectases in rats. Lungs were then mechanically ventilated for up to 6 h at PEEP = 1 cmH2O and compared with bleomycin-treated group ventilated protectively with PEEP = 5 cmH2O to minimize microatelectases. Lung mechanics were measured during ventilation. Afterward, lungs were fixed at end-inspiration or end-expiration for design-based stereology. Before VILI, bleomycin challenge reduced the number of open alveoli [N(alvair,par)] by 29%. No differences between end-inspiration and end-expiration were observed. Collapsed alveoli clustered in areas with a radius of up to 56 µm. After PEEP = 5 cmH2O ventilation for 6 h, N(alvair,par) remained stable while PEEP = 1 cmH2O ventilation led to an additional loss of aerated alveoli by 26%, mainly due to collapse, with a small fraction partly edema filled. Alveolar loss strongly correlated to worsening of tissue elastance, quasistatic compliance, and inspiratory capacity. The radius of areas of collapsed alveoli increased to 94 µm, suggesting growth of the microatelectases. These data provide evidence that alveoli become unstable in neighborhood of microatelectases, which most likely occurs due to stress concentration-induced local vascular leak and surfactant dysfunction.NEW & NOTEWORTHY Low-volume mechanical ventilation in the presence of high surface tension-induced microatelectases leads to the degradation of lung mechanical function via the progressive loss of alveoli. Microatelectases grow at the interfaces of collapsed and open alveoli. Here, stress concentrations might cause injury and alveolar instability. Accumulation of small amounts of alveolar edema can be found in a fraction of partly collapsed alveoli but, in this model, alveolar flooding is not a major driver for degradation of lung mechanics.
Collapse
Affiliation(s)
- Richard Zimmermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Franziska Roeder
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Clemens Ruppert
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Bradford J Smith
- Department of Bioengineering, College of Engineering, Design & Computing, University of Colorado Denver | Anschutz Medical Campus, Aurora, Colorado, United States
- Section of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Viitanen SJ, Gehani SM, Tilamaa AM, Rajamäki MM, Veldhuizen RAW. Biophysical properties of alveolar surfactant in drever dogs with hunting associated pulmonary edema. Acta Vet Scand 2024; 66:24. [PMID: 38822358 PMCID: PMC11143697 DOI: 10.1186/s13028-024-00745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/28/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND A syndrome of acute non-cardiogenic pulmonary edema associated with hunting is prevalent in the drever breed, but etiology of this syndrome is currently unknown. Alveolar surfactant has a critical role in preventing alveolar collapse and edema formation. The aim of this study was to investigate, whether the predisposition to hunting associated pulmonary edema in drever dogs is associated with impaired biophysical properties of alveolar surfactant. Seven privately owned drever dogs with recurrent hunting associated pulmonary edema and seven healthy control dogs of other breeds were included in the study. All affected dogs underwent thorough clinical examinations including echocardiography, laryngeal evaluation, bronchoscopy, and bronchoalveolar lavage (BAL) as well as head, neck and thoracic computed tomography imaging to rule out other cardiorespiratory diseases potentially causing the clinical signs. Alveolar surfactant was isolated from frozen, cell-free supernatants of BAL fluid and biophysical analysis of the samples was completed using a constrained sessile drop surfactometer. Statistical comparisons over consecutive compression expansion cycles were performed using repeated measures ANOVA and comparisons of single values between groups were analyzed using T-test. RESULTS There were no significant differences between groups in any of the biophysical outcomes of surfactant analysis. The critical function of surfactant, reducing the surface tension to low values upon compression, was similar between healthy dogs and affected drevers. CONCLUSIONS The etiology of hunting associated pulmonary edema in drever dogs is not due to an underlying surfactant dysfunction.
Collapse
Affiliation(s)
- Sanna Johanna Viitanen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Koetilantie 2, 00790, Helsinki, Finland.
| | - Sabrine Moya Gehani
- Departments of Medicine and Physiology & Pharmacology, University of Western Ontario and Lawson Health Research Institute, 800 Commissioners Road, London, ON, Canada
| | - Anni Maria Tilamaa
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Koetilantie 2, 00790, Helsinki, Finland
| | - Minna Marjaana Rajamäki
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Koetilantie 2, 00790, Helsinki, Finland
| | - Ruud Anthonius Wilhelmus Veldhuizen
- Departments of Medicine and Physiology & Pharmacology, University of Western Ontario and Lawson Health Research Institute, 800 Commissioners Road, London, ON, Canada
| |
Collapse
|
6
|
Licciardello M, Traldi C, Cicolini M, Bertana V, Marasso SL, Cocuzza M, Tonda-Turo C, Ciardelli G. A miniaturized multicellular platform to mimic the 3D structure of the alveolar-capillary barrier. Front Bioeng Biotechnol 2024; 12:1346660. [PMID: 38646009 PMCID: PMC11026571 DOI: 10.3389/fbioe.2024.1346660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/22/2024] [Indexed: 04/23/2024] Open
Abstract
Several diseases affect the alveoli, and the efficacy of medical treatments and pharmaceutical therapies is hampered by the lack of pre-clinical models able to recreate in vitro the diseases. Microfluidic devices, mimicking the key structural and compositional features of the alveoli, offer several advantages to medium and high-throughput analysis of new candidate therapies. Here, we developed an alveolus-on-a-chip recapitulating the microanatomy of the physiological tissue by including the epithelium, the fibrous interstitial layer and the capillary endothelium. A PDMS device was obtained assembling a top layer and a bottom layer obtained by replica molding. A polycaprolactone/gelatin (PCL-Gel) electrospun membrane was included within the two layers supporting the seeding of 3 cell phenotypes. Epithelial cells were grown on a fibroblast-laden collagen hydrogel located on the top side of the PCL-Gel mats while endothelial cells were seeded on the basolateral side of the membrane. The innovative design of the microfluidic device allows to replicate both cell-cell and cell-extracellular matrix interactions according to the in vivo cell arrangement along with the establishment of physiologically relevant air-liquid interface conditions. Indeed, high cell viability was confirmed for up to 10 days and the formation of a tight endothelial and epithelial barrier was assessed by immunofluorescence assays.
Collapse
Affiliation(s)
- Michela Licciardello
- La.Di.Spe Bioengineerig, Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Turin, Italy
- PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Italy
| | - Cecilia Traldi
- La.Di.Spe Bioengineerig, Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Turin, Italy
- PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Italy
| | - Martina Cicolini
- PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
- ChiLab- Materials and Microsystems Laboratory, Politecnico di Torino, Department of Applied Science and Technology (DISAT), Chivasso, Italy
| | - Valentina Bertana
- ChiLab- Materials and Microsystems Laboratory, Politecnico di Torino, Department of Applied Science and Technology (DISAT), Chivasso, Italy
| | - Simone Luigi Marasso
- ChiLab- Materials and Microsystems Laboratory, Politecnico di Torino, Department of Applied Science and Technology (DISAT), Chivasso, Italy
- CNR-IMEM, National Research Council-Institute of Materials for Electronics and Magnetism, Parma, Italy
| | - Matteo Cocuzza
- ChiLab- Materials and Microsystems Laboratory, Politecnico di Torino, Department of Applied Science and Technology (DISAT), Chivasso, Italy
| | - Chiara Tonda-Turo
- La.Di.Spe Bioengineerig, Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Turin, Italy
- PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Italy
| | - Gianluca Ciardelli
- La.Di.Spe Bioengineerig, Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Turin, Italy
- PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Italy
- CNR-IPCF, National Research Council-Institute for Chemical and Physical Processes, Pisa, Italy
| |
Collapse
|
7
|
Ma H, Fujioka H, Halpern D, Bates JHT, Gaver DP. Full-lung simulations of mechanically ventilated lungs incorporating recruitment/derecruitment dynamics. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1257710. [PMID: 38020240 PMCID: PMC10654632 DOI: 10.3389/fnetp.2023.1257710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
This study developed and investigated a comprehensive multiscale computational model of a mechanically ventilated ARDS lung to elucidate the underlying mechanisms contributing to the development or prevention of VILI. This model is built upon a healthy lung model that incorporates realistic airway and alveolar geometry, tissue distensibility, and surfactant dynamics. Key features of the ARDS model include recruitment and derecruitment (RD) dynamics, alveolar tissue viscoelasticity, and surfactant deficiency. This model successfully reproduces realistic pressure-volume (PV) behavior, dynamic surface tension, and time-dependent descriptions of RD events as a function of the ventilation scenario. Simulations of Time-Controlled Adaptive Ventilation (TCAV) modes, with short and long durations of exhalation (T Low - and T Low +, respectively), reveal a higher incidence of RD for T Low + despite reduced surface tensions due to interfacial compression. This finding aligns with experimental evidence emphasizing the critical role of timing in protective ventilation strategies. Quantitative analysis of energy dissipation indicates that while alveolar recruitment contributes only a small fraction of total energy dissipation, its spatial concentration and brief duration may significantly contribute to VILI progression due to its focal nature and higher intensity. Leveraging the computational framework, the model may be extended to facilitate the development of personalized protective ventilation strategies to enhance patient outcomes. As such, this computational modeling approach offers valuable insights into the complex dynamics of VILI that may guide the optimization of ventilation strategies in ARDS management.
Collapse
Affiliation(s)
- Haoran Ma
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, United States
| | - Hideki Fujioka
- Center for Computational Science, Tulane University, New Orleans, LA, United States
| | - David Halpern
- Department of Mathematics, University of Alabama, Tuscaloosa, AL, United States
| | - Jason H. T. Bates
- Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Donald P. Gaver
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, United States
| |
Collapse
|
8
|
Licciardello M, Sgarminato V, Ciardelli G, Tonda-Turo C. Development of biomimetic co-culture and tri-culture models to mimic the complex structure of the alveolar-capillary barrier. BIOMATERIALS ADVANCES 2023; 154:213620. [PMID: 37690344 DOI: 10.1016/j.bioadv.2023.213620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/29/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Alveoli are the functional area of respiratory system where the gaseous exchanges take place at level of the alveolar-capillary barrier. The development of safe and effective therapeutic approaches for treating lung disease is currently limited due to the lack of realistic preclinical models for their testing and validation. In this work, tissue engineering approaches were exploited to develop a biomimetic platform that provide an appropriate mimicking of the extracellular environment and the multicellular architecture of human alveoli. Here, we propose the implementation of two biomimetic in vitro models to reproduce the features of the main anatomic portions of the physiological alveolar-capillary barrier. First, a co-culture barrier model was obtained by integrating an electrospun polycaprolactone-gelatin (PCL-Gel) membrane in a modified transwell insert (PCL-Gel TW) to mimic the alveolar basement membrane (coded as thin model). Alveolar epithelial (A549) and lung microvascular endothelial (HULEC-5a) cells were cultured on the apical and basolateral side of the PCL-Gel membrane, respectively, under physiologic air-liquid interface (ALI) conditions for 7 days. The ALI condition promoted the expression of type I and type II alveolar epithelial cell markers and the secretion of mucus in A549 cells. Increased cell viability and barrier properties in co-cultures of A549 and HULEC-5a compared to mono-cultures revealed the effectiveness of the model to reproduce in vitro physiological-relevant features of the alveolar-capillary barrier. The second portion of the alveolar-capillary barrier was developed implementing a tri-culture model (coded as thick model) including a type I collagen (COLL) hydrogel formulated to host lung fibroblasts (MRC-5). The thick barrier model was implemented by seeding HULEC-5a on the basolateral side of PCL-Gel TW and then pouring sequentially MRC-5-laden COLL hydrogel and A549 cells on the apical side of the electrospun membrane. The thick model was maintained up to 7 days at ALI and immunofluorescence staining of tight and adherent junctions demonstrated the formation of a tight barrier. Lastly, the ability of models to emulate pathological inflammatory conditions was validated by exposing the apical compartment of the PCL-Gel TW to lipopolysaccharide (LPS). The damage of A549 tight junctions, the increase of barrier permeability and IL-6 pro-inflammatory cytokine release was observed after 48 h exposure to LPS.
Collapse
Affiliation(s)
- Michela Licciardello
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy; POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy; Interuniversity Center for the promotion of the 3Rs principles in teaching and research, Italy
| | - Viola Sgarminato
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy; POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy; Interuniversity Center for the promotion of the 3Rs principles in teaching and research, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy; POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy; Interuniversity Center for the promotion of the 3Rs principles in teaching and research, Italy; CNR-IPCF, National Research Council-Institute for Chemical and Physical Processes, Pisa, Italy
| | - Chiara Tonda-Turo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy; POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy; Interuniversity Center for the promotion of the 3Rs principles in teaching and research, Italy.
| |
Collapse
|
9
|
Clemente-Suárez VJ, Martín-Rodríguez A, Redondo-Flórez L, Villanueva-Tobaldo CV, Yáñez-Sepúlveda R, Tornero-Aguilera JF. Epithelial Transport in Disease: An Overview of Pathophysiology and Treatment. Cells 2023; 12:2455. [PMID: 37887299 PMCID: PMC10605148 DOI: 10.3390/cells12202455] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Epithelial transport is a multifaceted process crucial for maintaining normal physiological functions in the human body. This comprehensive review delves into the pathophysiological mechanisms underlying epithelial transport and its significance in disease pathogenesis. Beginning with an introduction to epithelial transport, it covers various forms, including ion, water, and nutrient transfer, followed by an exploration of the processes governing ion transport and hormonal regulation. The review then addresses genetic disorders, like cystic fibrosis and Bartter syndrome, that affect epithelial transport. Furthermore, it investigates the involvement of epithelial transport in the pathophysiology of conditions such as diarrhea, hypertension, and edema. Finally, the review analyzes the impact of renal disease on epithelial transport and highlights the potential for future research to uncover novel therapeutic interventions for conditions like cystic fibrosis, hypertension, and renal failure.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain;
- Group de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain; (L.R.-F.); (C.V.V.-T.)
| | - Carlota Valeria Villanueva-Tobaldo
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain; (L.R.-F.); (C.V.V.-T.)
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | | |
Collapse
|
10
|
Parks JK, Wheatley-Guy CM, Stewart GM, Fermoyle CC, Taylor BJ, Schwartz J, Ziegler B, Johnson K, Gavet A, Chabridon L, Robach P, Johnson BD. Lung "Comet Tails" in Healthy Individuals: Accumulation or Clearance of Extravascular Lung Water? High Alt Med Biol 2023; 24:230-233. [PMID: 37722011 DOI: 10.1089/ham.2022.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023] Open
Abstract
Parks, Jordan K, Courtney M. Wheatley-Guy, Glenn M. Stewart, Caitlin C. Fermoyle, Bryan J. Taylor, Jesse Schwartz, Briana Ziegler, Kay Johnson, Alice Gavet, Loïc Chabridon, Paul Robach, and Bruce D. Johnson. Lung "Comet Tails" in healthy individuals: accumulation or clearance of extravascular lung water? High Alt Med Biol. 24:230-233, 2023-Ultrasound lung comet tails (or B-lines) tend to be limited in number (<5) or absent under ultrasound examination, and the appearance of diffuse B-lines with lung sliding has been suggested to identify pulmonary edema. Clinical evaluation of B-lines has been utilized as a bedside test to assess pulmonary congestion in patients with heart failure. Exposure to altitude or prolonged exercise can alter fluid regulation and can lead to pulmonary congestion or edema. As such, B-lines have been utilized in the field to monitor for pathological lung fluid accumulation. However, ultrasound lung comet lines might not be as reliable for identifying extravascular lung water (EVLW) as previously thought in healthy individuals exercising at altitude where an increase in the number of ultrasound lung comets would reflect fluid buildup in the interstitial space of the alveoli and pulmonary capillaries. This report will focus on reviewing the literature and our data from a group of ultraendurance runners that completed the Ultra Trail Mont Blanc race that demonstrates that lung comet tails may not always be evidence of pathological fluid accumulation in healthy individuals and as such should be used to assess EVLW in concert with other diagnostic testing.
Collapse
Affiliation(s)
- Jordan K Parks
- Division of Cardiovascular Disease, Mayo Clinic, Scottsdale, Arizona, USA
| | | | - Glenn M Stewart
- Division of Cardiovascular Disease, Mayo Clinic, Scottsdale, Arizona, USA
| | - Caitlin C Fermoyle
- Division of Cardiovascular Disease, Mayo Clinic, Scottsdale, Arizona, USA
| | - Bryan J Taylor
- Department of Cardiovascular Medicine, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Jesse Schwartz
- Division of Cardiovascular Disease, Mayo Clinic, Scottsdale, Arizona, USA
| | - Briana Ziegler
- Division of Cardiovascular Disease, Mayo Clinic, Scottsdale, Arizona, USA
| | - Kay Johnson
- Division of Cardiovascular Disease, Mayo Clinic, Scottsdale, Arizona, USA
| | - Alice Gavet
- Ecole Nationale des Sports de Montagne, site de l'Ecole Nationale de Ski et d'Alpinisme, Chamonix, France
| | - Loïc Chabridon
- Ecole Nationale des Sports de Montagne, site de l'Ecole Nationale de Ski et d'Alpinisme, Chamonix, France
| | - Paul Robach
- Ecole Nationale des Sports de Montagne, site de l'Ecole Nationale de Ski et d'Alpinisme, Chamonix, France
| | - Bruce D Johnson
- Division of Cardiovascular Disease, Mayo Clinic, Scottsdale, Arizona, USA
| |
Collapse
|
11
|
Grotberg JB, Romanò F. Computational pulmonary edema: A microvascular model of alveolar capillary and interstitial flow. APL Bioeng 2023; 7:036101. [PMID: 37426383 PMCID: PMC10325818 DOI: 10.1063/5.0158324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
We present a microvascular model of fluid transport in the alveolar septa related to pulmonary edema. It consists of a two-dimensional capillary sheet coursing by several alveoli. The alveolar epithelial membrane runs parallel to the capillary endothelial membrane with an interstitial layer in between, making one long septal tract. A coupled system of equations uses lubrication theory for the capillary blood, Darcy flow for the porous media of the interstitium, a passive alveolus, and the Starling equation at both membranes. Case examples include normal physiology, cardiogenic pulmonary edema, acute respiratory distress syndrome (ARDS), hypoalbuminemia, and effects of PEEP. COVID-19 has dramatically increased ARDS in the world population, raising the urgency for such a model to create an analytical framework. Under normal conditions fluid exits the alveolus, crosses the interstitium, and enters the capillary. For edema, this crossflow is reversed with fluid leaving the capillary and entering the alveolus. Because both the interstitial and capillary pressures decrease downstream, the reversal can occur within a single septal tract, with edema upstream and clearance downstream. Clinically useful solution forms are provided allowing calculation of interstitial fluid pressure, crossflows, and critical capillary pressures. Overall, the interstitial pressures are found to be significantly more positive than values used in the traditional physiological literature. That creates steep gradients near the upstream and downstream end outlets, driving significant flows toward the distant lymphatics. This new physiological flow provides an explanation to the puzzle, noted since 1896, of how pulmonary lymphatics can function so far from the alveoli: the interstitium is self-clearing.
Collapse
Affiliation(s)
- James B. Grotberg
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Francesco Romanò
- Université Lille, CNRS, ONERA, Arts et Métiers Institute of Technology, Centrale Lille, UMR 9014 LMFL-Laboratoire de Mécanique des Fluides de Lille-Kampé de Fériet, F-59000 Lille, France
| |
Collapse
|
12
|
Yang L, Chaves L, Kutscher HL, Karki S, Tamblin M, Kenney P, Reynolds JL. An immunoregulator nanomedicine approach for the treatment of tuberculosis. Front Bioeng Biotechnol 2023; 11:1095926. [PMID: 37304141 PMCID: PMC10249870 DOI: 10.3389/fbioe.2023.1095926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction: A nanoparticle composed of a poly (lactic-co-glycolic acid) (PLGA) core and a chitosan (CS) shell with surface-adsorbed 1,3 β-glucan (β-glucan) was synthesized. The exposure response of CS-PLGA nanoparticles (0.1 mg/mL) with surface-bound β-glucan at 0, 5, 10, 15, 20, or 25 ng or free β-glucan at 5, 10, 15, 20, or 25 ng/mL in macrophage in vitro and in vivo was investigated. Results: In vitro studies demonstrate that gene expression for IL-1β, IL-6, and TNFα increased at 10 and 15 ng surface-bound β-glucan on CS-PLGA nanoparticles (0.1 mg/mL) and at 20 and 25 ng/mL of free β-glucan both at 24 h and 48 h. Secretion of TNFα protein and ROS production increased at 5, 10, 15, and 20 ng surface-bound β-glucan on CS-PLGA nanoparticles and at 20 and 25 ng/mL of free β-glucan at 24 h. Laminarin, a Dectin-1 antagonist, prevented the increase in cytokine gene expression induced by CS-PLGA nanoparticles with surface-bound β-glucan at 10 and 15 ng, indicating a Dectin-1 receptor mechanism. Efficacy studies showed a significant reduction in intracellular accumulation of mycobacterium tuberculosis (Mtb) in monocyte-derived macrophages (MDM) incubated with on CS-PLGA (0.1 mg/ml) nanoparticles with 5, 10, and 15 ng surface-bound β-glucan or with 10 and 15 ng/mL of free β-glucan. β-glucan-CS-PLGA nanoparticles inhibited intracellular Mtb growth more than free β-glucan alone supporting the role of β-glucan-CS-PLGA nanoparticles as stronger adjuvants than free β-glucan. In vivo studies demonstrate that oropharyngeal aspiration (OPA) of CS-PLGA nanoparticles with nanogram concentrations of surface-bound β-glucan or free β-glucan increased TNFα gene expression in alveolar macrophages and TNFα protein secretion in bronchoalveolar lavage supernatants. Discussion: Data also demonstrate no damage to the alveolar epithelium or changes in the murine sepsis score following exposure to β-glucan-CS-PLGA nanoparticles only, indicating safety and feasibility of this nanoparticle adjuvant platform to mice by OPA.
Collapse
Affiliation(s)
- Luona Yang
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Lee Chaves
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Hilliard L. Kutscher
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Shanta Karki
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Maria Tamblin
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Patrick Kenney
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Jessica L. Reynolds
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
13
|
Miserocchi G. Early Endothelial Signaling Transduction in Developing Lung Edema. Life (Basel) 2023; 13:1240. [PMID: 37374024 DOI: 10.3390/life13061240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
The lung promptly responds to edemagenic conditions through functional adaptations that contrast the increase in microvascular filtration. This review presents evidence for early signaling transduction by endothelial lung cells in two experimental animal models of edema, hypoxia exposure, and fluid overload (hydraulic edema). The potential role of specialized sites of the plasma membranes considered mobile signaling platforms, referred to as membrane rafts, that include caveolae and lipid rafts, is presented. The hypothesis is put forward that early changes in the lipid composition of the bilayer of the plasma membrane might trigger the signal transduction process when facing changes in the pericellular microenvironment caused by edema. Evidence is provided that for an increase in the extravascular lung water volume not exceeding 10%, changes in the composition of the plasma membrane of endothelial cells are evoked in response to mechanical stimuli from the interstitial compartment as well as chemical stimuli relating with changes in the concentration of the disassembled portions of structural macromolecules. In hypoxia, thinning of endothelial cells, a decrease in caveolae and AQP-1, and an increase in lipid rafts are observed. The interpretation of this response is that it favors oxygen diffusion and hinder trans-cellular water fluxes. In hydraulic edema, which generates greater capillary water leakages, an increase in cell volume and opposite changes in membrane rafts were observed; further, the remarkable increase in caveolae suggests a potential abluminal-luminal vesicular-dependent fluid reabsorption.
Collapse
Affiliation(s)
- Giuseppe Miserocchi
- Department of Medicine and Surgery, Università di Milano Bicocca, 20900 Monza, Italy
| |
Collapse
|
14
|
Ren M, Chen J, Xu H, Li W, Wang T, Chi Z, Lin Y, Zhang A, Chen G, Wang X, Sun X, Liang G, Wang J, Luo W. Ergolide covalently binds NLRP3 and inhibits NLRP3 inflammasome-mediated pyroptosis. Int Immunopharmacol 2023; 120:110292. [PMID: 37182452 DOI: 10.1016/j.intimp.2023.110292] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND NLR family pyrin domain-containing 3 (NLRP3)-mediated pyroptosis plays a key role in various acute and chronic inflammatory diseases. Targeted inhibition of NLRP3-mediated pyroptosis may be a potential therapeutic strategy for various inflammatory diseases. Ergolide (ERG) is a sesquiterpene lactone natural product derived from the traditional Chinese medicinal herb, Inula britannica. ERG has been shown to have anti-inflammatory and anti-cancer activities, but the target is remains unknown. HYPOTHESIS/PURPOSE This study performed an in-depth investigation of the anti-inflammatory mechanism of ERG in NLRP3-mediated pyroptosis and NLPR3 inflammasome related sepsis and acute lung injury model. METHODS ELISA and Western blot were used to determine the IL-1β and P20 levels. Co-immunoprecipitation assays were used to detect the interaction between proteins. Drug affinity response target stability (DARTS) assays were used to explore the potential target of ERG. C57BL/6J mice were intraperitoneally injected with E. coli DH5α (2 × 109 CFU/mouse) to establish a sepsis model. Acute lung injury was induced by intratracheal administrationof lipopolysaccharide in wild-type mice and NLRP3 knockout mice with or without ERG treatment. RESULTS We showed that ERG is an efficient inhibitor of NLRP3-mediated pyroptosis in the first and second signals of NLRP3 inflammasome activation. Furthermore, we demonstrated that ERG irreversibly bound to the NACHT domain of NLRP3 to prevent the assembly and activation of the NLRP3 inflammasome. ERG remarkably improved the survival rate of wild-type septic mice. In lipopolysaccharide-induced acute lung injury model, ERG alleviated acute lung injury of wild-type mice but not NLRP3 knockout mice. CONCLUSION Our results revealed that the anti-pyroptosis effect of ERG are dependent on NLRP3 and NLRP3 NACHT domain is ERG's direct target. Therefore, ERG can serve as a precursor drug for the development of novel NLRP3 inhibitors to treat NLRP3 inflammasome mediated inflammatory diseases.
Collapse
Affiliation(s)
- Miao Ren
- The Department of Anesthesiology and Operation Room, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiahao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haowen Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Weifeng Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Tingting Wang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317099, China
| | - Zhanghuan Chi
- Wenzhou Third Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yi Lin
- Wenzhou Third Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Anqi Zhang
- The Department of Anesthesiology and Operation Room, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Gaozhi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaoyu Sun
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
| | - Junlu Wang
- The Department of Anesthesiology and Operation Room, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Wu Luo
- Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
15
|
Miserocchi G. The impact of heterogeneity of the air-blood barrier on control of lung extravascular water and alveolar gas exchange. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1142245. [PMID: 37251706 PMCID: PMC10213913 DOI: 10.3389/fnetp.2023.1142245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
The architecture of the air-blood barrier is effective in optimizing the gas exchange as long as it retains its specific feature of extreme thinness reflecting, in turn, a strict control on the extravascular water to be kept at minimum. Edemagenic conditions may perturb this equilibrium by increasing microvascular filtration; this characteristically occurs when cardiac output increases to balance the oxygen uptake with the oxygen requirement such as in exercise and hypoxia (either due to low ambient pressure or reflecting a pathological condition). In general, the lung is well equipped to counteract an increase in microvascular filtration rate. The loss of control on fluid balance is the consequence of disruption of the integrity of the macromolecular structure of lung tissue. This review, merging data from experimental approaches and evidence in humans, will explore how the heterogeneity in morphology, mechanical features and perfusion of the terminal respiratory units might impact on lung fluid balance and its control. Evidence is also provided that heterogeneities may be inborn and they could actually get worse as a consequence of a developing pathological process. Further, data are presented how in humans inter-individual heterogeneities in morphology of the terminal respiratory hinder the control of fluid balance and, in turn, hamper the efficiency of the oxygen diffusion-transport function.
Collapse
|
16
|
Hårdstedt M, Seiler C. Swimming-Induced Pulmonary Edema: Respiratory Pathogens as a Potential Risk Factor. Chest 2023; 163:1009-1010. [PMID: 37164569 DOI: 10.1016/j.chest.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 05/12/2023] Open
Affiliation(s)
- Maria Hårdstedt
- Center for Clinical Research Dalarna-Uppsala University, Falun, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden; Vansbro Primary Health Care Center, Vansbro, Sweden.
| | - Claudia Seiler
- Center for Clinical Research Dalarna-Uppsala University, Falun, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden; Department of Anesthesiology and Intensive Care, Falun Hospital, Falun, Sweden
| |
Collapse
|
17
|
Bates JHT, Nieman GF, Kollisch-Singule M, Gaver DP. Ventilator-Induced Lung Injury as a Dynamic Balance Between Epithelial Cell Damage and Recovery. Ann Biomed Eng 2023; 51:1052-1062. [PMID: 37000319 DOI: 10.1007/s10439-023-03186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/15/2023] [Indexed: 04/01/2023]
Abstract
Acute respiratory distress syndrome (ARDS) has a high mortality rate that is due in part to ventilator-induced lung injury (VILI). Nevertheless, the majority of patients eventually recover, which means that their innate reparative capacities eventually prevail. Since there are currently no medical therapies for ARDS, minimizing its mortality thus amounts to achieving an optimal balance between spontaneous tissue repair versus the generation of VILI. In order to understand this balance better, we developed a mathematical model of the onset and recovery of VILI that incorporates two hypotheses: (1) a novel multi-hit hypothesis of epithelial barrier failure, and (2) a previously articulated rich-get-richer hypothesis of the interaction between atelectrauma and volutrauma. Together, these concepts explain why VILI appears in a normal lung only after an initial latent period of injurious mechanical ventilation. In addition, they provide a mechanistic explanation for the observed synergy between atelectrauma and volutrauma. The model recapitulates the key features of previously published in vitro measurements of barrier function in an epithelial monolayer and in vivo measurements of lung function in mice subjected to injurious mechanical ventilation. This provides a framework for understanding the dynamic balance between factors responsible for the generation of and recovery from VILI.
Collapse
Affiliation(s)
- Jason H T Bates
- Department of Medicine, University of Vermont, Burlington, VT, 05405, USA.
- Department of Medicine, Larner College of Medicine, 149 Beaumont Avenue, Burlington, 05405-0075, USA.
| | - Gary F Nieman
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | | | - Donald P Gaver
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| |
Collapse
|
18
|
Knudsen L, Hummel B, Wrede C, Zimmermann R, Perlman CE, Smith BJ. Acinar micromechanics in health and lung injury: what we have learned from quantitative morphology. Front Physiol 2023; 14:1142221. [PMID: 37025383 PMCID: PMC10070844 DOI: 10.3389/fphys.2023.1142221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
Within the pulmonary acini ventilation and blood perfusion are brought together on a huge surface area separated by a very thin blood-gas barrier of tissue components to allow efficient gas exchange. During ventilation pulmonary acini are cyclically subjected to deformations which become manifest in changes of the dimensions of both alveolar and ductal airspaces as well as the interalveolar septa, composed of a dense capillary network and the delicate tissue layer forming the blood-gas barrier. These ventilation-related changes are referred to as micromechanics. In lung diseases, abnormalities in acinar micromechanics can be linked with injurious stresses and strains acting on the blood-gas barrier. The mechanisms by which interalveolar septa and the blood-gas barrier adapt to an increase in alveolar volume have been suggested to include unfolding, stretching, or changes in shape other than stretching and unfolding. Folding results in the formation of pleats in which alveolar epithelium is not exposed to air and parts of the blood-gas barrier are folded on each other. The opening of a collapsed alveolus (recruitment) can be considered as an extreme variant of septal wall unfolding. Alveolar recruitment can be detected with imaging techniques which achieve light microscopic resolution. Unfolding of pleats and stretching of the blood-gas barrier, however, require electron microscopic resolution to identify the basement membrane. While stretching results in an increase of the area of the basement membrane, unfolding of pleats and shape changes do not. Real time visualization of these processes, however, is currently not possible. In this review we provide an overview of septal wall micromechanics with focus on unfolding/folding as well as stretching. At the same time we provide a state-of-the-art design-based stereology methodology to quantify microarchitecture of alveoli and interalveolar septa based on different imaging techniques and design-based stereology.
Collapse
Affiliation(s)
- Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Benjamin Hummel
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Richard Zimmermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Carrie E Perlman
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Bradford J Smith
- Department of Bioengineering, College of Engineering Design and Computing, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, United States
- Department of Pediatric Pulmonary and Sleep Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
19
|
Taketa T, Uchiyama Y, Kodama N, Koyama T, Domen K. ICU-Acquired Weakness Complicated With Bilateral Foot Drop After Severe COVID-19: Successful Rehabilitation Approach and Long-Term Follow-Up. Cureus 2023; 15:e36566. [PMID: 37102034 PMCID: PMC10123525 DOI: 10.7759/cureus.36566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 04/28/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is associated with muscle and nerve injuries as a consequence of prolonged critical illness. We report here a case of intensive care unit-acquired weakness (ICU-AW) with bilateral peroneal nerve palsy after COVID-19. A 54-year-old male with COVID-19 was transferred to our hospital. He was treated by mechanical ventilation and veno-venous extracorporeal membrane oxygenation (VV-ECMO), from which he was successfully weaned. However, by day 32 of ICU admission, he had developed generalized muscle weakness with bilateral foot drop and was diagnosed with intensive care unit-acquired weakness complicated with bilateral peroneal nerve palsy. Electrophysiological examination showed a denervation pattern in the tibialis anterior muscles, indicating that the foot drop was unlikely to recover immediately. Gait training with customized ankle-foot orthoses (AFO) and muscle-strengthening exercises were started as part of a regimen that included a stay in a convalescent rehabilitation facility and outpatient rehabilitation. Seven months after onset, he returned to work, and 18 months after onset, he had improved to the same level of activities of daily living (ADLs) as before onset. Outcome prediction by electrophysiological examination, appropriate prescription of orthoses, and continuous rehabilitative treatment that focused on locomotion contributed to the successful outcome in this case.
Collapse
Affiliation(s)
- Tomoyo Taketa
- Rehabilitation Medicine, Hyogo College of Medicine, Nishinomiya, JPN
| | - Yuki Uchiyama
- Rehabilitation Medicine, Hyogo College of Medicine, Nishinomiya, JPN
| | - Norihiko Kodama
- Rehabilitation Medicine, Hyogo College of Medicine, Nishinomiya, JPN
| | - Tetsuo Koyama
- Rehabilitation Medicine, Nishinomiya Kyoritsu Neurosurgical Hospital, Nishinomiya, JPN
| | - Kazuhisa Domen
- Rehabilitation Medicine, Hyogo College of Medicine, Nishinomiya, JPN
| |
Collapse
|
20
|
Liu Y, Li L, Wang L, Lu L, Li Y, Huang G, Song J. 'Two-faces' of hyaluronan, a dynamic barometer of disease progression in tumor microenvironment. Discov Oncol 2023; 14:11. [PMID: 36698043 PMCID: PMC9877274 DOI: 10.1007/s12672-023-00618-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Hyaluronan (HA) is a linear polysaccharide consisting of disaccharide units which are the D-glucuronic acid and N-acetyl-D-glucosamine. As the largest component of the extracellular matrix in microenvironment, HA polymers with different molecular weights vary in properties to molecular biology function. High molecular weight HA (HMW-HA) is mainly found in normal tissue or physiological condition, and exhibits lubrication and protection properties due to its good water retention and viscoelasticity. On the other hand, an increase in HA catabolism leads to the accumulation of low molecular weight HA (LMW-HA) under pathological circumstances such as inflammation, pre-cancerous and tumor microenvironment. LMW-HA acts as extracellular signals to enhance tumorigenic and metastatic phenotype, such as energy reprogramming, angiogenesis and extracellular matrix (ECM) remodeling. This review discusses the basic properties of this simplest carbohydrate molecule in ECM with enormous potential, and its regulatory role between tumorigenesis and microenvironmental homeostasis. The extensive discoveries of the mechanisms underlying the roles of HA in various physiological and pathological processes would provide more information for future research in the fields of biomimetic materials, pharmaceutical and clinical applications.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001, Guangxi, People's Republic of China
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001, Guangxi, People's Republic of China
| | - Li Li
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001, Guangxi, People's Republic of China.
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001, Guangxi, People's Republic of China.
| | - Li Wang
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001, Guangxi, People's Republic of China
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001, Guangxi, People's Republic of China
| | - Lu Lu
- School of Medicine & Health, Guangxi Vocational & Technical Institute of Industry, Nanning, 530001, Guangxi, People's Republic of China
| | - Ying Li
- Department of Pharmacy, Guangxi Orthopaedics and Traumatology Hospital, Nanning, 530012, Guangxi, People's Republic of China
| | - Guolin Huang
- Department of Pharmacy, The First People's Hospital of Nanning, Nanning, 530022, Guangxi, People's Republic of China
| | - Jinjing Song
- Department of Pharmacy, The First People's Hospital of Nanning, Nanning, 530022, Guangxi, People's Republic of China
| |
Collapse
|
21
|
Miserocchi G, Beretta E. A century of exercise physiology: lung fluid balance during and following exercise. Eur J Appl Physiol 2023; 123:1-24. [PMID: 36264327 DOI: 10.1007/s00421-022-05066-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/04/2022] [Indexed: 01/17/2023]
Abstract
PURPOSE This review recalls the principles developed over a century to describe trans-capillary fluid exchanges concerning in particular the lung during exercise, a specific condition where dyspnea is a leading symptom, the question being whether this symptom simply relates to fatigue or also implies some degree of lung edema. METHOD Data from experimental models of lung edema are recalled aiming to: (1) describe how extravascular lung water is strictly controlled by "safety factors" in physiological conditions, (2) consider how waning of "safety factors" inevitably leads to development of lung edema, (3) correlate data from experimental models with data from exercising humans. RESULTS Exercise is a strong edemagenic condition as the increase in cardiac output leads to lung capillary recruitment, increase in capillary surface for fluid exchange and potential increase in capillary pressure. The physiological low microvascular permeability may be impaired by conditions causing damage to the interstitial matrix macromolecular assembly leading to alveolar edema and haemorrhage. These conditions include hypoxia, cyclic alveolar unfolding/folding during hyperventilation putting a tensile stress on septa, intensity and duration of exercise as well as inter-individual proneness to develop lung edema. CONCLUSION Data from exercising humans showed inter-individual differences in the dispersion of the lung ventilation/perfusion ratio and increase in oxygen alveolar-capillary gradient. More recent data in humans support the hypothesis that greater vasoconstriction, pulmonary hypertension and slower kinetics of alveolar-capillary O2 equilibration relate with greater proneness to develop lung edema due higher inborn microvascular permeability possibly reflecting the morpho-functional features of the air-blood barrier.
Collapse
Affiliation(s)
- Giuseppe Miserocchi
- Dipartimento di Medicina e Chirurgia, Università Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Egidio Beretta
- Dipartimento di Medicina e Chirurgia, Università Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy.
| |
Collapse
|
22
|
Grotberg JB, Romanò F. Computational pulmonary edema: A microvascular model of alveolar capillary and interstitial flow. APL Bioeng 2022; 6:046104. [PMID: 36389648 PMCID: PMC9653270 DOI: 10.1063/5.0109107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
We present a microvascular model of fluid transport in the alveolar septa related to pulmonary edema. It consists of a two-dimensional capillary sheet coursing by several alveoli. The alveolar epithelial membrane runs parallel to the capillary endothelial membrane with an interstitial layer in between, making one long septal tract. A coupled system of equations is derived using lubrication theory for the capillary blood, Darcy flow for the porous media of the interstitium, a passive alveolus, and the Starling equation at both membranes. Case examples include normal physiology, cardiogenic pulmonary edema, noncardiogenic edema Acute Respiratory Distress Syndrome (ARDS) and hypoalbuminemia, and the effects of positive end expiratory pressure. COVID-19 has dramatically increased ARDS in the world population, raising the urgency for such a model to create an analytical framework. Under normal conditions, the fluid exits the alveolus, crosses the interstitium, and enters the capillary. For edema, this crossflow is reversed with the fluid leaving the capillary and entering the alveolus. Because both the interstitial and capillary pressures decrease downstream, the reversal can occur within a single septal tract, with edema upstream and clearance downstream. Overall, the interstitial pressures are found to be significantly more positive than values used in the traditional physiological literature that creates steep gradients near the upstream and downstream end outlets, driving significant flows toward the distant lymphatics. This new physiological flow may provide a possible explanation to the puzzle, noted since 1896, of how pulmonary lymphatics can function so far from the alveoli: the interstitium can be self-clearing.
Collapse
Affiliation(s)
- James B. Grotberg
- Department of Biomedical Engineering, University of Michigan, 1107 Gerstacker Bldg., 2200 Bonisteel Blvd., Ann Arbor, Michigan 48109-2099, USA
- Author to whom correspondence should be addressed: . Tel.: (734)-936-3834. Fax: (734)-936-1905
| | - Francesco Romanò
- Univ. Lille, CNRS, ONERA, Arts et Métiers Institute of Technology, Centrale Lille, UMR 9014, LMFL-Laboratoire de Mécanique des Fluides de Lille-Kampé de Fériet, F-59000 Lille, France
| |
Collapse
|
23
|
Huang J, Wang B, Tao S, Hu Y, Wang N, Zhang Q, Wang C, Chen C, Gao B, Cheng X, Li Y. D-tagatose protects against oleic acid-induced acute respiratory distress syndrome in rats by activating PTEN/PI3K/AKT pathway. Front Immunol 2022; 13:928312. [PMID: 36189316 PMCID: PMC9520915 DOI: 10.3389/fimmu.2022.928312] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by disruption of the alveolar–capillary barrier, resulting in severe alveolar edema and inflammation. D-tagatose (TAG) is a low-calorie fructose isomer with diverse biological activities whose role in ARDS has never been explored. We found that TAG protects lung tissues from injury in the oleic acid-induced rat model of ARDS. Seventeen male Sprague–Dawley rats were randomly assigned to 3 groups: Sham (n = 5), ARDS (n = 6), and TAG + ARDS (n = 6). The treatment groups were injected with oleic acid to induce ARDS, and the TAG + ARDS group was given TAG 3 days before the induction. After the treatments, the effect of TAG was evaluated by blood gas analysis and observing the gross and histological structure of the lung. The results showed that TAG significantly improved the oxygenation function, reduced the respiratory acidosis and the inflammatory response. TAG also improved the vascular permeability in ARDS rats and promoted the differentiation of alveolar type II cells, maintaining the stability of the alveolar structure. This protective effect of TAG on the lung may be achieved by activating the PTEN/PI3K/AKT pathway. Thus, TAG protects against oleic acid-induced ARDS in rats, suggesting a new clinical strategy for treating the condition.
Collapse
Affiliation(s)
- Jian Huang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Bingjie Wang
- Department of Anesthesiology, The Forth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shaoyi Tao
- Department of Plastic Repair Burn Surgery Dermatology, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Yuexia Hu
- Department of Anesthesiology, The Forth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ning Wang
- Department of Anesthesiology, The Forth Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Qiaoyun Zhang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Chunhui Wang
- Department of Anesthesiology, The Forth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chen Chen
- Department of Anesthesiology, The Forth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bingren Gao
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- *Correspondence: Yongnan Li, ; Xingdong Cheng, ; Bingren Gao,
| | - Xingdong Cheng
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- *Correspondence: Yongnan Li, ; Xingdong Cheng, ; Bingren Gao,
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- *Correspondence: Yongnan Li, ; Xingdong Cheng, ; Bingren Gao,
| |
Collapse
|
24
|
Miserocchi G, Beretta E, Rivolta I, Bartesaghi M. Role of the Air-Blood Barrier Phenotype in Lung Oxygen Uptake and Control of Extravascular Water. Front Physiol 2022; 13:811129. [PMID: 35418875 PMCID: PMC8996119 DOI: 10.3389/fphys.2022.811129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/24/2022] [Indexed: 11/23/2022] Open
Abstract
The air blood barrier phenotype can be reasonably described by the ratio of lung capillary blood volume to the diffusion capacity of the alveolar membrane (Vc/Dm), which can be determined at rest in normoxia. The distribution of the Vc/Dm ratio in the population is normal; Vc/Dm shifts from ∼1, reflecting a higher number of alveoli of smaller radius, providing a high alveolar surface and a limited extension of the capillary network, to just opposite features on increasing Vc/Dm up to ∼6. We studied the kinetics of alveolar-capillary equilibration on exposure to edemagenic conditions (work at ∼60% maximum aerobic power) in hypoxia (HA) (PIO2 90 mmHg), based on an estimate of time constant of equilibration (τ) and blood capillary transit time (Tt). A shunt-like effect was described for subjects having a high Vc/Dm ratio, reflecting a longer τ (>0.5 s) and a shorter Tt (<0.8 s) due to pulmonary vasoconstriction and a larger increase in cardiac output (>3-fold). The tendency to develop lung edema in edemagenic conditions (work in HA) was found to be directly proportional to the value of Vc/Dm as suggested by an estimate of the mechanical properties of the respiratory system with the forced frequency oscillation technique.
Collapse
|
25
|
Solari E, Marcozzi C, Ottaviani C, Negrini D, Moriondo A. Draining the Pleural Space: Lymphatic Vessels Facing the Most Challenging Task. BIOLOGY 2022; 11:419. [PMID: 35336793 PMCID: PMC8945018 DOI: 10.3390/biology11030419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 01/06/2023]
Abstract
Lymphatic vessels exploit the mechanical stresses of their surroundings together with intrinsic rhythmic contractions to drain lymph from interstitial spaces and serosal cavities to eventually empty into the blood venous stream. This task is more difficult when the liquid to be drained has a very subatmospheric pressure, as it occurs in the pleural cavity. This peculiar space must maintain a very low fluid volume at negative hydraulic pressure in order to guarantee a proper mechanical coupling between the chest wall and lungs. To better understand the potential for liquid drainage, the key parameter to be considered is the difference in hydraulic pressure between the pleural space and the lymphatic lumen. In this review we collected old and new findings from in vivo direct measurements of hydraulic pressures in anaesthetized animals with the aim to better frame the complex physiology of diaphragmatic and intercostal lymphatics which drain liquid from the pleural cavity.
Collapse
Affiliation(s)
| | | | | | | | - Andrea Moriondo
- Department of Medicine and Surgery, School of Medicine, University of Insubria, 21100 Varese, Italy; (E.S.); (C.M.); (C.O.); (D.N.)
| |
Collapse
|