1
|
Rujas M, Martín Gómez Del Moral Herranz R, Fico G, Merino-Barbancho B. Synthetic data generation in healthcare: A scoping review of reviews on domains, motivations, and future applications. Int J Med Inform 2024; 195:105763. [PMID: 39719743 DOI: 10.1016/j.ijmedinf.2024.105763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND The development of Artificial Intelligence in the healthcare sector is generating a great impact. However, one of the primary challenges for the implementation of this technology is the access to high-quality data due to issues in data collection and regulatory constraints, for which synthetic data is an emerging alternative. While previous research has reviewed synthetic data generation techniques, there is limited focus on their applications and the motivations driving their synthesis. A comprehensive review is needed to expand the potential of synthetic data into less explored healthcare areas. OBJECTIVE This review aims to identify the healthcare domains where synthetic data are currently generated, the motivations behind their creation, their future uses, limitations, and types of data. MATERIALS AND METHODS Following the PRISMA-ScR framework, this review analysed literature from the last 10 years within PubMed, Scopus, and Web of Science. Reviews containing information on synthetic data generation in healthcare were screened and analysed. Key healthcare domains, motivations, future uses, and gaps in the literature were identified through a structured data extraction process. RESULTS Of the 346 reviews identified, 42 were included for data extraction. Thirteen main domains were identified, with Oncology, Neurology, and Cardiology being the most frequently mentioned. Five primary motivations for synthetic data generation and three major categories of future applications were highlighted. Additionally, unstructured data, particularly images, were found to be the predominant type of synthetic data generated. DISCUSSION AND CONCLUSION Synthetic data are currently being generated across diverse healthcare domains, showcasing their adaptability and potential. Despite their early stage, synthetic data technologies hold significant promise for future applications. Expanding their use into new domains and less common data types (e.g., video and text) could further enhance their impact. Future work should focus on developing evaluation benchmarks and standardized generative models tailored to specific healthcare domains.
Collapse
Affiliation(s)
- Miguel Rujas
- Life Supporting Technologies Research Group, Universidad Politécnica de Madrid, Avda Complutense 30, 28040 Madrid, Spain.
| | | | - Giuseppe Fico
- Life Supporting Technologies Research Group, Universidad Politécnica de Madrid, Avda Complutense 30, 28040 Madrid, Spain
| | - Beatriz Merino-Barbancho
- Life Supporting Technologies Research Group, Universidad Politécnica de Madrid, Avda Complutense 30, 28040 Madrid, Spain
| |
Collapse
|
2
|
McElliott MC, Al-Suraimi A, Telang AC, Ference-Salo JT, Chowdhury M, Soofi A, Dressler GR, Beamish JA. High-throughput image analysis with deep learning captures heterogeneity and spatial relationships after kidney injury. Sci Rep 2023; 13:6361. [PMID: 37076596 PMCID: PMC10115810 DOI: 10.1038/s41598-023-33433-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/12/2023] [Indexed: 04/21/2023] Open
Abstract
Recovery from acute kidney injury can vary widely in patients and in animal models. Immunofluorescence staining can provide spatial information about heterogeneous injury responses, but often only a fraction of stained tissue is analyzed. Deep learning can expand analysis to larger areas and sample numbers by substituting for time-intensive manual or semi-automated quantification techniques. Here we report one approach to leverage deep learning tools to quantify heterogenous responses to kidney injury that can be deployed without specialized equipment or programming expertise. We first demonstrated that deep learning models generated from small training sets accurately identified a range of stains and structures with performance similar to that of trained human observers. We then showed this approach accurately tracks the evolution of folic acid induced kidney injury in mice and highlights spatially clustered tubules that fail to repair. We then demonstrated that this approach captures the variation in recovery across a robust sample of kidneys after ischemic injury. Finally, we showed markers of failed repair after ischemic injury were correlated both spatially within and between animals and that failed repair was inversely correlated with peritubular capillary density. Combined, we demonstrate the utility and versatility of our approach to capture spatially heterogenous responses to kidney injury.
Collapse
Affiliation(s)
- Madison C McElliott
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Drive, SPC 5364, Ann Arbor, MI, 48109, USA
| | - Anas Al-Suraimi
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Drive, SPC 5364, Ann Arbor, MI, 48109, USA
| | - Asha C Telang
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Drive, SPC 5364, Ann Arbor, MI, 48109, USA
| | - Jenna T Ference-Salo
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Drive, SPC 5364, Ann Arbor, MI, 48109, USA
| | - Mahboob Chowdhury
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Drive, SPC 5364, Ann Arbor, MI, 48109, USA
| | - Abdul Soofi
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Jeffrey A Beamish
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Drive, SPC 5364, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
3
|
Khanna NN, Maindarkar M, Puvvula A, Paul S, Bhagawati M, Ahluwalia P, Ruzsa Z, Sharma A, Munjral S, Kolluri R, Krishnan PR, Singh IM, Laird JR, Fatemi M, Alizad A, Dhanjil SK, Saba L, Balestrieri A, Faa G, Paraskevas KI, Misra DP, Agarwal V, Sharma A, Teji J, Al-Maini M, Nicolaides A, Rathore V, Naidu S, Liblik K, Johri AM, Turk M, Sobel DW, Pareek G, Miner M, Viskovic K, Tsoulfas G, Protogerou AD, Mavrogeni S, Kitas GD, Fouda MM, Kalra MK, Suri JS. Vascular Implications of COVID-19: Role of Radiological Imaging, Artificial Intelligence, and Tissue Characterization: A Special Report. J Cardiovasc Dev Dis 2022; 9:268. [PMID: 36005433 PMCID: PMC9409845 DOI: 10.3390/jcdd9080268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/30/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022] Open
Abstract
The SARS-CoV-2 virus has caused a pandemic, infecting nearly 80 million people worldwide, with mortality exceeding six million. The average survival span is just 14 days from the time the symptoms become aggressive. The present study delineates the deep-driven vascular damage in the pulmonary, renal, coronary, and carotid vessels due to SARS-CoV-2. This special report addresses an important gap in the literature in understanding (i) the pathophysiology of vascular damage and the role of medical imaging in the visualization of the damage caused by SARS-CoV-2, and (ii) further understanding the severity of COVID-19 using artificial intelligence (AI)-based tissue characterization (TC). PRISMA was used to select 296 studies for AI-based TC. Radiological imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound were selected for imaging of the vasculature infected by COVID-19. Four kinds of hypotheses are presented for showing the vascular damage in radiological images due to COVID-19. Three kinds of AI models, namely, machine learning, deep learning, and transfer learning, are used for TC. Further, the study presents recommendations for improving AI-based architectures for vascular studies. We conclude that the process of vascular damage due to COVID-19 has similarities across vessel types, even though it results in multi-organ dysfunction. Although the mortality rate is ~2% of those infected, the long-term effect of COVID-19 needs monitoring to avoid deaths. AI seems to be penetrating the health care industry at warp speed, and we expect to see an emerging role in patient care, reduce the mortality and morbidity rate.
Collapse
Affiliation(s)
- Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India
| | - Mahesh Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Annu’s Hospitals for Skin and Diabetes, Nellore 524101, India
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India
| | - Zoltan Ruzsa
- Invasive Cardiology Division, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA
| | - Smiksha Munjral
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Raghu Kolluri
- Ohio Health Heart and Vascular, Columbus, OH 43214, USA
| | | | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Surinder K. Dhanjil
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy
| | - Antonella Balestrieri
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria, 09124 Cagliari, Italy
| | | | - Durga Prasanna Misra
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Vikas Agarwal
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Aman Sharma
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Jagjit Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, 2408 Nicosia, Cyprus
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA 95119, USA
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA
| | - Kiera Liblik
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany
| | - David W. Sobel
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA
| | - Martin Miner
- Men’s Health Centre, Miriam Hospital Providence, Providence, RI 02906, USA
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athanasios D. Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, 17674 Athens, Greece
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Manudeep K. Kalra
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|