1
|
Lechon T, Kent NA, Murray JAH, Scofield S. Regulation of meristem and hormone function revealed through analysis of directly-regulated SHOOT MERISTEMLESS target genes. Sci Rep 2025; 15:240. [PMID: 39747964 PMCID: PMC11696002 DOI: 10.1038/s41598-024-83985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
The Arabidopsis Knotted1-like homeobox (KNOX) gene SHOOT MERISTEMLESS (STM) encodes a homeodomain transcription factor that operates as a central component of the gene regulatory network (GRN) controlling shoot apical meristem formation and maintenance. It regulates the expression of target genes that include transcriptional regulators associated with meristem function, particularly those involved in pluripotency and cellular differentiation, as well as genes involved in hormone metabolism and signaling. Previous studies have identified KNOX-regulated genes and their associated cis-regulatory elements in several plant species. However, little is known about STM-DNA interactions in the regulatory regions of target genes in Arabidopsis. Here, we identify and map STM binding sites in the Arabidopsis genome using global ChIP-seq analysis to reveal potential directly-regulated STM target genes. We show that in the majority of target loci, STM binds within 1 kb upstream of the TSS, with other loci showing STM binding at more distal enhancer sites, and we reveal enrichment of DNA motifs containing a TGAC and/or TGAT core in STM-bound target gene cis-regulatory elements. We further demonstrate that many STM-bound genes are transcriptionally responsive to altered levels of STM activity, and show that among these, transcriptional regulators with key roles in meristem and hormone function are highly represented. Finally, we use a subset of these target genes to perform Bayesian network analysis to infer gene regulatory associations and to construct a refined GRN for STM-mediated control of meristem function.
Collapse
Affiliation(s)
- Tamara Lechon
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Nicholas A Kent
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - James A H Murray
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Simon Scofield
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
| |
Collapse
|
2
|
Jia LC, Yang ZT, Shang LL, He SZ, Zhang H, Li X, Xin GS. Genome-wide identification and expression analysis of the KNOX family and its diverse roles in response to growth and abiotic tolerance in sweet potato and its two diploid relatives. BMC Genomics 2024; 25:572. [PMID: 38844832 PMCID: PMC11157901 DOI: 10.1186/s12864-024-10470-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
KNOXs, a type of homeobox genes that encode atypical homeobox proteins, play an essential role in the regulation of growth and development, hormonal response, and abiotic stress in plants. However, the KNOX gene family has not been explored in sweet potato. In this study, through sequence alignment, genomic structure analysis, and phylogenetic characterization, 17, 12 and 11 KNOXs in sweet potato (I. batatas, 2n = 6x = 90) and its two diploid relatives I. trifida (2n = 2x = 30) and I. triloba (2n = 2x = 30) were identified. The protein physicochemical properties, chromosome localization, phylogenetic relationships, gene structure, protein interaction network, cis-elements of promoters, tissue-specific expression and expression patterns under hormone treatment and abiotic stresses of these 40 KNOX genes were systematically studied. IbKNOX4, -5, and - 6 were highly expressed in the leaves of the high-yield varieties Longshu9 and Xushu18. IbKNOX3 and IbKNOX8 in Class I were upregulated in initial storage roots compared to fibrous roots. IbKNOXs in Class M were specifically expressed in the stem tip and hardly expressed in other tissues. Moreover, IbKNOX2 and - 6, and their homologous genes were induced by PEG/mannitol and NaCl treatments. The results showed that KNOXs were involved in regulating growth and development, hormone crosstalk and abiotic stress responses between sweet potato and its two diploid relatives. This study provides a comparison of these KNOX genes in sweet potato and its two diploid relatives and a theoretical basis for functional studies.
Collapse
Affiliation(s)
- Li-Cong Jia
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Zi-Tong Yang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Li-Li Shang
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Shao-Zhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Hainan, 572025, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Hainan, 572025, China.
| | - Xu Li
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Hainan, 572025, China.
| | - Guo-Sheng Xin
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China.
| |
Collapse
|
3
|
Liang Q, Chen H, Chang H, Liu Y, Wang Q, Wu J, Liu Y, Kumar S, Chen Y, Chen Y, Zhu G. Influence of Planting Density on Sweet Potato Storage Root Formation by Regulating Carbohydrate and Lignin Metabolism. PLANTS (BASEL, SWITZERLAND) 2023; 12:2039. [PMID: 37653956 PMCID: PMC10221243 DOI: 10.3390/plants12102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 09/02/2023]
Abstract
An appropriate planting density could realize the maximum yield potential of crops, but the mechanism of sweet potato storage root formation in response to planting density is still rarely investigated. Four planting densities, namely D15, D20, D25, and D30, were set for 2-year and two-site field experiments to investigate the carbohydrate and lignin metabolism in potential storage roots and its relationship with the storage root number, yield, and commercial characteristics at the harvest period. The results showed that an appropriate planting density (D20 treatment) stimulated cambium cell differentiation, which increased carbohydrate accumulation and inhibited lignin biosynthesis in potential storage roots. At canopy closure, the D20 treatment produced more storage roots, particularly developing ones. It increased the yield by 10.18-19.73% compared with the control D25 treatment and improved the commercial features by decreasing the storage root length/diameter ratio and increasing the storage root weight uniformity. This study provides a theoretical basis for the high-value production of sweet potato.
Collapse
Affiliation(s)
- Qinggan Liang
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510310, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Hongrong Chen
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510310, China
| | - Hailong Chang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510310, China
| | - Yi Liu
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Qinnan Wang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510310, China
| | - Jiantao Wu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510310, China
| | - Yonghua Liu
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Sunjeet Kumar
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Yue Chen
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Yanli Chen
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Guopeng Zhu
- Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| |
Collapse
|
4
|
Li J, Zhang Y, Li Z, Dai H, Luan X, Zhong T, Chen S, Xie XM, Qin G, Zhang XQ, Peng H. OsPEX1, an extensin-like protein, negatively regulates root growth in a gibberellin-mediated manner in rice. PLANT MOLECULAR BIOLOGY 2023; 112:47-59. [PMID: 37097548 DOI: 10.1007/s11103-023-01347-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/01/2023] [Indexed: 05/09/2023]
Abstract
Leucine-rich repeat extensins (LRXs) are required for plant growth and development through affecting cell growth and cell wall formation. LRX gene family can be classified into two categories: predominantly vegetative-expressed LRX and reproductive-expressed PEX. In contrast to the tissue specificity of Arabidopsis PEX genes in reproductive organs, rice OsPEX1 is also highly expressed in roots in addition to reproductive tissue. However, whether and how OsPEX1 affects root growth is unclear. Here, we found that overexpression of OsPEX1 retarded root growth by reducing cell elongation likely caused by an increase of lignin deposition, whereas knockdown of OsPEX1 had an opposite effect on root growth, indicating that OsPEX1 negatively regulated root growth in rice. Further investigation uncovered the existence of a feedback loop between OsPEX1 expression level and GA biosynthesis for proper root growth. This was supported by the facts that exogenous GA3 application downregulated transcript levels of OsPEX1 and lignin-related genes and rescued the root developmental defects of the OsPEX1 overexpression mutant, whereas OsPEX1 overexpression reduced GA level and the expression of GA biosynthesis genes. Moreover, OsPEX1 and GA showed antagonistic action on the lignin biosynthesis in root. OsPEX1 overexpression upregulated transcript levels of lignin-related genes, whereas exogenous GA3 application downregulated their expression. Taken together, this study reveals a possible molecular pathway of OsPEX1mediated regulation of root growth through coordinate modulation of lignin deposition via a negative feedback regulation between OsPEX1 expression and GA biosynthesis.
Collapse
Affiliation(s)
- Jieni Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Food Intelligent Manufacturing, College of Food Science and Engineering, Foshan University, Foshan, 528000, China
| | - Yuexiong Zhang
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhenyong Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hang Dai
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xin Luan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Tianxiu Zhong
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Shu Chen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xin-Ming Xie
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Gang Qin
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Xiang-Qian Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Food Intelligent Manufacturing, College of Food Science and Engineering, Foshan University, Foshan, 528000, China.
| | - Haifeng Peng
- Guangdong Laboratory for Lingnan Modern Agriculture,College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Bai Y, Shi T, Huang X, Zhou P, Ouma KO, Ni Z, Gao F, Tan W, Ma C, Ma Y, Gao Z. Genome-Wide Identification of the KNOX Gene Family in Japanese Apricot ( Prunus mume Sieb. et Zucc.) and Functional Characterization of PmKNAT2 Genes. Genes (Basel) 2023; 14:genes14040939. [PMID: 37107697 PMCID: PMC10138190 DOI: 10.3390/genes14040939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The Knotted1-like Homeobox gene is crucial for plant morphological development and growth. Physicochemical characteristics, phylogenetic relationships, chromosomal localization, cis-acting elements, and tissue-specific expression patterns of the 11 PmKNOX genes found in the Japanese apricot genome in this study were examined. Proteins of 11 PmKNOX were soluble proteins with isoelectric points between 4.29 and 6.53, molecular masses between 15.732 and 44.011 kDa, and amino acid counts between 140 and 430. The identified PmKNOX gene family was split into three subfamilies by jointly constructing the phylogenetic tree of KNOX proteins in Japanese apricot and Arabidopsis thaliana. Combined outcomes of the analyzed conserved motifs and gene structures of the 11 PmKNOX genes from the same subfamily displayed comparable gene structure and motif patterns. The 11 PmKNOX members were distributed across six chromosomes, while two sets of PmKNOX genes were found to be collinear. Analysis of the 2000 bp promoter upstream of the coding region of the PmKNOX gene revealed that most PmKNOX genes might be involved in the physiological metabolism, growth and development processes of plants. The PmKNOX gene expression profile revealed that these genes were expressed at varying levels in different tissues, and most of them were linked to the meristems of leaf and flower buds, suggesting that PmKNOX may be involved in plants' apical meristems. In Arabidopsis thaliana, functional validation of PmKNAT2a and PmKNAT2b revealed that these two genes might be involved in regulating leaf and stem development. In addition to laying the groundwork for future research on the function of these genes, understanding the evolutionary relationships between members of the PmKNOX gene family provides opportunities for future breeding in Japanese apricots.
Collapse
Affiliation(s)
- Yang Bai
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting Shi
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Huang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengyu Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kenneth Omondi Ouma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaojun Ni
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Tan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengdong Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufan Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihong Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Ferrari C, Manosalva Pérez N, Vandepoele K. MINI-EX: Integrative inference of single-cell gene regulatory networks in plants. MOLECULAR PLANT 2022; 15:1807-1824. [PMID: 36307979 DOI: 10.1016/j.molp.2022.10.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/30/2022] [Accepted: 10/21/2022] [Indexed: 05/26/2023]
Abstract
Multicellular organisms, such as plants, are characterized by highly specialized and tightly regulated cell populations, establishing specific morphological structures and executing distinct functions. Gene regulatory networks (GRNs) describe condition-specific interactions of transcription factors (TFs) regulating the expression of target genes, underpinning these specific functions. As efficient and validated methods to identify cell-type-specific GRNs from single-cell data in plants are lacking, limiting our understanding of the organization of specific cell types in both model species and crops, we developed MINI-EX (Motif-Informed Network Inference based on single-cell EXpression data), an integrative approach to infer cell-type-specific networks in plants. MINI-EX uses single-cell transcriptomic data to define expression-based networks and integrates TF motif information to filter the inferred regulons, resulting in networks with increased accuracy. Next, regulons are assigned to different cell types, leveraging cell-specific expression, and candidate regulators are prioritized using network centrality measures, functional annotations, and expression specificity. This embedded prioritization strategy offers a unique and efficient means to unravel signaling cascades in specific cell types controlling a biological process of interest. We demonstrate the stability of MINI-EX toward input data sets with low number of cells and its robustness toward missing data, and show that it infers state-of-the-art networks with a better performance compared with other related single-cell network tools. MINI-EX successfully identifies key regulators controlling root development in Arabidopsis and rice, leaf development in Arabidopsis, and ear development in maize, enhancing our understanding of cell-type-specific regulation and unraveling the roles of different regulators controlling the development of specific cell types in plants.
Collapse
Affiliation(s)
- Camilla Ferrari
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Nicolás Manosalva Pérez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium; Bioinformatics Institute Ghent, Ghent University, 9052 Ghent, Belgium.
| |
Collapse
|
7
|
Fang Y, Du Q, Yang Q, Jiang J, Hou X, Yang Z, Zhao D, Li X, Xie X. Identification, characterization, and expression profiling of the putative U-box E3 ubiquitin ligase gene family in Sorghum bicolor. Front Microbiol 2022; 13:942302. [PMID: 36187972 PMCID: PMC9520534 DOI: 10.3389/fmicb.2022.942302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
The U-box family is one of the main E3 ubiquitin ligase families in plants. The U-box family has been characterized in several species. However, genome-wide gene identification and expression profiling of the U-box family in response to abiotic stress in Sorghum bicolor remain unclear. In this study, we broadly identified 68 U-box genes in the sorghum genome, including 2 CHIP genes, and 1 typical UFD2 (Ub fusion degradation 2) gene. The U-box gene family was divided into eight subclasses based on homology and conserved domain characteristics. Evolutionary analysis identified 14, 66, and 82 U-box collinear gene pairs in sorghum compared with arabidopsis, rice, and maize, respectively, and a unique tandem repeat pair (SbPUB26/SbPUB27) is present in the sorghum genome. Gene Ontology (GO) enrichment analysis showed that U-box proteins were mainly related to ubiquitination and modification, and various stress responses. Comprehensive analysis of promoters, expression profiling, and gene co-regulation networks also revealed that many sorghum U-box genes may be correlated with multiple stress responses. In summary, our results showed that sorghum contains 68 U-box genes, which may be involved in multiple abiotic stress responses. The findings will support future gene functional studies related to ubiquitination in sorghum.
Collapse
Affiliation(s)
- Yuanpeng Fang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Qiaoli Du
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Qian Yang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Junmei Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xiaolong Hou
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Zaifu Yang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Degang Zhao
- College of Life Sciences, Ministry of Education, Institute of Agricultural Bioengineering, Key Laboratory of Mountain Plant Resources Protection and Germplasm Innovation, Guizhou University, Guiyang, China
- Guizhou Academy of Agricultural Sciences, Guizhou Conservation Technology Application Engineering Research Center, Guizhou Institute of Prataculture, Guizhou Institute of Biotechnology, Guiyang, China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
- Guizhou Academy of Agricultural Sciences, Guizhou Conservation Technology Application Engineering Research Center, Guizhou Institute of Prataculture, Guizhou Institute of Biotechnology, Guiyang, China
- *Correspondence: Xin Xie,
| |
Collapse
|
8
|
Tan FQ, Wang W, Li J, Lu Y, Zhu B, Hu F, Li Q, Zhao Y, Zhou DX. A coiled-coil protein associates Polycomb Repressive Complex 2 with KNOX/BELL transcription factors to maintain silencing of cell differentiation-promoting genes in the shoot apex. THE PLANT CELL 2022; 34:2969-2988. [PMID: 35512211 PMCID: PMC9338815 DOI: 10.1093/plcell/koac133] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/25/2022] [Indexed: 05/06/2023]
Abstract
Polycomb repressive complex 2 (PRC2), which mediates the deposition of H3K27me3 histone marks, is important for developmental decisions in animals and plants. In the shoot apical meristem (SAM), Three Amino acid Loop Extension family KNOTTED-LIKE HOMEOBOX /BEL-like (KNOX/BELL) transcription factors are key regulators of meristem cell pluripotency and differentiation. Here, we identified a PRC2-associated coiled-coil protein (PACP) that interacts with KNOX/BELL transcription factors in rice (Oryza sativa) shoot apex cells. A loss-of-function mutation of PACP resulted in differential gene expression similar to that observed in PRC2 gene knockdown plants, reduced H3K27me3 levels, and reduced genome-wide binding of the PRC2 core component EMF2b. The genomic binding of PACP displayed a similar distribution pattern to EMF2b, and genomic regions with high PACP- and EMF2b-binding signals were marked by high levels of H3K27me3. We show that PACP is required for the repression of cell differentiation-promoting genes targeted by a rice KNOX1 protein in the SAM. PACP is involved in the recruitment or stabilization of PRC2 to genes targeted by KNOX/BELL transcription factors to maintain H3K27me3 and gene repression in dividing cells of the shoot apex. Our results provide insight into PRC2-mediated maintenance of H3K27me3 and the mechanism by which KNOX/BELL proteins regulate SAM development.
Collapse
Affiliation(s)
| | | | - Junjie Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Lu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Bo Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangfang Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Zhao
- Authors for correspondence: (Y.Z.); (D.X.Z.)
| | | |
Collapse
|
9
|
Zhang X, Jiang J, Yang Y, Ma Z, Meng L, Cui G, Yin X. Identification and responding to exogenous hormone of HB-KNOX family based on transcriptome data of Caucasian clover. Gene 2022; 828:146469. [PMID: 35413395 DOI: 10.1016/j.gene.2022.146469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/12/2022] [Accepted: 03/31/2022] [Indexed: 11/17/2022]
Abstract
Caucasian clover (Trifolium ambiguum M. Bieb.) is a strongly rhizomatous, low-crowned perennial leguminous and ground-covering grass. The species is resistant to cold, arid temperatures and grazing due to a well-developed underground rhizome system and a strong clonal reproduction capacity. KNOTTED1-LIKE HOMEOBOX (KNOX) genes are a family of plant-specific homeobox transcription factors with important roles in plant development. Preliminary transcriptome analysis enabled us to understand the gene expression in five different tissues, which helped us to screen the predetermined genes of the HB-KNOX family genes for the rhizome growth and development of Caucasian clover. The study identified 41 TaKNOX genes from the Caucasian clover transcriptome database. Gene length, MW and pl of TaKNOX family transcription factors varied, but the gene structure and motifs were relatively conserved in bioinformatics analysis. Phylogenetic analyses of Arabidopsis thaliana, soybean, Medicago truncatula and Caucasian clover were performed to study the evolutionary and functional relationships in various species. Prediction and verification of the subcellular localizations revealed the diverse subcellular localization of these 41 TaKNOX proteins. The expression profile of exogenous hormones showed that the TaKNOX gene showed multiple expression regulation patterns, and was involved in 6-BA, IAA and KT signaling pathways. Our results reveal the characteristics of the TaKNOX gene family, thus laying a foundation for further functional analysis of the KNOX family in Caucasian clover.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jingwen Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yupeng Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zewang Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Lingdong Meng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Guowen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Xiujie Yin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
10
|
Rajakani R, Sellamuthu G, Ishikawa T, Ahmed HAI, Bharathan S, Kumari K, Shabala L, Zhou M, Chen ZH, Shabala S, Venkataraman G. Reduced apoplastic barriers in tissues of shoot-proximal rhizomes of Oryza coarctata are associated with Na+ sequestration. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:998-1015. [PMID: 34606587 DOI: 10.1093/jxb/erab440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Oryza coarctata is the only wild rice species with significant salinity tolerance. The present work examines the role of the substantial rhizomatous tissues of O. coarctata in conferring salinity tolerance. Transition to an erect phenotype (shoot emergence) from prostrate growth of rhizome tissues is characterized by marked lignification and suberization of supporting sclerenchymatous tissue, epidermis, and bundle sheath cells in aerial shoot-proximal nodes and internodes in O. coarctata. With salinity, however, aerial shoot-proximal internodal tissues show reductions in lignification and suberization, most probably related to re-direction of carbon flux towards synthesis of the osmporotectant proline. Concurrent with hypolignification and reduced suberization, the aerial rhizomatous biomass of O. coarctata appears to have evolved mechanisms to store Na+ in these specific tissues under salinity. This was confirmed by histochemical staining, quantitative real-time reverse transcription-PCR expression patterns of genes involved in lignification/suberization, Na+ and K+ contents of internodal tissues, as well as non-invasive microelectrode ion flux measurements of NaCl-induced net Na+, K+, and H+ flux profiles of aerial nodes were determined. In O. coarctata, aerial proximal internodes appear to act as 'traffic controllers', sending required amounts of Na+ and K+ into developing leaves for osmotic adjustment and turgor-driven growth, while more deeply positioned internodes assume a Na+ buffering/storage role.
Collapse
Affiliation(s)
- Raja Rajakani
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600 113, India
| | - Gothandapani Sellamuthu
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600 113, India
- Forest Molecular Entomology Laboratory, Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague-16500, Czech Republic
| | - Tetsuya Ishikawa
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, Tas 7001, Australia
| | - Hassan Ahmed Ibraheem Ahmed
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, Tas 7001, Australia
- Department of Botany, Faculty of Science, Port Said University, Port Said 42522, Egypt
| | - Subhashree Bharathan
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thirumalaisamudram, Thanjavur-613401, Tamil Nadu, India
| | - Kumkum Kumari
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600 113, India
| | - Lana Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, Tas 7001, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, Tas 7001, Australia
| | - Zhong-Hua Chen
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, Tas 7001, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600 113, India
| |
Collapse
|
11
|
Insight into gene regulatory networks involved in sesame (Sesamum indicum L.) drought response. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
12
|
Hodgson-Kratky K, Perlo V, Furtado A, Choudhary H, Gladden JM, Simmons BA, Botha F, Henry RJ. Association of gene expression with syringyl to guaiacyl ratio in sugarcane lignin. PLANT MOLECULAR BIOLOGY 2021; 106:173-192. [PMID: 33738678 DOI: 10.1007/s11103-021-01136-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/02/2021] [Indexed: 05/11/2023]
Abstract
A transcriptome analysis reveals the transcripts and alleles differentially expressed in sugarcane genotypes with contrasting lignin composition. Sugarcane bagasse is a highly abundant resource that may be used as a feedstock for the production of biofuels and bioproducts in order to meet increasing demands for renewable replacements for fossil carbon. However, lignin imparts rigidity to the cell wall that impedes the efficient breakdown of the biomass into fermentable sugars. Altering the ratio of the lignin units, syringyl (S) and guaiacyl (G), which comprise the native lignin polymer in sugarcane, may facilitate the processing of bagasse. This study aimed to identify genes and markers associated with S/G ratio in order to accelerate the development of sugarcane bioenergy varieties with modified lignin composition. The transcriptome sequences of 12 sugarcane genotypes that contrasted for S/G ratio were compared and there were 2019 transcripts identified as differentially expressed (DE) between the high and low S/G ratio groups. These included transcripts encoding possible monolignol biosynthetic pathway enzymes, transporters, dirigent proteins and transcriptional and post-translational regulators. Furthermore, the frequencies of single nucleotide polymorphisms (SNPs) were compared between the low and high S/G ratio groups to identify specific alleles expressed with the phenotype. There were 2063 SNP loci across 787 unique transcripts that showed group-specific expression. Overall, the DE transcripts and SNP alleles identified in this study may be valuable for breeding sugarcane varieties with altered S/G ratio that may provide desirable bioenergy traits.
Collapse
Affiliation(s)
- K Hodgson-Kratky
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia
| | - V Perlo
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia
| | - A Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia
| | - H Choudhary
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Sandia National Laboratories, Livermore, CA, 94550, USA
| | - J M Gladden
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Sandia National Laboratories, Livermore, CA, 94550, USA
| | - B A Simmons
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - F Botha
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia
| | - R J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
13
|
Ding Y, Jin Y, He K, Yi Z, Tan L, Liu L, Tang M, Du A, Fang Y, Zhao H. Low Nitrogen Fertilization Alter Rhizosphere Microorganism Community and Improve Sweetpotato Yield in a Nitrogen-Deficient Rocky Soil. Front Microbiol 2020; 11:678. [PMID: 32351491 PMCID: PMC7174733 DOI: 10.3389/fmicb.2020.00678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/24/2020] [Indexed: 12/22/2022] Open
Abstract
Sweetpotato can be cultivated in the reclaimed rocky soil in Sichuan Basin, China, which benefits from the release of mineral nutrients in the rocky soil by microorganisms. Shortage of nitrogen (N) in the rocky soil limits sweetpotato yield, which can be compensated through N fertilization. Whereas high N fertilization inhibits biological N fixation and induces unintended environmental consequences. However, the effect of low N fertilization on microorganism community and sweetpotato yield in the N-deficient rocky soil is still unclear. We added a low level of 1.5 g urea/m2 to a rocky soil cultivated with sweetpotato, and measured rocky soil physiological and biochemical properties, rhizosphere microbial diversity, sweetpotato physiological properties and transcriptome. When cultivating sweetpotato in the rocky soil, low N fertilization (1.5 g urea/m2) not only improved total N (TN) and available N (AN) in the rocky soil, but also increased available phosphorus (AP), available potassium (AK), and nitrogenase and urease activity. Interestingly, although low N fertilization could reduce bacterial diversity through affecting sweetpotato root exudates and rocky soil properties, the relative abundance of P and K-solubilizing bacteria, N-fixing and urease-producing bacteria increased under low N fertilization, and the relative abundance of plant pathogens decreased. Furthermore, low N fertilization increased the phytohormones, such as zeatin riboside, abscisic acid, and methyl jasmonate contents in sweetpotato root. Those increases were consistent with our transcriptome findings: the inhibition of the lignin synthesis, the promotion of the starch synthesis, and the upregulated expression of Expansin, thus resulting in promoting the formation of tuberous roots and further increasing the sweetpotato yield by half, up to 3.3 kg/m2. This study indicated that low N fertilization in the N-deficient rocky soil improved this soil quality through affecting microorganism community, and further increased sweetpotato yield under regulation of phytohormones pathway.
Collapse
Affiliation(s)
- Yanqiang Ding
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanling Jin
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Kaize He
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhuolin Yi
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Li Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Lisha Liu
- Sweetpotato Institute, Nanchong Academy of Agricultural Sciences, Nanchong, China
| | - Mingshuang Tang
- Sweetpotato Institute, Nanchong Academy of Agricultural Sciences, Nanchong, China
| | - Anping Du
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yang Fang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Hai Zhao
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
14
|
Behr M, Guerriero G, Grima-Pettenati J, Baucher M. A Molecular Blueprint of Lignin Repression. TRENDS IN PLANT SCIENCE 2019; 24:1052-1064. [PMID: 31371222 DOI: 10.1016/j.tplants.2019.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Although lignin is essential to ensure the correct growth and development of land plants, it may be an obstacle to the production of lignocellulosics-based biofuels, and reduces the nutritional quality of crops used for human consumption or livestock feed. The need to tailor the lignocellulosic biomass for more efficient biofuel production or for improved plant digestibility has fostered considerable advances in our understanding of the lignin biosynthetic pathway and its regulation. Most of the described regulators are transcriptional activators of lignin biosynthesis, but considerably less attention has been devoted to the repressors of this pathway. We provide a comprehensive overview of the molecular factors that negatively impact on the lignification process at both the transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Marc Behr
- Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, 6041 Gosselies, Belgium
| | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 4422 Belvaux, Luxembourg
| | - Jacqueline Grima-Pettenati
- Laboratoire de Recherche en Sciences Végétales, Centre National de la Recherche Scientifique (CNRS) Université Paul Sabatier Toulouse III (UPS), 31326 Castanet-Tolosan, France
| | - Marie Baucher
- Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, 6041 Gosselies, Belgium.
| |
Collapse
|
15
|
Cheng X, Li M, Abdullah M, Li G, Zhang J, Manzoor MA, Wang H, Jin Q, Jiang T, Cai Y, Li D, Lin Y. In Silico Genome-Wide Analysis of the Pear ( Pyrus bretschneideri) KNOX Family and the Functional Characterization of PbKNOX1, an Arabidopsis BREVIPEDICELLUS Orthologue Gene, Involved in Cell Wall and Lignin Biosynthesis. Front Genet 2019; 10:632. [PMID: 31333718 PMCID: PMC6624237 DOI: 10.3389/fgene.2019.00632] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/17/2019] [Indexed: 12/18/2022] Open
Abstract
Stone cells are a characteristic trait of pear fruit, but the contents and sizes of stone cells negatively correlate with fruit texture and flavor. Secondary cell wall thickening and lignification have been established as key steps of stone cell development. KNOTTED-LIKE HOMEOBOX (KNOX) proteins play important roles in plant cell growth and development, including cell wall formation and lignification. Although the characteristics and biological functions of KNOX proteins have been investigated in other plants, this gene family has not been functionally characterized in pear. Eighteen PbKNOX genes were identified in the present study, and all of the identified family members contained the KNOX I and/or KNOX II domains. Based on the phylogenetic tree and chromosomal localization, the 18 PbKNOX genes were divided into five subfamilies [SHOOT MERISTEMLESS (STM)-like, BREVIPEDICELLUS (BP)-like, KNOTTED ARABIDOPSIS THALIANA 2/6 (KNAT2/6)-like, KNAT7-like, and KNAT3-5-like] and were distributed among 10 chromosomes. In addition, we identified 9, 11, and 11 KNOX genes in the genomes of grape, mei, and strawberry, respectively, and the greatest number of collinear KNOX gene pairs formed between pears and peaches. Analyses of the spatiotemporal expression patterns showed that the tissue specificity of PbKNOX gene expression was not very significant and that the level of the PbKNOX1 transcript showed an opposite trend to the levels of stone cells and lignin accumulation. Furthermore, PbKNOX1 has high sequence identity and similarity with Arabidopsis BP. Compared with wild-type Arabidopsis, plants overexpressing PbKNOX1 not only showed an approximately 19% decrease in the secondary cell wall thickness of vessel cells but also exhibited an approximately 13% reduction in the lignin content of inflorescence stems. Moreover, the expression of several genes involved in lignin biosynthesis was downregulated in transgenic lines. Based on our results, PbKNOX1/BP participates in cell wall-thickening and lignin biosynthesis and represses the transcription of key structural genes involved in lignin synthesis, providing genetic evidence for the roles of KNOX in cell wall thickening and lignin biosynthesis in pear.
Collapse
Affiliation(s)
- Xi Cheng
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Manli Li
- School of Life Science, Anhui Agricultural University, Hefei, China
| | | | - Guohui Li
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Jingyun Zhang
- School of Life Science, Anhui Agricultural University, Hefei, China.,Horticultural Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | | | - Han Wang
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Qing Jin
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Taoshan Jiang
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Yongping Cai
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Dahui Li
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Yi Lin
- School of Life Science, Anhui Agricultural University, Hefei, China
| |
Collapse
|
16
|
Zhang H, Wang H, Zhu Q, Gao Y, Wang H, Zhao L, Wang Y, Xi F, Wang W, Yang Y, Lin C, Gu L. Transcriptome characterization of moso bamboo (Phyllostachys edulis) seedlings in response to exogenous gibberellin applications. BMC PLANT BIOLOGY 2018; 18:125. [PMID: 29925317 PMCID: PMC6011363 DOI: 10.1186/s12870-018-1336-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 05/31/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Moso bamboo (Phyllostachys edulis) is a well-known bamboo species of high economic value in the textile industry due to its rapid growth. Phytohormones, which are master regulators of growth and development, serve as important endogenous signals. However, the mechanisms through which phytohormones regulate growth in moso bamboo remain unknown to date. RESULTS Here, we reported that exogenous gibberellins (GA) applications resulted in a significantly increased internode length and lignin condensation. Transcriptome sequencing revealed that photosynthesis-related genes were enriched in the GA-repressed gene class, which was consistent with the decrease in leaf chlorophyll concentrations and the lower rate of photosynthesis following GA treatment. Exogenous GA applications on seedlings are relatively easy to perform, thus we used 4-week-old whole seedlings of bamboo for GA- treatment followed by high throughput sequencing. In this study, we identified 932 cis-nature antisense transcripts (cis-NATs), and 22,196 alternative splicing (AS) events in total. Among them, 42 cis-nature antisense transcripts (cis-NATs) and 442 AS events were differentially expressed upon exposure to exogenous GA3, suggesting that post-transcriptional regulation might be also involved in the GA3 response. Targets of differential expression of cis-NATs included genes involved in hormone receptor, photosynthesis and cell wall biogenesis. For example, LAC4 and its corresponding cis-NATs were GA3-induced, and may be involved in the accumulation of lignin, thus affecting cell wall composition. CONCLUSIONS This study provides novel insights illustrating how GA alters post-transcriptional regulation and will shed light on the underlying mechanism of growth modulated by GA in moso bamboo.
Collapse
Affiliation(s)
- Hangxiao Zhang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Huihui Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Qiang Zhu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yubang Gao
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Huiyuan Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Liangzhen Zhao
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yongsheng Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Feihu Xi
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Wenfei Wang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yanqiu Yang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Chentao Lin
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Department of Molecular, Cell & Developmental Biology, University of California, CA90095, Los Angeles, USA
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
17
|
Rao X, Dixon RA. Current Models for Transcriptional Regulation of Secondary Cell Wall Biosynthesis in Grasses. FRONTIERS IN PLANT SCIENCE 2018; 9:399. [PMID: 29670638 PMCID: PMC5893761 DOI: 10.3389/fpls.2018.00399] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 03/13/2018] [Indexed: 05/17/2023]
Abstract
Secondary cell walls mediate many crucial biological processes in plants including mechanical support, water and nutrient transport and stress management. They also provide an abundant resource of renewable feed, fiber, and fuel. The grass family contains the most important food, forage, and biofuel crops. Understanding the regulatory mechanism of secondary wall formation in grasses is necessary for exploiting these plants for agriculture and industry. Previous research has established a detailed model of the secondary wall regulatory network in the dicot model species Arabidopsis thaliana. Grasses, branching off from the dicot ancestor 140-150 million years ago, display distinct cell wall morphology and composition, suggesting potential for a different secondary wall regulation program from that established for dicots. Recently, combined application of molecular, genetic and bioinformatics approaches have revealed more transcription factors involved in secondary cell wall biosynthesis in grasses. Compared with the dicots, grasses exhibit a relatively conserved but nevertheless divergent transcriptional regulatory program to activate their secondary cell wall development and to coordinate secondary wall biosynthesis with other physiological processes.
Collapse
Affiliation(s)
- Xiaolan Rao
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, United States
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN, United States
- *Correspondence: Xiaolan Rao,
| | - Richard A. Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, United States
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, United States Department of Energy, Oak Ridge, TN, United States
| |
Collapse
|
18
|
Woerlen N, Allam G, Popescu A, Corrigan L, Pautot V, Hepworth SR. Repression of BLADE-ON-PETIOLE genes by KNOX homeodomain protein BREVIPEDICELLUS is essential for differentiation of secondary xylem in Arabidopsis root. PLANTA 2017; 245:1079-1090. [PMID: 28204875 DOI: 10.1007/s00425-017-2663-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 02/08/2017] [Indexed: 05/27/2023]
Abstract
Repression of boundary genes by KNOTTED1-like homeodomain transcription factor BREVIPEDICELLUS promotes the differentiation of phase II secondary xylem in Arabidopsis roots. Plant growth and development relies on the activity of meristems. Boundaries are domains of restricted growth that separate forming organs and the meristem. Class I KNOX homeodomain transcription factors are important regulators of meristem maintenance. Members of this class including BREVIDICELLUS also called KNOTTED-LIKE FROM ARABIDOPSIS THALIANA1 (BP/KNAT1) fulfill this function in part by spatially regulating boundary genes. The vascular cambium is a lateral meristem that allows for radial expansion of organs during secondary growth. We show here that BP/KNAT1 repression of boundary genes plays a crucial role in root secondary growth. In particular, exclusion of BLADE-ON-PETIOLE1/2 (BOP1/2) and other members of this module from xylem is required for the differentiation of lignified fibers and vessels during the xylem expansion phase of root thickening. These data reveal a previously undiscovered role for boundary genes in the root and shed light on mechanisms controlling wood development in trees.
Collapse
Affiliation(s)
- Natalie Woerlen
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
- Institut Jean-Pierre Bourgin, UMR1318, INRA, Agro Paris Tech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
| | - Gamalat Allam
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Adina Popescu
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
- Institut Jean-Pierre Bourgin, UMR1318, INRA, Agro Paris Tech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
| | - Laura Corrigan
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Véronique Pautot
- Institut Jean-Pierre Bourgin, UMR1318, INRA, Agro Paris Tech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
| | - Shelley R Hepworth
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
19
|
Zhang Y, Zhao G, Li Y, Zhang J, Shi M, Muhammad T, Liang Y. Transcriptome Profiling of Tomato Uncovers an Involvement of Cytochrome P450s and Peroxidases in Stigma Color Formation. FRONTIERS IN PLANT SCIENCE 2017; 8:897. [PMID: 28620401 PMCID: PMC5449478 DOI: 10.3389/fpls.2017.00897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/12/2017] [Indexed: 05/23/2023]
Abstract
Stigma is a crucial structure of female reproductive organ in plants. Stigma color is usually regarded as an important trait in variety identification in some species, but the molecular mechanism of stigma color formation remains elusive. Here, we characterized a tomato mutant, yellow stigma (ys), that shows yellow rather than typical green color in the stigma. Analysis of pigment contents revealed that the level of flavonoid naringenin chalcone was increased in the ys stigma, possibly as a result of higher accumulation of p-coumaric acid, suggesting that naringenin chalcone might play a vital role in yellow color control in tomato stigma. To understand the genes and gene networks that regulate tomato stigma color, RNA-sequencing (RNA-Seq) analyses were performed to compare the transcriptomes of stigmas between ys mutant and wild-type (WT). We obtained 507 differentially expressed genes, in which, 84 and 423 genes were significantly up-regulated and down-regulated in the ys mutant, respectively. Two cytochrome P450 genes, SlC3H1 and SlC3H2 which encode p-coumarate 3-hydroxylases, and six peroxidase genes were identified to be dramatically inhibited in the yellow stigma. Further bioinformatic and biochemical analyses implied that the repression of the two SlC3Hs and six PODs may indirectly lead to higher naringenin chalcone level through inhibiting lignin biosynthesis, thereby contributing to yellow coloration in tomato stigma. Thus, our data suggest that two SlC3Hs and six PODs are involved in yellow stigma formation. This study provides valuable information for dissecting the molecular mechanism of stigma color control in tomato. Statement: This study reveals that two cytochrome P450s (SlC3H1 and SlC3H2) and six peroxidases potentially regulate the yellow stigma formation by indirectly enhancing biosynthesis of yellow-colored naringenin chalcone in the stigma of tomato.
Collapse
Affiliation(s)
- Yan Zhang
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F UniversityYangling, China
| | - Guiye Zhao
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F UniversityYangling, China
| | - Yushun Li
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F UniversityYangling, China
| | - Jie Zhang
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F UniversityYangling, China
| | - Meijing Shi
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F UniversityYangling, China
| | - Tayeb Muhammad
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F UniversityYangling, China
| | - Yan Liang
- College of Horticulture, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F UniversityYangling, China
| |
Collapse
|
20
|
Yoon J, Cho LH, Antt HW, Koh HJ, An G. KNOX Protein OSH15 Induces Grain Shattering by Repressing Lignin Biosynthesis Genes. PLANT PHYSIOLOGY 2017; 174:312-325. [PMID: 28351912 PMCID: PMC5411160 DOI: 10.1104/pp.17.00298] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/23/2017] [Indexed: 05/06/2023]
Abstract
Seed shattering is an agronomically important trait. Two major domestication factors are responsible for this: qSH1 and SH5. Whereas qSH1 functions in cell differentiation in the abscission zone (AZ), a major role of SH5 is the repression of lignin deposition. We have determined that a KNOX protein, OSH15, also controls seed shattering. Knockdown mutations of OSH15 showed reduced seed-shattering phenotypes. Coimmunoprecipitation experiments revealed that OSH15 interacts with SH5 and qSH1, two proteins in the BELL homeobox family. In transgenic plants carrying the OSH15 promoter-GUS reporter construct, the reporter gene was preferentially expressed in the AZ during young spikelet development. The RNA in situ hybridization experiment also showed that OSH15 messenger RNAs were abundant in the AZ during spikelet development. Analyses of osh15 SH5-D double mutants showed that SH5 could not increase the degree of seed shattering when OSH15 was absent, indicating that SH5 functions together with OSH15. In addition to the seed-shattering phenotype, osh15 mutants displayed dwarfism and accumulated a higher amount of lignin in internodes due to increased expression of the genes involved in lignin biosynthesis. Knockout mutations of CAD2, which encodes an enzyme for the last step in the monolignol biosynthesis pathway, caused an easy seed-shattering phenotype by reducing lignin deposition in the AZ This indicated that the lignin level is an important determinant of seed shattering in rice (Oryza sativa). Chromatin immunoprecipitation assays demonstrated that both OSH15 and SH5 interact directly with CAD2 chromatin. We conclude that OSH15 and SH5 form a dimer that enhances seed shattering by directly inhibiting lignin biosynthesis genes.
Collapse
Affiliation(s)
- Jinmi Yoon
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (J.Y., L.-H.C., H.W.A., G.A.); and Department of Plant Science, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Korea (H.-J.K.)
| | - Lae-Hyeon Cho
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (J.Y., L.-H.C., H.W.A., G.A.); and Department of Plant Science, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Korea (H.-J.K.)
| | - Htet Wai Antt
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (J.Y., L.-H.C., H.W.A., G.A.); and Department of Plant Science, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Korea (H.-J.K.)
| | - Hee-Jong Koh
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (J.Y., L.-H.C., H.W.A., G.A.); and Department of Plant Science, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Korea (H.-J.K.)
| | - Gynheung An
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (J.Y., L.-H.C., H.W.A., G.A.); and Department of Plant Science, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Korea (H.-J.K.)
| |
Collapse
|
21
|
Wuddineh WA, Mazarei M, Zhang JY, Turner GB, Sykes RW, Decker SR, Davis MF, Udvardi MK, Stewart CN. Identification and Overexpression of a Knotted1-Like Transcription Factor in Switchgrass (Panicum virgatum L.) for Lignocellulosic Feedstock Improvement. FRONTIERS IN PLANT SCIENCE 2016; 7:520. [PMID: 27200006 PMCID: PMC4848298 DOI: 10.3389/fpls.2016.00520] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/01/2016] [Indexed: 05/18/2023]
Abstract
High biomass production and wide adaptation has made switchgrass (Panicum virgatum L.) an important candidate lignocellulosic bioenergy crop. One major limitation of this and other lignocellulosic feedstocks is the recalcitrance of complex carbohydrates to hydrolysis for conversion to biofuels. Lignin is the major contributor to recalcitrance as it limits the accessibility of cell wall carbohydrates to enzymatic breakdown into fermentable sugars. Therefore, genetic manipulation of the lignin biosynthesis pathway is one strategy to reduce recalcitrance. Here, we identified a switchgrass Knotted1 transcription factor, PvKN1, with the aim of genetically engineering switchgrass for reduced biomass recalcitrance for biofuel production. Gene expression of the endogenous PvKN1 gene was observed to be highest in young inflorescences and stems. Ectopic overexpression of PvKN1 in switchgrass altered growth, especially in early developmental stages. Transgenic lines had reduced expression of most lignin biosynthetic genes accompanied by a reduction in lignin content suggesting the involvement of PvKN1 in the broad regulation of the lignin biosynthesis pathway. Moreover, the reduced expression of the Gibberellin 20-oxidase (GA20ox) gene in tandem with the increased expression of Gibberellin 2-oxidase (GA2ox) genes in transgenic PvKN1 lines suggest that PvKN1 may exert regulatory effects via modulation of GA signaling. Furthermore, overexpression of PvKN1 altered the expression of cellulose and hemicellulose biosynthetic genes and increased sugar release efficiency in transgenic lines. Our results demonstrated that switchgrass PvKN1 is a putative ortholog of maize KN1 that is linked to plant lignification and cell wall and development traits as a major regulatory gene. Therefore, targeted overexpression of PvKN1 in bioenergy feedstocks may provide one feasible strategy for reducing biomass recalcitrance and simultaneously improving plant growth characteristics.
Collapse
Affiliation(s)
- Wegi A. Wuddineh
- Department of Plant Sciences, University of TennesseeKnoxville, TN, USA
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Mitra Mazarei
- Department of Plant Sciences, University of TennesseeKnoxville, TN, USA
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Ji-Yi Zhang
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
- Plant Biology Division, Samuel Roberts Noble FoundationArdmore, OK, USA
| | - Geoffrey B. Turner
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
- National Renewable Energy Laboratory, GoldenCO, USA
| | - Robert W. Sykes
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
- National Renewable Energy Laboratory, GoldenCO, USA
| | - Stephen R. Decker
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
- National Renewable Energy Laboratory, GoldenCO, USA
| | - Mark F. Davis
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
- National Renewable Energy Laboratory, GoldenCO, USA
| | - Michael K. Udvardi
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
- Plant Biology Division, Samuel Roberts Noble FoundationArdmore, OK, USA
| | - C. Neal Stewart
- Department of Plant Sciences, University of TennesseeKnoxville, TN, USA
- BioEnergy Science Center, Oak Ridge National LaboratoryOak Ridge, TN, USA
- *Correspondence: C. Neal Stewart Jr.,
| |
Collapse
|
22
|
Yoon J, Choi H, An G. Roles of lignin biosynthesis and regulatory genes in plant development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:902-12. [PMID: 26297385 PMCID: PMC5111759 DOI: 10.1111/jipb.12422] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 08/19/2015] [Indexed: 05/02/2023]
Abstract
Lignin is an important factor affecting agricultural traits, biofuel production, and the pulping industry. Most lignin biosynthesis genes and their regulatory genes are expressed mainly in the vascular bundles of stems and leaves, preferentially in tissues undergoing lignification. Other genes are poorly expressed during normal stages of development, but are strongly induced by abiotic or biotic stresses. Some are expressed in non-lignifying tissues such as the shoot apical meristem. Alterations in lignin levels affect plant development. Suppression of lignin biosynthesis genes causes abnormal phenotypes such as collapsed xylem, bending stems, and growth retardation. The loss of expression by genes that function early in the lignin biosynthesis pathway results in more severe developmental phenotypes when compared with plants that have mutations in later genes. Defective lignin deposition is also associated with phenotypes of seed shattering or brittle culm. MYB and NAC transcriptional factors function as switches, and some homeobox proteins negatively control lignin biosynthesis genes. Ectopic deposition caused by overexpression of lignin biosynthesis genes or master switch genes induces curly leaf formation and dwarfism.
Collapse
Affiliation(s)
- Jinmi Yoon
- Crop Biotech InstituteKyung Hee UniversityYongin446‐701Korea
- Department of Life SciencePohang University of Science and TechnologyPohang790‐784Korea
| | - Heebak Choi
- Crop Biotech InstituteKyung Hee UniversityYongin446‐701Korea
- Department of Life SciencePohang University of Science and TechnologyPohang790‐784Korea
| | - Gynheung An
- Crop Biotech InstituteKyung Hee UniversityYongin446‐701Korea
- Graduate School of BiotechnologyKyung Hee UniversityYongin446‐701Korea
| |
Collapse
|
23
|
Tsuda K, Hake S. Diverse functions of KNOX transcription factors in the diploid body plan of plants. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:91-6. [PMID: 26190742 DOI: 10.1016/j.pbi.2015.06.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/18/2015] [Accepted: 06/20/2015] [Indexed: 05/18/2023]
Abstract
KNOX genes were initially found as shoot meristem regulators in angiosperms. Recent studies in diverse plant lineages however, have revealed the divergence of KNOX gene function during the evolution of diploid body plans. Using genomic approaches, class I KNOX transcription factors have been shown to regulate multiple hormone pathways including auxin and brassinosteroid as well as many transcription factors that play important roles in plant development. Class I KNOX proteins appear to be activators, whereas class II proteins act as repressors in transcriptional regulation of their target genes.
Collapse
Affiliation(s)
- Katsutoshi Tsuda
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, Plant and Microbial Biology Department, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Sarah Hake
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, Plant and Microbial Biology Department, University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
24
|
Sojikul P, Saithong T, Kalapanulak S, Pisuttinusart N, Limsirichaikul S, Tanaka M, Utsumi Y, Sakurai T, Seki M, Narangajavana J. Genome-wide analysis reveals phytohormone action during cassava storage root initiation. PLANT MOLECULAR BIOLOGY 2015; 88:531-43. [PMID: 26118659 DOI: 10.1007/s11103-015-0340-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 06/23/2015] [Indexed: 05/04/2023]
Abstract
Development of storage roots is a process associated with a phase change from cell division and elongation to radial growth and accumulation of massive amounts of reserve substances such as starch. Knowledge of the regulation of cassava storage root formation has accumulated over time; however, gene regulation during the initiation and early stage of storage root development is still poorly understood. In this study, transcription profiling of fibrous, intermediate and storage roots at eight weeks old were investigated using a 60-mer-oligo microarray. Transcription and gene expression were found to be the key regulating processes during the transition stage from fibrous to intermediate roots, while homeostasis and signal transduction influenced regulation from intermediate roots to storage roots. Clustering analysis of significant genes and transcription factors (TF) indicated that a number of phytohormone-related TF were differentially expressed; therefore, phytohormone-related genes were assembled into a network of correlative nodes. We propose a model showing the relationship between KNOX1 and phytohormones during storage root initiation. Exogeneous treatment of phytohormones N (6) -benzylaminopurine and 1-Naphthaleneacetic acid were used to induce the storage root initiation stage and to investigate expression patterns of the genes involved in storage root initiation. The results support the hypothesis that phytohormones are acting in concert to regulate the onset of cassava storage root development. Moreover, MeAGL20 is a factor that might play an important role at the onset of storage root initiation when the root tip becomes swollen.
Collapse
Affiliation(s)
- Punchapat Sojikul
- Department of Biotechnology, Center for Cassava Molecular Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Aguilar-Martínez JA, Uchida N, Townsley B, West DA, Yanez A, Lynn N, Kimura S, Sinha N. Transcriptional, posttranscriptional, and posttranslational regulation of SHOOT MERISTEMLESS gene expression in Arabidopsis determines gene function in the shoot apex. PLANT PHYSIOLOGY 2015; 167:424-42. [PMID: 25524441 PMCID: PMC4326739 DOI: 10.1104/pp.114.248625] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/12/2014] [Indexed: 05/21/2023]
Abstract
The activity of SHOOT MERISTEMLESS (STM) is required for the functioning of the shoot apical meristem (SAM). STM is expressed in the SAM but is down-regulated at the site of leaf initiation. STM is also required for the formation of compound leaves. However, how the activity of STM is regulated at the transcriptional, posttranscriptional, and posttranslational levels is poorly understood. We previously found two conserved noncoding sequences in the promoters of STM-like genes across angiosperms, the K-box and the RB-box. Here, we characterize the function of the RB-box in Arabidopsis (Arabidopsis thaliana). The RB-box, along with the K-box, regulates the expression of STM in leaf sinuses, which are areas on the leaf blade with meristematic potential. The RB-box also contributes to restrict STM expression to the SAM. We identified FAR1-RELATED SEQUENCES-RELATED FACTOR1 (FRF1) as a binding factor to the RB-box region. FRF1 is an uncharacterized member of a subfamily of four truncated proteins related to the FAR1-RELATED SEQUENCES factors. Internal deletion analysis of the STM promoter identified a region required to repress the expression of STM in hypocotyls. Expression of STM in leaf primordia under the control of the JAGGED promoter produced plants with partially undifferentiated leaves. We further found that the ELK domain has a role in the posttranslational regulation of STM by affecting the nuclear localization of STM.
Collapse
Affiliation(s)
- José Antonio Aguilar-Martínez
- Department of Plant Biology, University of California, Davis, California 95616 (J.A.A.-M., N.U., B.T., D.A.W., A.Y., N.L., S.K., N.S.);World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan (N.U.); andDepartment of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan (S.K.)
| | - Naoyuki Uchida
- Department of Plant Biology, University of California, Davis, California 95616 (J.A.A.-M., N.U., B.T., D.A.W., A.Y., N.L., S.K., N.S.);World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan (N.U.); andDepartment of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan (S.K.)
| | - Brad Townsley
- Department of Plant Biology, University of California, Davis, California 95616 (J.A.A.-M., N.U., B.T., D.A.W., A.Y., N.L., S.K., N.S.);World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan (N.U.); andDepartment of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan (S.K.)
| | - Donnelly Ann West
- Department of Plant Biology, University of California, Davis, California 95616 (J.A.A.-M., N.U., B.T., D.A.W., A.Y., N.L., S.K., N.S.);World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan (N.U.); andDepartment of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan (S.K.)
| | - Andrea Yanez
- Department of Plant Biology, University of California, Davis, California 95616 (J.A.A.-M., N.U., B.T., D.A.W., A.Y., N.L., S.K., N.S.);World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan (N.U.); andDepartment of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan (S.K.)
| | - Nafeesa Lynn
- Department of Plant Biology, University of California, Davis, California 95616 (J.A.A.-M., N.U., B.T., D.A.W., A.Y., N.L., S.K., N.S.);World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan (N.U.); andDepartment of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan (S.K.)
| | - Seisuke Kimura
- Department of Plant Biology, University of California, Davis, California 95616 (J.A.A.-M., N.U., B.T., D.A.W., A.Y., N.L., S.K., N.S.);World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan (N.U.); andDepartment of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan (S.K.)
| | - Neelima Sinha
- Department of Plant Biology, University of California, Davis, California 95616 (J.A.A.-M., N.U., B.T., D.A.W., A.Y., N.L., S.K., N.S.);World Premier International Research Center Initiative-Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan (N.U.); andDepartment of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan (S.K.)
| |
Collapse
|
26
|
Khan M, Xu H, Hepworth SR. BLADE-ON-PETIOLE genes: setting boundaries in development and defense. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 215-216:157-71. [PMID: 24388527 DOI: 10.1016/j.plantsci.2013.10.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/19/2013] [Accepted: 10/31/2013] [Indexed: 05/19/2023]
Abstract
BLADE-ON-PETIOLE (BOP) genes encode an ancient and conserved subclade of BTB-ankryin transcriptional co-activators, divergent in the NPR1 family of plant defense regulators. Arabidopsis BOP1/2 were originally characterized as regulators of leaf and floral patterning. Recent investigation of BOP activity in a variety of land plants provides a more complete picture of their conserved functions at lateral organ boundaries in the determination of leaf, flower, inflorescence, and root nodule architecture. BOPs exert their function in part through promotion of lateral organ boundary genes including ASYMMETRIC LEAVES2, KNOTTED1-LIKE FROM ARABIDOPSIS6, and ARABIDOPSIS THALIANA HOMEOBOX GENE1 whose products restrict growth, promote differentiation, and antagonize meristem activity in various developmental contexts. Mutually antagonistic interactions between BOP and meristem factors are important in maintaining a border between meristem-organ compartments and in controlling irreversible transitions in cell fate associated with differentiation. We also examine intriguing new evidence for BOP function in plant defense. Comparisons to NPR1 highlight previously unexplored mechanisms for co-ordination of development and defense in land plants.
Collapse
Affiliation(s)
- Madiha Khan
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - Huasong Xu
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - Shelley R Hepworth
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6.
| |
Collapse
|