1
|
Buttari B, Tramutola A, Rojo AI, Chondrogianni N, Saha S, Berry A, Giona L, Miranda JP, Profumo E, Davinelli S, Daiber A, Cuadrado A, Di Domenico F. Proteostasis Decline and Redox Imbalance in Age-Related Diseases: The Therapeutic Potential of NRF2. Biomolecules 2025; 15:113. [PMID: 39858508 PMCID: PMC11764413 DOI: 10.3390/biom15010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/20/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a master regulator of cellular homeostasis, overseeing the expression of a wide array of genes involved in cytoprotective processes such as antioxidant and proteostasis control, mitochondrial function, inflammation, and the metabolism of lipids and glucose. The accumulation of misfolded proteins triggers the release, stabilization, and nuclear translocation of NRF2, which in turn enhances the expression of critical components of both the proteasomal and lysosomal degradation pathways. This process facilitates the clearance of toxic protein aggregates, thereby actively maintaining cellular proteostasis. As we age, the efficiency of the NRF2 pathway declines due to several factors including increased activity of its repressors, impaired NRF2-mediated antioxidant and cytoprotective gene expression, and potential epigenetic changes, though the precise mechanisms remain unclear. This leads to diminished antioxidant defenses, increased oxidative damage, and exacerbated metabolic dysregulation and inflammation-key contributors to age-related diseases. Given NRF2's role in mitigating proteotoxic stress, the pharmacological modulation of NRF2 has emerged as a promising therapeutic strategy, even in aged preclinical models. By inducing NRF2, it is possible to mitigate the damaging effects of oxidative stress, metabolic dysfunction, and inflammation, thus reducing protein misfolding. The review highlights NRF2's therapeutic implications for neurodegenerative diseases and cardiovascular conditions, emphasizing its role in improving proteostasis and redox homeostasis Additionally, it summarizes current research into NRF2 as a therapeutic target, offering hope for innovative treatments to counteract the effects of aging and associated diseases.
Collapse
Affiliation(s)
- Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Antonella Tramutola
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University, 00185 Rome, Italy;
| | - Ana I. Rojo
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), National Institute of Health Carlos III (ISCIII), Instituto de Investigación Sanitaria La Paz (IdiPaz), 28049 Madrid, Spain; (A.I.R.); (A.C.)
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece;
| | - Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 00185, Uttar Pradesh, India;
| | - Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.B.); (L.G.)
| | - Letizia Giona
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.B.); (L.G.)
- PhD Program in Science of Nutrition, Metabolism, Aging and Gender-Related Diseases, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Elisabetta Profumo
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Andreas Daiber
- Department for Cardiology 1, University Medical Center Mainz, Molecular Cardiology, Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Antonio Cuadrado
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), National Institute of Health Carlos III (ISCIII), Instituto de Investigación Sanitaria La Paz (IdiPaz), 28049 Madrid, Spain; (A.I.R.); (A.C.)
| | - Fabio Di Domenico
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
2
|
Geng W, Yan S, Sang D, Tao J, Zhang X, Gu X, Zhang X. Downregulating miR-432-5p exacerbates adriamycin-induced cardiotoxicity via activating the RTN3 signaling pathway. Aging (Albany NY) 2024; 16:11904-11916. [PMID: 39177670 PMCID: PMC11386913 DOI: 10.18632/aging.206062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/18/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Adriamycin (ADR) is a widely used chemotherapy drug in clinical practice and it causes toxicity in the myocardium affecting its clinical use. miR-432-5p is a miRNA primarily expressed in myocardial cells and has a protective effect in the myocardium. We aim to explore the protective effect of miR-432-5p on ADR-caused impaired mitochondrial ATP metabolism and endoplasmic reticulum stress (ERs). METHOD The primary cardiomyocytes were obtained from neonatal mice and the ADR was added to cells, meanwhile, a mice model was constructed through intravenous ADR challenge, and expression levels of miR-432-5p were examined. Subsequently, the miR-432-5p was introduced in vitro and in vivo to explore its effect on the activity of mitochondrial ATP synthesis, autophagy, and ER stress. The bioinformatics analysis was performed to explore the target of miR-432-5p. RESULTS ADR decreased the expression of miR-432-5p in cardiomyocytes. It also decreases mitochondrial ATP production and activates the ER stress pathway by increasing the expression of LC3B, Beclin 1, cleaved caspase 3, and induces cardiac toxicity. miR-432-5p exogenous supplementation can reduce the cardiotoxicity caused by ADR, and its protective effect on cardiomyocytes depends on the down-regulation of the RTN3 signaling pathway in ER. CONCLUSION ADR can induce the low expression of miR-432-5p, and activate the RTN3 pathway in ER, increase the expression of LC3B, Beclin 1, cleaved caspase 3, CHOP, and RTN3, and induce cardiac toxicity.
Collapse
Affiliation(s)
- Wei Geng
- Department of Cardiology, Baoding No.1 Central Hospital, Baoding, Hebei Province, China
| | - Shaohua Yan
- Department of Cardiology, Baoding No.1 Central Hospital, Baoding, Hebei Province, China
| | - Dasen Sang
- Department of Cardiology, Baoding No.1 Central Hospital, Baoding, Hebei Province, China
| | - Jie Tao
- Department of Cardiology, Baoding No.1 Central Hospital, Baoding, Hebei Province, China
| | - Xuefei Zhang
- Department of Cardiology, Baoding No.1 Central Hospital, Baoding, Hebei Province, China
| | - Xinshun Gu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Xiangyu Zhang
- Department of Cardiology, Baoding No.1 Central Hospital, Baoding, Hebei Province, China
| |
Collapse
|
3
|
Liu G, Zhang Q, Zhou M, Li B, Zhao J, Bai R, Song X, Qin W, Zhang Y. Correlation between serum uric acid to high-density lipoprotein cholesterol ratio and atrial fibrillation in patients with NAFLD. PLoS One 2024; 19:e0305952. [PMID: 38913677 PMCID: PMC11195987 DOI: 10.1371/journal.pone.0305952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/09/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is independently associated with atrial fibrillation (AF) risk. The uric acid (UA) to high-density lipoprotein cholesterol (HDL-C) ratio (UHR) has been shown to be closely associated with cardiovascular disease (CVD) and NAFLD. The aim of this study is to clarify whether elevated UHR is associated with the occurrence of AF in patients with NAFLD and to determine whether UHR predicted AF. METHODS Patients diagnosed with NAFLD in the Department of Cardiovascular Medicine of the Second Hospital of Shanxi Medical University from January 1, 2020, to December 31, 2021, were retrospectively enrolled in this study. The study subjects were categorized into AF group and non-AF group based on the presence or absence of combined AF. Logistic regression was performed to evaluate the correlation between UHR and AF. Sensitivity analysis and subgroup interaction analysis were performed to verify the robustness of the study results. Receiver operating characteristic (ROC) curve analysis was used to determine the optimal cutoff value for UHR to predict the development of AF in patients with NAFLD. RESULTS A total of 421 patients with NAFLD were included, including 171 in the AF group and 250 in the non-AF group. In the univariate regression analysis, NAFLD patients with higher UHR were more likely to experience AF, and the risk of AF persisted after confounding factors were adjusted for (OR: 1.010, 95%CI: 1.007-1.013, P<0.001). AF risk increased with increasing UHR quartile (P for trend < 0.001). Despite normal serum UA and HDL-C, UHR was still connected with AF in patients with NAFLD. All subgroup variables did not interact significantly with UHR in the subgroup analysis. The ROC curve analysis showed that the areas under the curve for UA, HDL-C, and UHR were 0.702, 0.606, and 0.720, respectively, suggesting that UHR has a higher predictive value for AF occurrence in NAFLD patients compared to HDL-C or UA alone. CONCLUSION Increased UHR level was independently correlated with a high risk of AF in NAFLD patients.
Collapse
Affiliation(s)
- Gaizhen Liu
- Department of Cardiovascular Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qi Zhang
- Department of Cardiovascular Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Meng Zhou
- Department of Cardiovascular Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Baojie Li
- Department of Cardiovascular Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianqi Zhao
- Department of Cardiovascular Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Rui Bai
- Department of Cardiovascular Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaosu Song
- Department of Cardiovascular Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weiwei Qin
- Department of Cardiovascular Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yonglai Zhang
- School of Software, North University of China, Taiyuan, Shanxi, China
| |
Collapse
|
4
|
Pan Z, Xu X, Xu X, Wu S, Zhang Z, Liu S, Liu Z, Tu B, Chen C, Qin Y, He J. Prevalence and outcomes of atrial fibrillation in patients suffering prostate cancer: a national analysis in the United States. Front Cardiovasc Med 2024; 11:1382166. [PMID: 38638883 PMCID: PMC11025351 DOI: 10.3389/fcvm.2024.1382166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
Purpose Although the adverse effects of atrial fibrillation (AF) on cancers have been well reported, the relationship between the AF and the adverse outcomes in prostate cancer (PC) remains inconclusive. This study aimed to explore the prevalence of AF and evaluate the relationship between AF and clinical outcomes in PC patients. Methods Patients diagnosed with PC between 2008 and 2017 were identified from the National Inpatient Sample database. The trends in AF prevalence were compared among PC patients and their subgroups. Multivariable regression models were used to assess the associations between AF and in-hospital mortality, length of hospital stay, total cost, and other clinical outcomes. Results 256,239 PC hospitalizations were identified; 41,356 (83.8%) had no AF and 214,883 (16.2%) had AF. AF prevalence increased from 14.0% in 2008 to 20.1% in 2017 (P < .001). In-hospital mortality in PC inpatients with AF increased from 5.1% in 2008 to 8.1% in 2017 (P < .001). AF was associated with adverse clinical outcomes, such as in-hospital mortality, congestive heart failure, pulmonary circulation disorders, renal failure, fluid and electrolyte disorders, cardiogenic shock, higher total cost, and longer length of hospital stay. Conclusions The prevalence of AF among inpatients with PC increased from 2008 to 2017. AF was associated with poor prognosis and higher health resource utilization. Better management strategies for patients with comorbid PC and AF, particularly in older individuals, are required.
Collapse
Affiliation(s)
- Zhemin Pan
- Tongji University School of Medicine, Shanghai, China
| | - Xiao Xu
- Tongji University School of Medicine, Shanghai, China
| | - Xi Xu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shengyong Wu
- Department of Military Health Statistics, Naval Medical University, Shanghai, China
| | - Zhensheng Zhang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Suxuan Liu
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhijian Liu
- Department of Nursing, The 940 Hospital of Joint Logistic Support Force of PLA, Lanzhou, China
| | - Boxiang Tu
- Department of Military Health Statistics, Naval Medical University, Shanghai, China
| | - Chenxin Chen
- Department of Military Health Statistics, Naval Medical University, Shanghai, China
| | - Yingyi Qin
- Department of Military Health Statistics, Naval Medical University, Shanghai, China
| | - Jia He
- Tongji University School of Medicine, Shanghai, China
- Department of Military Health Statistics, Naval Medical University, Shanghai, China
| |
Collapse
|
5
|
Li W, Cheng X, Zhu G, Hu Y, Wang Y, Niu Y, Li H, Aierken A, Li J, Feng L, Liu G. A review of chemotherapeutic drugs-induced arrhythmia and potential intervention with traditional Chinese medicines. Front Pharmacol 2024; 15:1340855. [PMID: 38572424 PMCID: PMC10987752 DOI: 10.3389/fphar.2024.1340855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Significant advances in chemotherapy drugs have reduced mortality in patients with malignant tumors. However, chemotherapy-related cardiotoxicity increases the morbidity and mortality of patients, and has become the second leading cause of death after tumor recurrence, which has received more and more attention in recent years. Arrhythmia is one of the common types of chemotherapy-induced cardiotoxicity, and has become a new risk related to chemotherapy treatment, which seriously affects the therapeutic outcome in patients. Traditional Chinese medicine has experienced thousands of years of clinical practice in China, and has accumulated a wealth of medical theories and treatment formulas, which has unique advantages in the prevention and treatment of malignant diseases. Traditional Chinese medicine may reduce the arrhythmic toxicity caused by chemotherapy without affecting the anti-cancer effect. This paper mainly discussed the types and pathogenesis of secondary chemotherapeutic drug-induced arrhythmia (CDIA), and summarized the studies on Chinese medicine compounds, Chinese medicine Combination Formula and Chinese medicine injection that may be beneficial in intervention with secondary CDIA including atrial fibrillation, ventricular arrhythmia and sinus bradycardia, in order to provide reference for clinical prevention and treatment of chemotherapy-induced arrhythmias.
Collapse
Affiliation(s)
- Weina Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaozhen Cheng
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guanghui Zhu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Yunhan Wang
- Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou, Henan, China
| | - Yueyue Niu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongping Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aikeremu Aierken
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ling Feng
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guifang Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Zhang L, Lin W, Di C, Hou H, Chen H, Zhou J, Yang Q, He G. Metabolomics and Biomarkers for Paroxysmal and Persistent Atrial Fibrillation. J Am Heart Assoc 2024; 13:e032153. [PMID: 38293949 PMCID: PMC11056137 DOI: 10.1161/jaha.123.032153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/05/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common type of arrhythmia worldwide and is associated with serious complications. This study investigated the metabolic biomarkers associated with AF and the differences in metabolomics and associated metabolic biomarkers between paroxysmal AF (AFPA) and persistent AF. METHODS AND RESULTS Plasma samples were prospectively collected from patients with AF and patients in sinus rhythm with negative coronary angiography. The patients were divided into 3 groups: AFPA, persistent AF, and sinus rhythm (N=54). Metabolomics (n=36) using ultra-high-performance liquid chromatography mass spectrometry was used to detect differential metabolites that were validated in a new cohort (n=18). The validated metabolites from the validation phase were further analyzed by receiver operating characteristic. Among the 36 differential metabolites detected by omics assay, 4 were successfully validated with area under the curve >0.8 (P<0.05). Bioinformatics analysis confirmed the enrichment pathways of unsaturated fatty acid biosynthesis, glyoxylate and dicarboxylate metabolism, and carbon metabolism. Arachidonic acid was a potential biomarker of AFPA, glycolic acid and L-serine were biomarkers of AFPA and persistent AF, and palmitelaidic acid was a biomarker of AFPA. CONCLUSIONS In this metabolomics study, we detected 36 differential metabolites in AF, and 4 were validated with high sensitivity and specificity. These differential metabolites are potential biomarkers for diagnosis and monitoring of disease course. This study therefore provides new insights into the precision diagnosis and management of AF.
Collapse
Affiliation(s)
- Li‐Li Zhang
- Faculty of Graduate StudiesChengde Medical University, Chengde, China, & Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical SciencesTianjinChina
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational MedicineTianjinChina
| | - Wen‐Hua Lin
- Department of Cardiology & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular HospitalTianjin University & Chinese Academy of Medical ScienceTianjinChina
| | - Cheng‐Ye Di
- Department of Cardiology & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular HospitalTianjin University & Chinese Academy of Medical ScienceTianjinChina
| | - Hai‐Tao Hou
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational MedicineTianjinChina
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular HospitalTianjin University & Chinese Academy of Medical ScienceTianjinChina
| | - Huan‐Xin Chen
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational MedicineTianjinChina
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular HospitalTianjin University & Chinese Academy of Medical ScienceTianjinChina
| | - Jie Zhou
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational MedicineTianjinChina
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular HospitalTianjin University & Chinese Academy of Medical ScienceTianjinChina
| | - Qin Yang
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational MedicineTianjinChina
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular HospitalTianjin University & Chinese Academy of Medical ScienceTianjinChina
| | - Guo‐Wei He
- Faculty of Graduate StudiesChengde Medical University, Chengde, China, & Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical SciencesTianjinChina
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational MedicineTianjinChina
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular HospitalTianjin University & Chinese Academy of Medical ScienceTianjinChina
| |
Collapse
|
7
|
Ye Q, Chen W, Fu H, Ding Y, Jing Y, Shen J, Yuan Z, Zha K. Targeting Autophagy in Atrial Fibrillation. Rev Cardiovasc Med 2023; 24:288. [PMID: 39077569 PMCID: PMC11273128 DOI: 10.31083/j.rcm2410288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 07/31/2024] Open
Abstract
Atrial fibrillation (AF) is the most common type of arrhythmia in clinical practice, and its incidence is positively correlated with risk factors that include advanced age, hypertension, diabetes, and heart failure. Although our understanding of the mechanisms that govern the occurrence and persistence of AF has been increasing rapidly, the exact mechanism of AF is still not fully understood. Autophagy is an evolutionarily highly conserved and specific physiological process in cells that has been suggested as a potential therapeutic target for several cardiovascular diseases including the pathophysiology of AF. The present article provides an updated review of the fast-progressing field of research surrounding autophagy in AF, and how regulating autophagy might be a therapeutic target to reduce the incidence of AF.
Collapse
Affiliation(s)
- Qiang Ye
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Wen Chen
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Hengsong Fu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Yanling Ding
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Yuling Jing
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Jingsong Shen
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Ziyang Yuan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Kelan Zha
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| |
Collapse
|
8
|
Selewa A, Luo K, Wasney M, Smith L, Sun X, Tang C, Eckart H, Moskowitz IP, Basu A, He X, Pott S. Single-cell genomics improves the discovery of risk variants and genes of atrial fibrillation. Nat Commun 2023; 14:4999. [PMID: 37591828 PMCID: PMC10435551 DOI: 10.1038/s41467-023-40505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
Genome-wide association studies (GWAS) have linked hundreds of loci to cardiac diseases. However, in most loci the causal variants and their target genes remain unknown. We developed a combined experimental and analytical approach that integrates single cell epigenomics with GWAS to prioritize risk variants and genes. We profiled accessible chromatin in single cells obtained from human hearts and leveraged the data to study genetics of Atrial Fibrillation (AF), the most common cardiac arrhythmia. Enrichment analysis of AF risk variants using cell-type-resolved open chromatin regions (OCRs) implicated cardiomyocytes as the main mediator of AF risk. We then performed statistical fine-mapping, leveraging the information in OCRs, and identified putative causal variants in 122 AF-associated loci. Taking advantage of the fine-mapping results, our novel statistical procedure for gene discovery prioritized 46 high-confidence risk genes, highlighting transcription factors and signal transduction pathways important for heart development. In summary, our analysis provides a comprehensive map of AF risk variants and genes, and a general framework to integrate single-cell genomics with genetic studies of complex traits.
Collapse
Affiliation(s)
- Alan Selewa
- Biophysical Sciences Graduate Program, The University of Chicago, Chicago, IL, 60637, USA
| | - Kaixuan Luo
- Department of Human Genetics, The University of Chicago, Chicago, IL, 60637, USA
| | - Michael Wasney
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Linsin Smith
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Xiaotong Sun
- Department of Human Genetics, The University of Chicago, Chicago, IL, 60637, USA
| | - Chenwei Tang
- The College, The University of Chicago, Chicago, IL, 60637, USA
| | - Heather Eckart
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Ivan P Moskowitz
- Department of Human Genetics, The University of Chicago, Chicago, IL, 60637, USA
- Department of Pediatrics, The University of Chicago, Chicago, IL, 60637, USA
| | - Anindita Basu
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL, 60637, USA.
| | - Xin He
- Department of Human Genetics, The University of Chicago, Chicago, IL, 60637, USA.
| | - Sebastian Pott
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
9
|
Chen Z, Zhang SL. Endoplasmic Reticulum Stress: A Key Regulator of Cardiovascular Disease. DNA Cell Biol 2023. [PMID: 37140435 DOI: 10.1089/dna.2022.0532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The problems associated with economic development and social progress have led to an increase in the occurrence of cardiovascular diseases (CVDs), which affect the health of an increasing number of people and are a leading cause of disease and population mortality worldwide. Endoplasmic reticulum stress (ERS), a hot topic of interest for scholars in recent years, has been confirmed in numerous studies to be an important pathogenetic basis for many metabolic diseases and play an important role in maintaining physiological processes. The endoplasmic reticulum (ER) is a major organelle that is involved in protein folding and modification synthesis, and ERS occurs when several physiological and pathological factors allow excessive amounts of unfolded/misfolded proteins to accumulate. ERS often leads to initiation of the unfolded protein response (UPR) in a bid to re-establish tissue homeostasis; however, UPR has been documented to induce vascular remodeling and cardiomyocyte damage under various pathological conditions, leading to or accelerating the development of CVDs such as hypertension, atherosclerosis, and heart failure. In this review, we summarize the latest knowledge gained concerning ERS in terms of cardiovascular system pathophysiology, and discuss the feasibility of targeting ERS as a novel therapeutic target for the treatment of CVDs. Investigation of ERS has immense potential as a new direction for future research involving lifestyle intervention, the use of existing drugs, and the development of novel drugs that target and inhibit ERS.
Collapse
Affiliation(s)
- Zhao Chen
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shi-Liang Zhang
- Section 4, Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Hamilton S, Terentyev D. ER stress and calcium-dependent arrhythmias. Front Physiol 2022; 13:1041940. [PMID: 36425292 PMCID: PMC9679650 DOI: 10.3389/fphys.2022.1041940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
The sarcoplasmic reticulum (SR) plays the key role in cardiac function as the major source of Ca2+ that activates cardiomyocyte contractile machinery. Disturbances in finely-tuned SR Ca2+ release by SR Ca2+ channel ryanodine receptor (RyR2) and SR Ca2+ reuptake by SR Ca2+-ATPase (SERCa2a) not only impair contraction, but also contribute to cardiac arrhythmia trigger and reentry. Besides being the main Ca2+ storage organelle, SR in cardiomyocytes performs all the functions of endoplasmic reticulum (ER) in other cell types including protein synthesis, folding and degradation. In recent years ER stress has become recognized as an important contributing factor in many cardiac pathologies, including deadly ventricular arrhythmias. This brief review will therefore focus on ER stress mechanisms in the heart and how these changes can lead to pro-arrhythmic defects in SR Ca2+ handling machinery.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States,*Correspondence: Shanna Hamilton,
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
11
|
Yu Y, Yang A, Yu G, Wang H. Endoplasmic Reticulum Stress in Chronic Obstructive Pulmonary Disease: Mechanisms and Future Perspectives. Biomolecules 2022; 12:1637. [PMID: 36358987 PMCID: PMC9687722 DOI: 10.3390/biom12111637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 09/08/2024] Open
Abstract
The endoplasmic reticulum (ER) is an integral organelle for maintaining protein homeostasis. Multiple factors can disrupt protein folding in the lumen of the ER, triggering ER stress and activating the unfolded protein response (UPR), which interrelates with various damage mechanisms, such as inflammation, apoptosis, and autophagy. Numerous studies have linked ER stress and UPR to the progression of chronic obstructive pulmonary disease (COPD). This review focuses on the mechanisms of other cellular processes triggered by UPR and summarizes drug intervention strategies targeting the UPR pathway in COPD to explore new therapeutic approaches and preventive measures for COPD.
Collapse
Affiliation(s)
| | | | - Ganggang Yu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Haoyan Wang
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|