1
|
Zheng Y, Nie Z, Zhang Y, Guo Z. The association between heart failure and systemic inflammatory response index: A cross-sectional study. J Natl Med Assoc 2024; 116:662-672. [PMID: 39537471 DOI: 10.1016/j.jnma.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The systemic inflammatory response index (SIRI) is a recently developed composite index that assesses the entire extent of inflammation in the body, closely linked to heart failure (HF). This study aimed to evaluate the potential association between SIRI and HF. METHODS The cross-sectional study utilized data from the National Health and Nutrition Examination Survey (NHANES) database from 2001 to 2018. SIRI is calculated based on the counts of monocytes, neutrophils, and lymphocytes. A weighted multiple-variable linear regression model examined the correlation between SIRI and HF. Using restrained cubic splines explored the nonlinear relationship between the two, and the robustness of the results was verified by subgroup analysis and interaction tests. RESULTS Our study included 30,294 participants, 814 of whom were diagnosed with HF and 29,480 with non-HF. The multiple linear regression analysis showed that SIRI was positively correlated with HF (OR = 1.66; 95 % CI, 1.21, 2.29) and that there was no nonlinear relationship between the two. This relationship persisted in subgroup analyses. CONCLUSIONS The results indicate a linear positive correlation between SIRI and HF. Further extensive prospective studies are needed to validate these findings.
Collapse
Affiliation(s)
- Yu Zheng
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410007, China; Hunan University of Chinese Medicine, Yuelu District, Changsha, Hunan 410000, China
| | - Zixing Nie
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410007, China; Hunan University of Chinese Medicine, Yuelu District, Changsha, Hunan 410000, China
| | - Yifan Zhang
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410007, China; Hunan University of Chinese Medicine, Yuelu District, Changsha, Hunan 410000, China
| | - Zhihua Guo
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China; Hunan University of Chinese Medicine, Yuelu District, Changsha, Hunan 410000, China; Key Laboratory of Chinese Medicine Intelligent Diagnosis and Treatment of Chronic Diseases in Hunan Province, Hunan University of Traditional Chinese Medicine, Changsha 410208, China; Joint Postgraduate Training Base for Intelligent Application of Internet + Chronic Disease Chinese Medicine Diagnosis and Treatment and Wellness, Changsha 410208, China.
| |
Collapse
|
2
|
Polzin A, Benkhoff M, Thienel M, Barcik M, Mourikis P, Shchurovska K, Helten C, Ehreiser V, Zhe Z, von Wulffen F, Theiss A, Peri S, Cremer S, Ahlbrecht S, Zako S, Wildeis L, Al-Kassis G, Metzen D, Utz A, Hu H, Vornholz L, Pavic G, Lüsebrink E, Strecker J, Tiedt S, Cramer M, Gliem M, Ruck T, Meuth SG, Zeus T, Mayr C, Schiller HB, Simon L, Massberg S, Kelm M, Petzold T. Long-term FXa inhibition attenuates thromboinflammation after acute myocardial infarction and stroke by platelet proteome alteration. J Thromb Haemost 2024:S1538-7836(24)00641-X. [PMID: 39551435 DOI: 10.1016/j.jtha.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Immediate activated factor (F)X (FXa) inhibition exerts direct antiplatelet effects in the context of arterial thrombosis but little is known about the impact of long-term therapy on platelet function in ischemic cardiovascular diseases. OBJECTIVES Therefore, we analyzed platelet-derived effects of long-term FXa inhibition in the setting of acute myocardial infarction (AMI) and stroke. METHODS We evaluated the effect of acute versus chronic FXa inhibition on thromboinflammation following AMI and stroke in mice in vivo. Mechanistically, we identified changes in platelet gene expression and proteome under chronic FXa nonvitamin K antagonist oral anticoagulant treatment and characterized its functional consequence on platelet physiology. In a prospectively recruited cohort of patients with AMI, we determined cardiovascular magnetic resonance based cardiac endpoints under FXa nonvitamin K antagonist oral anticoagulant effects on clinical endpoints in a cohort of patients with AMI. RESULTS Chronic but not acute FXa inhibition reduced cerebral and myocardial infarct size and improved cardiac function 24 hours after AMI in mice. Mechanistically, we identified an attenuated thromboinflammatory response with reduced neutrophil extracellular trap formation in mice and patient samples. Proteome and RNA expression analysis of FXa inhibitor treated patients revealed a reduction of key regulators within the membrane trafficking and secretion machinery hampering platelet α and dense granule release. Subsequent, thromboinflammatory neutrophil extracellular trap density in thrombi isolated from stroke and myocardial infarction patients was reduced. Patients with AMI treated with FXa inhibitors showed decreased infarct size after myocardial infarction compared to patients without anticoagulation treatment. CONCLUSION Long-term FXa inhibition induces antithromboinflammatory proteome signatures in platelets, improving infarct size after myocardial infarction and stroke.
Collapse
Affiliation(s)
- Amin Polzin
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital, Düsseldorf, Germany; National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | - Marcel Benkhoff
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Manuela Thienel
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Maike Barcik
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp Mourikis
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Khrystyna Shchurovska
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Carolin Helten
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vincent Ehreiser
- Deutsches Herzzentrum der Charité University Hospital Berlin, Department of Cardiology, Angiology and Intensive Care Medicine, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Partner site Berlin, Berlin, Germany; Friede Springer, Centre of Cardiovascular Prevention at Charité, Charité University Medicine Berlin, Berlin, Germany
| | - Zhang Zhe
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Franziska von Wulffen
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Alexander Theiss
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Sameera Peri
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Sophie Cremer
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Samantha Ahlbrecht
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Saif Zako
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Laura Wildeis
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gabrielle Al-Kassis
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Metzen
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Amelie Utz
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hao Hu
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lilian Vornholz
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Goran Pavic
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Enzo Lüsebrink
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Jan Strecker
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany
| | - Steffen Tiedt
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany
| | - Mareike Cramer
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Gliem
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tobias Zeus
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christoph Mayr
- Helmholtz Munich, Research Unit for Precision Regenerative Medicine (PRM), Member of the German Center for Lung Research (DZL), Munich, Germany; Institute of Experimental Pneumology, Ludwig-Maximilians University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Herbert B Schiller
- Helmholtz Munich, Research Unit for Precision Regenerative Medicine (PRM), Member of the German Center for Lung Research (DZL), Munich, Germany; Institute of Experimental Pneumology, Ludwig-Maximilians University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Lukas Simon
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA; Therapeutic Innovation Center, Baylor College of Medicine, Houston, Texas, USA
| | - Steffen Massberg
- Department of Cardiology, Ludwig-Maximilians-University Hospital, Ludwig Maximilians University, Munich, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital, Düsseldorf, Germany
| | - Tobias Petzold
- Deutsches Herzzentrum der Charité University Hospital Berlin, Department of Cardiology, Angiology and Intensive Care Medicine, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany; Deutsches Herzzentrum der Charité (German Centre for Cardiovascular Research), Partner site Berlin, Berlin, Germany; Friede Springer, Centre of Cardiovascular Prevention at Charité, Charité University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Wang L, Ma L, Ren C, Zhao W, Ji X, Liu Z, Li S. Stroke-heart syndrome: current progress and future outlook. J Neurol 2024; 271:4813-4825. [PMID: 38869825 PMCID: PMC11319391 DOI: 10.1007/s00415-024-12480-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/14/2024]
Abstract
Stroke can lead to cardiac complications such as arrhythmia, myocardial injury, and cardiac dysfunction, collectively termed stroke-heart syndrome (SHS). These cardiac alterations typically peak within 72 h of stroke onset and can have long-term effects on cardiac function. Post-stroke cardiac complications seriously affect prognosis and are the second most frequent cause of death in patients with stroke. Although traditional vascular risk factors contribute to SHS, other potential mechanisms indirectly induced by stroke have also been recognized. Accumulating clinical and experimental evidence has emphasized the role of central autonomic network disorders and inflammation as key pathophysiological mechanisms of SHS. Therefore, an assessment of post-stroke cardiac dysautonomia is necessary. Currently, the development of treatment strategies for SHS is a vital but challenging task. Identifying potential key mediators and signaling pathways of SHS is essential for developing therapeutic targets. Therapies targeting pathophysiological mechanisms may be promising. Remote ischemic conditioning exerts protective effects through humoral, nerve, and immune-inflammatory regulatory mechanisms, potentially preventing the development of SHS. In the future, well-designed trials are required to verify its clinical efficacy. This comprehensive review provides valuable insights for future research.
Collapse
Affiliation(s)
- Lanjing Wang
- Department of Neurology, The People's Hospital of Suzhou New District, Suzhou, 215129, China
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China
| | - Linqing Ma
- Department of Neurology, The People's Hospital of Suzhou New District, Suzhou, 215129, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China
- Clinical Center for Combined Heart and Brain Disease, Capital Medical University, Beijing, 100069, China
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Zhi Liu
- Department of Emergency, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China.
| | - Sijie Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China.
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China.
- Department of Emergency, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
4
|
Wang H, Nie Y, Sun Z, He Y, Yang J. Serum amyloid P component: Structure, biological activity, and application in diagnosis and treatment of immune-associated diseases. Mol Immunol 2024; 172:1-8. [PMID: 38850776 DOI: 10.1016/j.molimm.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024]
Abstract
Serum amyloid P component (SAP) is a member the innate immune humoral arm and participated in various processes, including the innate immune responses, tissue remodeling, and the pathogenesis of inflammatory diseases. Remarkably, SAP is a highly versatile immunomodulatory factor that can serve as a drug target for treating amyloid diseases and reduce inflammation, fibrosis degree, and respiratory disease. In this review, we focus on the biological activities of SAP and its application in different systemic immune-associated diseases. First, we reviewed the regulatory effects of SAP on innate immune cells and possible mechanisms. Second, we emphasized SAP as a diagnostic marker and therapeutic target for immune-associated diseases, including the neuropsychiatric disorders. Third, we presented several recommendations for regulating SAP in immune cell function and potential areas for future research. Some authorities consider SAP to be a pattern recognition molecule that plays multiple roles in the innate immune system and inflammation. Developing therapeutics that target SAP or its associated signaling pathways may be a promising strategy for treating immune-associated diseases.
Collapse
Affiliation(s)
- Haixia Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Yadan Nie
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Yi He
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China.
| | - Jian Yang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
5
|
Xie L, He M, Ying C, Chu H. Mechanisms of inflammation after ischemic stroke in brain-peripheral crosstalk. Front Mol Neurosci 2024; 17:1400808. [PMID: 38932932 PMCID: PMC11199882 DOI: 10.3389/fnmol.2024.1400808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke is a devastating disease with high morbidity, disability, and mortality, among which ischemic stroke is more common. However, there is still a lack of effective methods to improve the prognosis and reduce the incidence of its complications. At present, there is evidence that peripheral organs are involved in the inflammatory response after stroke. Moreover, the interaction between central and peripheral inflammation includes the activation of resident and peripheral immune cells, as well as the activation of inflammation-related signaling pathways, which all play an important role in the pathophysiology of stroke. In this review, we discuss the mechanisms of inflammatory response after ischemic stroke, as well as the interactions through circulatory pathways between peripheral organs (such as the gut, heart, lung and spleen) and the brain to mediate and regulate inflammation after ischemic stroke. We also propose the potential role of meningeal lymphatic vessels (MLVs)-cervical lymph nodes (CLNs) as a brain-peripheral crosstalk lymphatic pathway in ischemic stroke. In addition, we also summarize the mechanisms of anti-inflammatory drugs in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Ling Xie
- Department of Critical Medicine, First People's Hospital of Linping District, Hangzhou, China
| | - Ming He
- Department of Critical Medicine, First People's Hospital of Linping District, Hangzhou, China
| | - Caidi Ying
- Department of Hepatobiliary and Pancreatic Surgery, The Traditional Chinese Medicine Hospital of Ningbo, Ningbo, China
| | - Haifeng Chu
- Department of Neurosurgery, The Traditional Chinese Medicine Hospital of Linping District, Hangzhou, China
| |
Collapse
|
6
|
Xu T, Dong F, Zhang M, Wang K, Xu T, Xia S, Feng C. Post-stroke arrhythmia could be a potential predictor for post-stroke depression. Sci Rep 2024; 14:9093. [PMID: 38643303 PMCID: PMC11032346 DOI: 10.1038/s41598-024-59789-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 04/15/2024] [Indexed: 04/22/2024] Open
Abstract
Post-stroke depression (PSD) is regarded as the consequence of multiple contributors involving the process of cognition, mood and autonomic system, with the specific mechanism unclear yet. As a common type of stroke-heart syndromes, post-stroke arrhythmia shared some common pathogenesis with PSD. We presumed that post-stroke arrhythmia might be an early distinguishable marker for the presence of PSD and aimed to verity their association in this study. Patients with first-ever ischemic stroke were enrolled. The presence of post-stroke ectopic arrhythmia and the symptoms of arrhythmia were recorded with anti-arrhythmia drugs prescribed when necessary. Patients were followed up 3 months later to identify their presence and severity of PSD using Hamilton Depression Scale (HAMD) and also presence and severity of arrhythmia. Characteristics including the prevalence of various types of arrhythmias were compared between PSD and non-PSD groups. The HAMD scores were compared between patients with and without arrhythmia in PSD group. Logistic regression was used to identify the independent predictor of PSD. Patients with PSD had higher prevalence of post-stroke arrhythmia especially newly-detected arrhythmia, symptomatic arrhythmia and poor-controlled arrhythmia. In PSD group, patients of post-stroke arrhythmia had higher scores of HAMD than those without arrhythmia. Presence of newly-detected, symptomatic and poor-controlled arrhythmias were independent predictor of PSD. post-stroke arrhythmia especially newly-detected arrhythmia and symptomatic arrhythmia could be an early predictor of PSD. Successful control of arrhythmia was associated with reduced prevalence and severity of PSD.
Collapse
Affiliation(s)
- Tao Xu
- Department of Cardiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Shangcheng Avenue N1#, Yiwu, Zhejiang, China
| | - Fangying Dong
- Department of Cardiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Shangcheng Avenue N1#, Yiwu, Zhejiang, China
- The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Muhua Zhang
- Department of Cardiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Shangcheng Avenue N1#, Yiwu, Zhejiang, China
| | - Kewu Wang
- Department of Cardiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Shangcheng Avenue N1#, Yiwu, Zhejiang, China
| | - Tian Xu
- Department of Cardiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Shangcheng Avenue N1#, Yiwu, Zhejiang, China
| | - Shudong Xia
- Department of Cardiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Shangcheng Avenue N1#, Yiwu, Zhejiang, China
| | - Chao Feng
- Department of Cardiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Shangcheng Avenue N1#, Yiwu, Zhejiang, China.
| |
Collapse
|
7
|
Fan X, Cao J, Li M, Zhang D, El‐Battrawy I, Chen G, Zhou X, Yang G, Akin I. Stroke Related Brain-Heart Crosstalk: Pathophysiology, Clinical Implications, and Underlying Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307698. [PMID: 38308187 PMCID: PMC11005719 DOI: 10.1002/advs.202307698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/09/2024] [Indexed: 02/04/2024]
Abstract
The emergence of acute ischemic stroke (AIS) induced cardiovascular dysfunctions as a bidirectional interaction has gained paramount importance in understanding the intricate relationship between the brain and heart. Post AIS, the ensuing cardiovascular dysfunctions encompass a spectrum of complications, including heart attack, congestive heart failure, systolic or diastolic dysfunction, arrhythmias, electrocardiographic anomalies, hemodynamic instability, cardiac arrest, among others, all of which are correlated with adverse outcomes and mortality. Mounting evidence underscores the intimate crosstalk between the heart and the brain, facilitated by intricate physiological and neurohumoral complex networks. The primary pathophysiological mechanisms contributing to these severe cardiac complications involve the hypothalamic-pituitary-adrenal (HPA) axis, sympathetic and parasympathetic hyperactivity, immune and inflammatory responses, and gut dysbiosis, collectively shaping the stroke-related brain-heart axis. Ongoing research endeavors are concentrated on devising strategies to prevent AIS-induced cardiovascular dysfunctions. Notably, labetalol, nicardipine, and nitroprusside are recommended for hypertension control, while β-blockers are employed to avert chronic remodeling and address arrhythmias. However, despite these therapeutic interventions, therapeutic targets remain elusive, necessitating further investigations into this complex challenge. This review aims to delineate the state-of-the-art pathophysiological mechanisms in AIS through preclinical and clinical research, unraveling their intricate interplay within the brain-heart axis, and offering pragmatic suggestions for managing AIS-induced cardiovascular dysfunctions.
Collapse
Affiliation(s)
- Xuehui Fan
- Key Laboratory of Medical ElectrophysiologyMinistry of Education and Medical Electrophysiological Key Laboratory of Sichuan ProvinceCollaborative Innovation Center for Prevention of Cardiovascular DiseasesInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhou646000China
- CardiologyAngiologyHaemostaseologyand Medical Intensive CareMedical Centre MannheimMedical Faculty MannheimHeidelberg University68167HeidelbergGermany
- European Center for AngioScience (ECAS)German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheimand Centre for Cardiovascular Acute Medicine Mannheim (ZKAM)Medical Centre MannheimHeidelberg University68167HeidelbergGermany
| | - Jianyang Cao
- School of Physical EducationSouthwest Medical UniversityLuzhouSichuan Province646000China
- Acupuncture and Rehabilitation DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Mingxia Li
- School of Physical EducationSouthwest Medical UniversityLuzhouSichuan Province646000China
- Acupuncture and Rehabilitation DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Dechou Zhang
- Department of NeurologyThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Ibrahim El‐Battrawy
- Department of Cardiology and AngiologyRuhr University44780BochumGermany
- Institut für Forschung und Lehre (IFL)Department of Molecular and Experimental CardiologyRuhr‐University Bochum44780BochumGermany
| | - Guiquan Chen
- Acupuncture and Rehabilitation DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Xiaobo Zhou
- Key Laboratory of Medical ElectrophysiologyMinistry of Education and Medical Electrophysiological Key Laboratory of Sichuan ProvinceCollaborative Innovation Center for Prevention of Cardiovascular DiseasesInstitute of Cardiovascular ResearchSouthwest Medical UniversityLuzhou646000China
- CardiologyAngiologyHaemostaseologyand Medical Intensive CareMedical Centre MannheimMedical Faculty MannheimHeidelberg University68167HeidelbergGermany
- European Center for AngioScience (ECAS)German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheimand Centre for Cardiovascular Acute Medicine Mannheim (ZKAM)Medical Centre MannheimHeidelberg University68167HeidelbergGermany
| | - Guoqiang Yang
- CardiologyAngiologyHaemostaseologyand Medical Intensive CareMedical Centre MannheimMedical Faculty MannheimHeidelberg University68167HeidelbergGermany
- European Center for AngioScience (ECAS)German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheimand Centre for Cardiovascular Acute Medicine Mannheim (ZKAM)Medical Centre MannheimHeidelberg University68167HeidelbergGermany
- Acupuncture and Rehabilitation DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhou646000China
| | - Ibrahim Akin
- CardiologyAngiologyHaemostaseologyand Medical Intensive CareMedical Centre MannheimMedical Faculty MannheimHeidelberg University68167HeidelbergGermany
- European Center for AngioScience (ECAS)German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheimand Centre for Cardiovascular Acute Medicine Mannheim (ZKAM)Medical Centre MannheimHeidelberg University68167HeidelbergGermany
| |
Collapse
|
8
|
Xu N, He Y, Zhang C, Zhang Y, Cheng S, Deng L, Zhong Y, Liao B, Wei Y, Feng J. TGR5 signalling in heart and brain injuries: focus on metabolic and ischaemic mechanisms. Neurobiol Dis 2024; 192:106428. [PMID: 38307367 DOI: 10.1016/j.nbd.2024.106428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/04/2024] Open
Abstract
The heart and brain are the core organs of the circulation and central nervous system, respectively, and play an important role in maintaining normal physiological functions. Early neuronal and cardiac damage affects organ function. The relationship between the heart and brain is being continuously investigated. Evidence-based medicine has revealed the concept of the "heart- brain axis," which may provide new therapeutic strategies for certain diseases. Takeda protein-coupled receptor 5 (TGR5) is a metabolic regulator involved in energy homeostasis, bile acid homeostasis, and glucose and lipid metabolism. Inflammation is critical for the development and regeneration of the heart and brain during metabolic diseases. Herein, we discuss the role of TGR5 as a metabolic regulator of heart and brain development and injury to facilitate new therapeutic strategies for metabolic and ischemic diseases of the heart and brain.
Collapse
Affiliation(s)
- Nan Xu
- Department of Cardiology, The First People's Hospital of Neijiang, Neijiang, China
| | - Yufeng He
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Chunyu Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yongqiang Zhang
- Department of Cardiology, Hejiang County People's Hospital, Luzhou, China
| | - Shengjie Cheng
- Department of Cardiology, The First People's Hospital of Neijiang, Neijiang, China
| | - Li Deng
- Department of Rheumatology, The Afliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
| | - Yan Wei
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| |
Collapse
|
9
|
Wang L, Tu W, Li X, Li C, Lu J, Dai P, Chen Y, Gu M, Li M, Jiang S, Yang G, Li S. Exercise improves cardiac function and attenuates myocardial inflammation and apoptosis by regulating APJ/STAT3 in mice with stroke. Life Sci 2023; 332:122041. [PMID: 37657526 DOI: 10.1016/j.lfs.2023.122041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/05/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Stroke can induce cardiac dysfunction without a primary cardiac disease. Exercise can promote the overall rehabilitation of stroke patients and be beneficial for all kinds of heart diseases. However, the mechanisms underlying the protective effects of exercise in stroke-induced cardiac dysfunction are poorly understood. Hence, we aimed to distinguish the different effects of acute and long-term exercise and further study the mechanism of protection against cardiomyopathy caused by stroke. Mice underwent a single acute session or long-term exercise for 30 days, followed by middle cerebral artery occlusion surgery. The expression of apoptosis-related proteins and proinflammatory factors in the heart was evaluated. Then, overexpression of apelin peptide jejunum (APJ) transfected adeno-associated virus type 9 (AAV9) and inhibition of signal transducer and activator of transcription 3 (STAT3) by Stattic were used in stroke mice or hypoxic cardiomyocytes. ML221 were used to inhibit APJ activity in exercise mouse. Thereafter, changes in apoptotic and proinflammatory factors were evaluated. The results demonstrated that chronic exercise prevented myocardial inflammation, apoptosis and cardiac dysfunction after stroke. However, acute exercise did not have similar effects. Exercise maintained the levels of APJ expression and decreased phosphorylated-STAT3 (p-STAT3) activation to protect cardiomyocytes. Moreover, APJ overexpression promoted cardiomyocyte survival and reduced p-STAT3 levels. STAT3 inhibition also reduced apoptosis and proinflammatory factors in mice hearts. Conversely, the protective effect of exercise was eliminated by APJ inhibition. This study showed that exercise can maintain APJ expression and inhibit p-STAT3, thus, conferring protection against myocardial inflammation and apoptosis induced by stroke.
Collapse
Affiliation(s)
- Li Wang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Wenzhan Tu
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xuqing Li
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Caiyan Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Junhong Lu
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Peng Dai
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yuewei Chen
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Meilin Gu
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Ming Li
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; The Wenzhou Key Laboratory for Rehabilitation Research, The Provincial Key Laboratory for Acupuncture and Rehabilitation in Zhejiang Province, Wenzhou 325027, Zhejiang, China
| | - Songhe Jiang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; The Wenzhou Key Laboratory for Rehabilitation Research, The Provincial Key Laboratory for Acupuncture and Rehabilitation in Zhejiang Province, Wenzhou 325027, Zhejiang, China
| | - Guanhu Yang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; The Wenzhou Key Laboratory for Rehabilitation Research, The Provincial Key Laboratory for Acupuncture and Rehabilitation in Zhejiang Province, Wenzhou 325027, Zhejiang, China; Department of Specialty Medicine, Ohio University, Athens, OH 45701, United States
| | - Shengcun Li
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; The Wenzhou Key Laboratory for Rehabilitation Research, The Provincial Key Laboratory for Acupuncture and Rehabilitation in Zhejiang Province, Wenzhou 325027, Zhejiang, China.
| |
Collapse
|
10
|
Scheitz JF, Sposato LA, Schulz-Menger J, Nolte CH, Backs J, Endres M. Stroke-Heart Syndrome: Recent Advances and Challenges. J Am Heart Assoc 2022; 11:e026528. [PMID: 36056731 PMCID: PMC9496419 DOI: 10.1161/jaha.122.026528] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
After ischemic stroke, there is a significant burden of cardiovascular complications, both in the acute and chronic phase. Severe adverse cardiac events occur in 10% to 20% of patients within the first few days after stroke and comprise a continuum of cardiac changes ranging from acute myocardial injury and coronary syndromes to heart failure or arrhythmia. Recently, the term stroke–heart syndrome was introduced to provide an integrated conceptual framework that summarizes neurocardiogenic mechanisms that lead to these cardiac events after stroke. New findings from experimental and clinical studies have further refined our understanding of the clinical manifestations, pathophysiology, and potential long‐term consequences of the stroke–heart syndrome. Local cerebral and systemic mediators, which mainly involve autonomic dysfunction and increased inflammation, may lead to altered cardiomyocyte metabolism, dysregulation of (tissue‐resident) leukocyte populations, and (micro‐) vascular changes. However, at the individual patient level, it remains challenging to differentiate between comorbid cardiovascular conditions and stroke‐induced heart injury. Therefore, further research activities led by joint teams of basic and clinical researchers with backgrounds in both cardiology and neurology are needed to identify the most relevant therapeutic targets that can be tested in clinical trials.
Collapse
Affiliation(s)
- Jan F Scheitz
- Department of Neurology With Experimental Neurology Charité-Universitätsmedizin Berlin Berlin Germany.,Center for Stroke Research Berlin Charité-Universitätsmedizin Berlin Berlin Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin Berlin Germany.,Berlin Institute of Health (BIH) Berlin Germany.,World Stroke Organization Brain & Heart Task Force
| | - Luciano A Sposato
- World Stroke Organization Brain & Heart Task Force.,Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry Western University London Ontario Canada.,Heart & Brain Laboratory Western University London Ontario Canada
| | - Jeanette Schulz-Menger
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a Joint Cooperation Between the Charité-Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology and the Max-Delbrueck Center for Molecular Medicine DZHK (German Centre for Cardiovascular Research), Partner Site Berlin Berlin Germany.,Department of Cardiology and Nephrology HELIOS Klinikum Berlin Buch Berlin Germany
| | - Christian H Nolte
- Department of Neurology With Experimental Neurology Charité-Universitätsmedizin Berlin Berlin Germany.,Center for Stroke Research Berlin Charité-Universitätsmedizin Berlin Berlin Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin Berlin Germany.,Berlin Institute of Health (BIH) Berlin Germany
| | - Johannes Backs
- Institute of Experimental Cardiology Heidelberg University Heidelberg Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim Heidelberg Germany
| | - Matthias Endres
- Department of Neurology With Experimental Neurology Charité-Universitätsmedizin Berlin Berlin Germany.,Center for Stroke Research Berlin Charité-Universitätsmedizin Berlin Berlin Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin Berlin Germany.,Berlin Institute of Health (BIH) Berlin Germany.,DZNE (German Center for Neurodegenerative Disease), Partner Site Berlin Berlin Germany.,ExcellenceCluster NeuroCure Berlin Germany
| |
Collapse
|