1
|
Abdullahi KM, Ali AF, Adan MM, Shu Q. Detection of Genetic Variations in Children with Tetralogy of Fallot Using Whole Exome Sequencing Technology Integrated Bioinformatics Analysis. Genet Test Mol Biomarkers 2024; 28:474-484. [PMID: 39653367 DOI: 10.1089/gtmb.2024.0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2024] Open
Abstract
Background: Tetralogy of Fallot (TOF) is the most common cyanotic heart defect in newborns, with a complex etiology and genetic variation considered to be one of the main pathogenic factors. Identifying genetic variations associated with TOF has important clinical value for understanding its pathogenesis, patient susceptibility, and prognosis of patients with TOF. Therefore, this study aimed to identify potential pathogenic genes of TOF through comprehensive genetic analysis. Materials and Methods: In this study, we employed whole exome sequencing (WES) of the DNA of 47 Chinese children who received surgical TOF treatment at the Children's Hospital of Zhejiang University of Medicine and processed for DNA extraction and quantification of the DNA following WES using the Illumina NovaSeq platform. WES data undergo strict quality control and analysis processes including alignment, postprocessing, variant calling, annotation, and prioritization. Key tools, such as GATK's haplotype calling module and Annotate Variation, were used for variant annotation. In addition, by combining bioinformatics tools such as SIFT, Polyphen2, and Clin Pred, we evaluated the potential impact of nonsynonymous mutations on protein function and referred to relevant literature to support our prediction. Results: Comprehensive data analysis and quality assessment analysis corroborated the data generated from the WES dataset of 47 patients with TOF. Interpreting variants from the perspective of clinical pathogenicity results revealed a novel polymorphism and variant associated with TOF. The identified genetic results revealed evidence for a major contribution of MUTYH, RARB, GFM1, PDZD2, CEP57, DCPS, POMT2, BUB1B, CYP19A1, MAZ, USP10, and TCF3 and provided novel findings for functionally interacting proteins associated with the pathomechanism of TOF. Seven pathogenic variants related to TOF were detected, most of which were previously unreported in this cohort. Conclusions: The genetic variations discovered in this study emphasize the importance of genetic factors in the pathogenesis of TOF, revealing its complex molecular pathways and protein-protein interactions. The study of genetic diversity provides a new perspective for understanding the etiology of TOF and promotes an in-depth exploration of its pathological mechanisms. These findings lay the foundation for subsequent clinical research and the development of treatment strategies.
Collapse
Affiliation(s)
- Khalid Mohamoud Abdullahi
- Department of Cardiac Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Hangzhou, China
| | - Ahmed Faisal Ali
- Department of Infectious Disease, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mohamed Mohamoud Adan
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Shu
- Department of Cardiac Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Hangzhou, China
| |
Collapse
|
2
|
Farhat A, Charanek S, Zareef R, El-Rassi I, Bitar F, Arabi M. Tetralogy of Fallot With Absent Pulmonary Valve Syndrome: The Experience of a Tertiary Care Center in a Developing Country. Echocardiography 2024; 41:e15942. [PMID: 39367769 DOI: 10.1111/echo.15942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/07/2024] [Accepted: 09/21/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Tetralogy of Fallot with an absent pulmonary valve is a very rare variant of tetralogy. It is characterized by absent valve tissue, severe pulmonary regurgitation, and secondary aneurysmal dilatation of the pulmonary arteries. AIM In this study, we aim to investigate the clinical presentations, management strategies, and outcomes of patients with tetralogy of Fallot and absent pulmonary valve. METHODOLOGY We retrospectively reviewed the charts of all patients who presented to the American University of Beirut Medical Center between January 2010 and December 2020 and who were diagnosed with this anomaly. RESULTS A total of 300 cases of tetralogy of Fallot were identified, of which 18 patients had absent pulmonary valves. They were followed up for an average of 8.2 years. Prenatal diagnoses were made in four patients, while 13 patients were identified in the neonatal period, with an average age of 4.5 days. Genetic testing confirmed DiGeorge syndrome in one patient. Five patients underwent surgical intervention in the neonatal period, while the remaining patients were operated on during their early childhood. While overall there were no surgical mortalities nor any need for reinterventions, a variety of morbidities were encountered. CONCLUSION This study provides an overview of this rare anomaly and its management in a developing country.
Collapse
Affiliation(s)
- Aziz Farhat
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Sujud Charanek
- Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rana Zareef
- Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Issam El-Rassi
- Department of Surgery, Al Jalila Children's Specialty Hospital, Dubai, UAE
| | - Fadi Bitar
- Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Division of Pediatric Cardiology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mariam Arabi
- Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Division of Pediatric Cardiology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
3
|
Mital R, Lozier JS, Mead TJ. Genetic insights into Tetralogy of Fallot: Oh MYH(6). Pediatr Res 2024; 96:297-298. [PMID: 38600301 PMCID: PMC11343695 DOI: 10.1038/s41390-024-03195-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Affiliation(s)
- Rahul Mital
- Division of Pediatric Cardiology, University Hospitals Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | - John S Lozier
- Division of Pediatric Cardiology, University Hospitals Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | - Timothy J Mead
- Division of Pediatric Cardiology, University Hospitals Rainbow Babies and Children's Hospital, Cleveland, OH, USA.
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
4
|
Zuo JY, Chen HX, Yang Q, Liu ZG, He GW. Tetralogy of Fallot: variants of MYH6 gene promoter and cellular functional analyses. Pediatr Res 2024; 96:338-346. [PMID: 38135727 DOI: 10.1038/s41390-023-02955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/10/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Tetralogy of Fallot (TOF) is a common form of congenital heart disease. The MYH6 gene has important effects on cardiovascular growth and development. METHODS In 608 subjects, including 315 TOF patients, we investigated the MYH6 gene promoter variants and verified the effect on gene expression by using cellular functional experiments with three cell lines (HEK-293, HL-1, and H9C2 cells) and bioinformatics analysis. RESULTS In the MYH6 gene promoter, 12 variants were identified from 608 subjects. Five variants were found only in patients with TOF and two of them (g.3384G>T and g.4518T>C) were novel. Electrophoretic mobility shift assay with three cell lines (HEK-293, HL-1, and H9C2) showed significant changes in the transcription factors bound by the promoter variants compared to the wild-type. Dual luciferase reporter showed that four of the five variants reduced the transcriptional activity of the MYH6 gene promoter (p < 0.05). CONCLUSIONS This study is the first to test the cellular function of variants in the promoter region of the MYH6 gene in patients with TOF, which provides new insights into the genetic basis of TOF and provides a basis for further study of the mechanism of TOF formation. IMPACT DNA from 608 human subjects was sequenced for MYH6 gene promoter region variants with five variants found only in TOF patients and two were novel. EMSA and dual luciferase reporter experiments in three cell lines found these variants pathological. Prediction by JASPAR database indicated that these variants alter the transcription factor binding sites. The study, for the first time, confirmed that there are variants at the MYH6 gene promoter region and these variants alter the cellular function. The variants found in this study suggest the possible pathological role in the formation of TOF.
Collapse
Affiliation(s)
- Ji-Yang Zuo
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, 300457, China
- Clinical School of Cardiovascular Disease, Tianjin Medical University, Tianjin, China
| | - Huan-Xin Chen
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, 300457, China
| | - Qin Yang
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, 300457, China
| | - Zhi-Gang Liu
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, 300457, China.
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, 300457, China.
| | - Guo-Wei He
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, 300457, China.
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, 300457, China.
| |
Collapse
|
5
|
Li Y, Tian M, Zhou Z, Tu J, Zhang R, Huang Y, Zhang Y, Cui H, Zhuang J, Chen J. Integrative metabolomics dictate distinctive signature profiles in patients with Tetralogy of Fallot. Pediatr Res 2024:10.1038/s41390-024-03328-8. [PMID: 38951655 DOI: 10.1038/s41390-024-03328-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart disease (CCHD) with multifactorial etiology. We aimed to investigate the metabolic profiles of CCHD and their independent contributions to TOF. METHODS A cohort comprising 42 individuals with TOF and atrial septal defect (ASD) was enrolled. Targeted ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) was employed to systematically analyze metabolite levels and identify TOF-associated metabolic profiles. RESULTS Of 370 identified metabolites in tissue and 284 in plasma, over one-third of metabolites showed an association with microbiome. Differential metabolic pathways including amino acids biosynthesis, ABC (ATP-binding cassette) transporters, carbon metabolism, and fatty acid biosynthesis, shed light on TOF biological phenotypes. Additionally, ROC curves identified potential biomarkers, such as erythronic acid with an AUC of 0.868 in plasma, and 3-β-hydroxy-bisnor-5-cholenic acid, isocitric acid, glutaric acid, ortho-Hydroxyphenylacetic acid, picolinic acid with AUC close to 1 in tissue, whereas the discriminative performance of those substances significantly improved when combined with clinical phenotypes. CONCLUSIONS Distinct metabolic profiles exhibited robust discriminatory capabilities, effectively distinguishing TOF from ASD patients. These metabolites may serve as biomarkers or key molecular players in the intricate metabolic pathways involved in CCHD development. IMPACT Distinct metabolic profiles exhibited robust discriminatory capabilities, effectively distinguishing Tetralogy of Fallot from atrial septal defect patients. Similar profiling but inconsistent differential pathways between plasma and tissue. More than one-third metabolites in plasma and tissue are associated with the microbiome. The discovery of biomarkers is instrumental in facilitating early detection and diagnosis of Tetralogy of Fallot. Disturbed metabolism offers insights into interpretation of pathogenesis of Tetralogy of Fallot.
Collapse
Affiliation(s)
- Ying Li
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, 510080, China
| | - Miao Tian
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, 510080, China
| | - Ziqin Zhou
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, 510080, China
| | - Jiazichao Tu
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Ruyue Zhang
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, 510080, China
| | - Yu Huang
- Department of Pediatric cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yong Zhang
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, 510080, China
| | - Hujun Cui
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, 510080, China
| | - Jian Zhuang
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, 510080, China
| | - Jimei Chen
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, 510080, China.
| |
Collapse
|
6
|
Maleyeff L, Park HJ, Khazal ZSH, Wypij D, Rollins CK, Yun HJ, Bellinger DC, Watson CG, Roberts AE, Newburger JW, Grant PE, Im K, Morton SU. Meta-regression of sulcal patterns, clinical and environmental factors on neurodevelopmental outcomes in participants with multiple CHD types. Cereb Cortex 2024; 34:bhae224. [PMID: 38836834 DOI: 10.1093/cercor/bhae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
Congenital heart disease affects 1% of infants and is associated with impaired neurodevelopment. Right- or left-sided sulcal features correlate with executive function among people with Tetralogy of Fallot or single ventricle congenital heart disease. Studies of multiple congenital heart disease types are needed to understand regional differences. Further, sulcal pattern has not been studied in people with d-transposition of the great arteries. Therefore, we assessed the relationship between sulcal pattern and executive function, general memory, and processing speed in a meta-regression of 247 participants with three congenital heart disease types (114 single ventricle, 92 d-transposition of the great arteries, and 41 Tetralogy of Fallot) and 94 participants without congenital heart disease. Higher right hemisphere sulcal pattern similarity was associated with improved executive function (Pearson r = 0.19, false discovery rate-adjusted P = 0.005), general memory (r = 0.15, false discovery rate P = 0.02), and processing speed (r = 0.17, false discovery rate P = 0.01) scores. These positive associations remained significant in for the d-transposition of the great arteries and Tetralogy of Fallot cohorts only in multivariable linear regression (estimated change β = 0.7, false discovery rate P = 0.004; β = 4.1, false discovery rate P = 0.03; and β = 5.4, false discovery rate P = 0.003, respectively). Duration of deep hypothermic circulatory arrest was also associated with outcomes in the multivariate model and regression tree analysis. This suggests that sulcal pattern may provide an early biomarker for prediction of later neurocognitive challenges among people with congenital heart disease.
Collapse
Affiliation(s)
- Lara Maleyeff
- Department of Biostatistics, Epidemiology, and Occupational Health, McGill University, Montreal, QC, Canada
| | - Hannah J Park
- Division of Newborn Medicine, Boston Children's Hospital, Boston 02115, MA, United States
| | - Zahra S H Khazal
- Division of Newborn Medicine, Boston Children's Hospital, Boston 02115, MA, United States
| | - David Wypij
- Department of Pediatrics, Harvard Medical School, Boston MA, United States
- Department of Cardiology, Boston Children's Hospital, Boston 02115, MA, United States
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston MA, United States
| | - Caitlin K Rollins
- Department of Neurology, Boston Children's Hospital 02115 Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston MA, United States
| | - Hyuk Jin Yun
- Division of Newborn Medicine, Boston Children's Hospital, Boston 02115, MA, United States
- Fetal Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston 02115, MA, United States
| | - David C Bellinger
- Department of Neurology, Boston Children's Hospital 02115 Boston, MA, United States
- Department of Psychiatry, Boston Children's Hospital, Boston 02115, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston MA, United States
| | - Christopher G Watson
- Department of Neurology, Boston Children's Hospital 02115 Boston, MA, United States
| | - Amy E Roberts
- Department of Pediatrics, Harvard Medical School, Boston MA, United States
- Department of Cardiology, Boston Children's Hospital, Boston 02115, MA, United States
| | - Jane W Newburger
- Department of Pediatrics, Harvard Medical School, Boston MA, United States
- Department of Cardiology, Boston Children's Hospital, Boston 02115, MA, United States
| | - P Ellen Grant
- Department of Biostatistics, Epidemiology, and Occupational Health, McGill University, Montreal, QC, Canada
- Fetal Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston 02115, MA, United States
- Department of Radiology, Boston Children's Hospital, Boston 02115, MA, United States
| | - Kiho Im
- Division of Newborn Medicine, Boston Children's Hospital, Boston 02115, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston MA, United States
- Fetal Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston 02115, MA, United States
| | - Sarah U Morton
- Division of Newborn Medicine, Boston Children's Hospital, Boston 02115, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston MA, United States
- Fetal Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston 02115, MA, United States
| |
Collapse
|
7
|
Sessa F, Chisari M, Salerno M, Esposito M, Zuccarello P, Capasso E, Scoto E, Cocimano G. Congenital heart diseases (CHDs) and forensic investigations: Searching for the cause of death. Exp Mol Pathol 2024; 137:104907. [PMID: 38820762 DOI: 10.1016/j.yexmp.2024.104907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
Congenital Heart Diseases (CHDs) are a group of structural abnormalities or defects of the heart that are present at birth. CHDs could be connected to sudden death (SD), defined by the WHO (World Health Organization) as "death occurring within 24 h after the onset of the symptoms" in an apparently "healthy" subject. These conditions can range from relatively mild defects to severe, life-threatening anomalies. The prevalence of CHDs varies across populations, but they affect millions of individuals worldwide. This article aims to discuss the post-mortem investigation of death related to CHDs, exploring the forensic approach, current methodologies, challenges, and potential advancements in this challenging field. A further goal of this article is to provide a guide for understanding these complex diseases, highlighting the pivotal role of autopsy, histopathology, and genetic investigations in defining the cause of death, and providing evidence about the translational use of autopsy reports. Forensic investigations play a crucial role in understanding the complexities of CHDs and determining the cause of death accurately. Through collaboration between medical professionals and forensic experts, meticulous examinations, and analysis of evidence, valuable insights can be gained. These insights not only provide closure to the families affected but also contribute to the prevention of future tragedies.
Collapse
Affiliation(s)
- Francesco Sessa
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy.
| | - Mario Chisari
- "Rodolico-San Marco" Hospital, Santa Sofia Street, 87, Catania 95121, Italy.
| | - Monica Salerno
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy.
| | | | - Pietro Zuccarello
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy.
| | - Emanuele Capasso
- Department of Advanced Biomedical Science-Legal Medicine Section, University of Naples "Federico II", 80131 Naples, Italy.
| | - Edmondo Scoto
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95121 Catania, Italy
| | - Giuseppe Cocimano
- Department of Mental and Physical Health and Preventive Medicine, University of Campania "Vanvitelli", 80121 Napoli, Italy.
| |
Collapse
|
8
|
Verma SK, Kuyumcu-Martinez MN. RNA binding proteins in cardiovascular development and disease. Curr Top Dev Biol 2024; 156:51-119. [PMID: 38556427 DOI: 10.1016/bs.ctdb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Congenital heart disease (CHD) is the most common birth defect affecting>1.35 million newborn babies worldwide. CHD can lead to prenatal, neonatal, postnatal lethality or life-long cardiac complications. RNA binding protein (RBP) mutations or variants are emerging as contributors to CHDs. RBPs are wizards of gene regulation and are major contributors to mRNA and protein landscape. However, not much is known about RBPs in the developing heart and their contributions to CHD. In this chapter, we will discuss our current knowledge about specific RBPs implicated in CHDs. We are in an exciting era to study RBPs using the currently available and highly successful RNA-based therapies and methodologies. Understanding how RBPs shape the developing heart will unveil their contributions to CHD. Identifying their target RNAs in the embryonic heart will ultimately lead to RNA-based treatments for congenital heart disease.
Collapse
Affiliation(s)
- Sunil K Verma
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States.
| | - Muge N Kuyumcu-Martinez
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States; Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States; University of Virginia Cancer Center, Charlottesville, VA, United States.
| |
Collapse
|
9
|
Coll M, Fernández-Falgueras A, Iglesias A, Brugada R. Valvulopathies and Genetics: Where are We? Rev Cardiovasc Med 2024; 25:40. [PMID: 39077344 PMCID: PMC11263169 DOI: 10.31083/j.rcm2502040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 07/31/2024] Open
Abstract
Valvulopathies are among the most common cardiovascular diseases, significantly increasing morbidity and mortality. While many valvular heart diseases are acquired later in life, an important genetic component has been described, particularly in mitral valve prolapse and bicuspid aortic valve. These conditions can arise secondary to genetic syndromes such as Marfan disease (associated with mitral valve prolapse) or Turner syndrome (linked to the bicuspid aortic valve) or may manifest in a non-syndromic form. When cardiac valve disease is the primary cause, it can appear in a familial clustering or sporadically, with a clear genetic component. The identification of new genes, regulatory elements, post-transcriptional modifications, and molecular pathways is crucial to identify at-risk familial carriers and for developing novel therapeutic strategies. In the present review we will discuss the numerous genetic contributors of heart valve diseases.
Collapse
Affiliation(s)
- Mònica Coll
- Unitat de Genòmica i Medicina Personalitzada, Laboratori Clínic Territorial, Institut Català de la Salut, 17003 Salt, Spain
- Cardiovascular Genetics Center, University of Girona-Institut d'Investigacions Biomèdiques de Girona (IDIBGI), 17003 Salt, Spain
| | - Anna Fernández-Falgueras
- Unitat de Genòmica i Medicina Personalitzada, Laboratori Clínic Territorial, Institut Català de la Salut, 17003 Salt, Spain
- Cardiovascular Genetics Center, University of Girona-Institut d'Investigacions Biomèdiques de Girona (IDIBGI), 17003 Salt, Spain
- Cardiology Service, Hospital Josep Trueta, University of Girona, 17004 Girona, Spain
| | - Anna Iglesias
- Unitat de Genòmica i Medicina Personalitzada, Laboratori Clínic Territorial, Institut Català de la Salut, 17003 Salt, Spain
- Cardiovascular Genetics Center, University of Girona-Institut d'Investigacions Biomèdiques de Girona (IDIBGI), 17003 Salt, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Center, University of Girona-Institut d'Investigacions Biomèdiques de Girona (IDIBGI), 17003 Salt, Spain
- Cardiology Service, Hospital Josep Trueta, University of Girona, 17004 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28014 Madrid, Spain
- Medical Science Department, School of Medicine, University of Girona, 17004 Girona, Spain
| |
Collapse
|
10
|
Shaikh Qureshi WM, Hentges KE. Functions of cilia in cardiac development and disease. Ann Hum Genet 2024; 88:4-26. [PMID: 37872827 PMCID: PMC10952336 DOI: 10.1111/ahg.12534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023]
Abstract
Errors in embryonic cardiac development are a leading cause of congenital heart defects (CHDs), including morphological abnormalities of the heart that are often detected after birth. In the past few decades, an emerging role for cilia in the pathogenesis of CHD has been identified, but this topic still largely remains an unexplored area. Mouse forward genetic screens and whole exome sequencing analysis of CHD patients have identified enrichment for de novo mutations in ciliary genes or non-ciliary genes, which regulate cilia-related pathways, linking cilia function to aberrant cardiac development. Key events in cardiac morphogenesis, including left-right asymmetric development of the heart, are dependent upon cilia function. Cilia dysfunction during left-right axis formation contributes to CHD as evidenced by the substantial proportion of heterotaxy patients displaying complex CHD. Cilia-transduced signaling also regulates later events during heart development such as cardiac valve formation, outflow tract septation, ventricle development, and atrioventricular septa formation. In this review, we summarize the role of motile and non-motile (primary cilia) in cardiac asymmetry establishment and later events during heart development.
Collapse
Affiliation(s)
- Wasay Mohiuddin Shaikh Qureshi
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| | - Kathryn E. Hentges
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| |
Collapse
|
11
|
Camprubí-Camprubí M, Sanchez-de-Toledo J. Editorial: Cardiac outflow tract development and diseases. Front Pediatr 2023; 11:1323167. [PMID: 38027277 PMCID: PMC10666748 DOI: 10.3389/fped.2023.1323167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Marta Camprubí-Camprubí
- Department of Neonatology, Hospital Sant Joan de Déu, Barcelona, Spain
- Cardiovascular Research Group, Sant Joan de Déu Research Institute, Barcelona, Spain
- BCNatal-Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu-Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Joan Sanchez-de-Toledo
- Cardiovascular Research Group, Sant Joan de Déu Research Institute, Barcelona, Spain
- Department of Pediatric Cardiology, Hospital Sant Joan de Déu, Barcelona, Spain
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
12
|
Wang Y, Yang J, Lu J, Wang Q, Wang J, Zhao J, Huang Y, Sun K. Novel hub genes and regulatory network related to ferroptosis in tetralogy of Fallot. Front Pediatr 2023; 11:1177993. [PMID: 37920788 PMCID: PMC10619671 DOI: 10.3389/fped.2023.1177993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/19/2023] [Indexed: 11/04/2023] Open
Abstract
Ferroptosis is a newly discovered type of cell death mainly triggered by uncontrolled lipid peroxidation, and it could potentially have a significant impact on the development and progression of tetralogy of Fallot (TOF). Our project aims to identify and validate potential genes related to ferroptosis in TOF. We obtained sequencing data of TOF from the GEO database and ferroptosis-related genes from the ferroptosis database. We employed bioinformatics methods to analyze the differentially expressed mRNAs (DEmRNAs) and microRNAs between the normal control group and TOF group and identify DEmRNAs related to ferroptosis. Protein-protein interaction analysis was conducted to screen hub genes. Furthermore, a miRNA-mRNA-TF co-regulatory network was constructed to utilize prediction software. The expression of hub genes was further validated through quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR). After conducting the differential gene analysis, we observed that in TOF, 41 upregulated mRNAs and three downregulated mRNAs associated with ferroptosis genes were found. Further Gene Ontology/Kyoto Encyclopedia of Genes and Genomes analysis revealed that these genes were primarily involved in molecular functions and biological processes related to chemical stress, oxidative stress, cellular response to starvation, response to nutrient levels, cellular response to external stimulus, and cellular response to extracellular stimulus. Furthermore, we constructed a miRNA-mRNA-TF co-regulatory network. qRT-PCR analysis of the right ventricular tissues from human cases showed an upregulation in the mRNA levels of KEAP1 and SQSTM1. Our bioinformatics analysis successfully identified 44 potential genes that are associated with ferroptosis in TOF. This finding significantly contributes to our understanding of the molecular mechanisms underlying the development of TOF. Moreover, these findings have the potential to open new avenues for the development of innovative therapeutic approaches for the treatment of this condition.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pediatric Cardiology, The Second Affiliated Hospital, Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junjie Yang
- Department of Pediatric Cardiology, The Second Affiliated Hospital, Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jieru Lu
- Department of Pediatric Cardiology, The Second Affiliated Hospital, Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingjie Wang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianyuan Zhao
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqiang Huang
- Linyi Maternal and Child Health Care Hospital, Linyi, China
| | - Kun Sun
- Department of Pediatric Cardiology, The Second Affiliated Hospital, Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Harvey DC, Verma R, Sedaghat B, Hjelm BE, Morton SU, Seidman JG, Kumar SR. Mutations in genes related to myocyte contraction and ventricular septum development in non-syndromic tetralogy of Fallot. Front Cardiovasc Med 2023; 10:1249605. [PMID: 37840956 PMCID: PMC10569225 DOI: 10.3389/fcvm.2023.1249605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Objective Eighty percent of patients with a diagnosis of tetralogy of Fallot (TOF) do not have a known genetic etiology or syndrome. We sought to identify key molecular pathways and biological processes that are enriched in non-syndromic TOF, the most common form of cyanotic congenital heart disease, rather than single driver genes to elucidate the pathogenesis of this disease. Methods We undertook exome sequencing of 362 probands with non-syndromic TOF and their parents within the Pediatric Cardiac Genomics Consortium (PCGC). We identified rare (minor allele frequency <1 × 10-4), de novo variants to ascertain pathways and processes affected in this population to better understand TOF pathogenesis. Pathways and biological processes enriched in the PCGC TOF cohort were compared to 317 controls without heart defects (and their parents) from the Simons Foundation Autism Research Initiative (SFARI). Results A total of 120 variants in 117 genes were identified as most likely to be deleterious, with CHD7, CLUH, UNC13C, and WASHC5 identified in two probands each. Gene ontology analyses of these variants using multiple bioinformatic tools demonstrated significant enrichment in processes including cell cycle progression, chromatin remodeling, myocyte contraction and calcium transport, and development of the ventricular septum and ventricle. There was also a significant enrichment of target genes of SOX9, which is critical in second heart field development and whose loss results in membranous ventricular septal defects related to disruption of the proximal outlet septum. None of these processes was significantly enriched in the SFARI control cohort. Conclusion Innate molecular defects in cardiac progenitor cells and genes related to their viability and contractile function appear central to non-syndromic TOF pathogenesis. Future research utilizing our results is likely to have significant implications in stratification of TOF patients and delivery of personalized clinical care.
Collapse
Affiliation(s)
- Drayton C. Harvey
- Departments of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Riya Verma
- Departments of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Brandon Sedaghat
- Department of Medicine, Rosalind Franklin University School of Medicine and Science, Chicago, IL, United States
| | - Brooke E. Hjelm
- Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sarah U. Morton
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
| | - Jon G. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - S. Ram Kumar
- Departments of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|