Ikegame S, Yoshimoto M, Miki K. Simultaneous measurement of central amygdala neuronal activity and sympathetic nerve activity during daily activities in rats.
Exp Physiol 2022;
107:1071-1080. [PMID:
35857391 DOI:
10.1113/ep090538]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/14/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS
What is the central question of this study? The functional relationships between central amygdala neuronal activity and sympathetic nerve activity in daily activities remain unclear. We aimed to measure central amygdala neuronal activity, renal and lumbar sympathetic nerve activity, heart rate, and arterial pressure simultaneously in freely moving rats. What is the main finding and its importance? Central amygdala neuronal activity (CeANA) is significantly related to renal and lumbar sympathetic nerve activity (RSNA and LSNA, respectively) and heart rate (HR) in a behavioural state-dependent and regionally different manner; meanwhile, CeANA was tightly associated with RSNA and HR across all behavioural states. Thus, it is likely that the amygdala is one of the components of neural networks for generating regional differences in renal and lumbar sympathetic nerve activity.
ABSTRACT
The central amygdala (CeA) is involved in generating diverse changes in sympathetic nerve activity (SNA) in response to changes in daily behavioural states. However, the functional relationships between CeA neuronal activity (CeANA) and SNA in daily activities are still unclear. In the present study, we developed a method for simultaneous and continuous measurement of CeANA and SNA in freely moving rats. Wistar rats were chronically instrumented with multiple electrodes (100-μm stainless-steel wire) for the measurement of CeANA, of renal SNA (RSNA) and of lumbar SNA (LSNA), and electroencephalogram, electromyogram (EMG), and electrocardiogram electrodes as well as catheters for measurement of arterial pressure (AP). During the transition from non-rapid-eye movement (NREM) sleep to quiet wakefulness, moving, and grooming states, a significant linear relationship was observed between CeANA and RSNA (P < 0.0001), between CeANA and LSNA (P = 0.0309), between CeANA and heart rate (HR) (P = 0.0123), and between CeANA and EMG (P = 0.0089), but no significant correlation was observed between CeANA and AP (P = 0.5139). During rapid eye movement sleep, the relationships between CeANA and RSNA, LSNA, HR, AP, and EMG deviated from the previously observed linear relationships, but the time course of RSNA and HR changes was the mirror image of that of CeANA, while the time course of changes in LSNA and AP was not related to that of CeANA. In conclusion, CeANA was related to RSNA, LSNA, and HR in a behavioural state-dependent and regionally different manner, while CeANA was tightly associated with RSNA and HR across all behavioural states. This article is protected by copyright. All rights reserved.
Collapse