1
|
Mohiley A, Laaser T, Höreth S, Clemens S, Tielbörger K, Gruntman M. Between the devil and the deep blue sea: herbivory induces foraging for and uptake of cadmium in a metal hyperaccumulating plant. Proc Biol Sci 2021; 288:20211682. [PMID: 34583580 PMCID: PMC8479331 DOI: 10.1098/rspb.2021.1682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/07/2021] [Indexed: 11/12/2022] Open
Abstract
Plants have been shown to change their foraging behaviour in response to resource heterogeneity. However, an unexplored hypothesis is that foraging could be induced by environmental stressors, such as herbivory, which might increase the demand for particular resources, such as those required for herbivore defence. This study examined the way simulated herbivory affects both root foraging for and uptake of cadmium (Cd), in the metal-hyperaccumulating plant Arabidopsis halleri, which uses this heavy metal as herbivore defence. Simulated herbivory elicited enhanced relative allocation of roots to Cd-rich patches as well as enhanced Cd uptake, and these responses were exhibited particularly by plants from non-metalliferous origin, which have lower metal tolerance. By contrast, plants from a metalliferous origin, which are more tolerant to Cd, did not show any preference in root allocation, yet enhanced Cd sharing between ramets when exposed to herbivory. These results suggest that foraging for heavy metals, as well as their uptake and clonal-sharing, could be stimulated in A. halleri by herbivory impact. Our study provides first support for the idea that herbivory can induce not only defence responses in plants but also affect their foraging, resource uptake and clonal sharing responses.
Collapse
Affiliation(s)
- Anubhav Mohiley
- Plant Ecology Group, Institute for Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Tanja Laaser
- Plant Ecology Group, Institute for Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Stephan Höreth
- Lehrstuhl Pflanzenphysiologie, Universität Bayreuth, Bayreuth
| | - Stephan Clemens
- Lehrstuhl Pflanzenphysiologie, Universität Bayreuth, Bayreuth
| | - Katja Tielbörger
- Plant Ecology Group, Institute for Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Michal Gruntman
- Plant Ecology Group, Institute for Evolution and Ecology, University of Tübingen, Tübingen, Germany
- School of Plant Sciences and Food Security and Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Bontpart T, Concha C, Giuffrida MV, Robertson I, Admkie K, Degefu T, Girma N, Tesfaye K, Haileselassie T, Fikre A, Fetene M, Tsaftaris SA, Doerner P. Affordable and robust phenotyping framework to analyse root system architecture of soil-grown plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2330-2343. [PMID: 32530068 DOI: 10.1111/tpj.14877] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
The phenotypic analysis of root system growth is important to inform efforts to enhance plant resource acquisition from soils; however, root phenotyping remains challenging because of the opacity of soil, requiring systems that facilitate root system visibility and image acquisition. Previously reported systems require costly or bespoke materials not available in most countries, where breeders need tools to select varieties best adapted to local soils and field conditions. Here, we report an affordable soil-based growth (rhizobox) and imaging system to phenotype root development in glasshouses or shelters. All components of the system are made from locally available commodity components, facilitating the adoption of this affordable technology in low-income countries. The rhizobox is large enough (approximately 6000 cm2 of visible soil) to avoid restricting vertical root system growth for most if not all of the life cycle, yet light enough (approximately 21 kg when filled with soil) for routine handling. Support structures and an imaging station, with five cameras covering the whole soil surface, complement the rhizoboxes. Images are acquired via the Phenotiki sensor interface, collected, stitched and analysed. Root system architecture (RSA) parameters are quantified without intervention. The RSAs of a dicot species (Cicer arietinum, chickpea) and a monocot species (Hordeum vulgare, barley), exhibiting contrasting root systems, were analysed. Insights into root system dynamics during vegetative and reproductive stages of the chickpea life cycle were obtained. This affordable system is relevant for efforts in Ethiopia and other low- and middle-income countries to enhance crop yields and climate resilience sustainably.
Collapse
Affiliation(s)
- Thibaut Bontpart
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, Midlothian, EH9 3BF, UK
| | - Cristobal Concha
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, Midlothian, EH9 3BF, UK
| | - Mario Valerio Giuffrida
- Institute for Digital Communications, School of Engineering, University of Edinburgh, Edinburgh, Midlothian, EH9 3FG, UK
- School of Computing, Edinburgh Napier University, Merchiston Campus, Edinburgh, EH10 5DT, UK
| | - Ingrid Robertson
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, Midlothian, EH9 3BF, UK
| | - Kassahun Admkie
- Ethiopian Institute of Agricultural Research, Debre Zeit, Oromia, PO Box 32, Ethiopia
| | - Tulu Degefu
- ICRISAT-Ethiopia, International Crops Research Institute for the Semi-Arid Tropics, c/o ILRI Campus, Addis Ababa, Addis Ababa, PO Box 5689, Ethiopia
| | - Nigusie Girma
- Ethiopian Institute of Agricultural Research, Debre Zeit, Oromia, PO Box 32, Ethiopia
| | - Kassahun Tesfaye
- College of Natural Sciences, Addis Ababa University, Addis Ababa, Addis Ababa, PO Box 1176, Ethiopia
- Ethiopian Biotechnology Institute, Addis Ababa, Addis Ababa, PO Box 5954, Ethiopia
| | | | - Asnake Fikre
- Ethiopian Institute of Agricultural Research, Debre Zeit, Oromia, PO Box 32, Ethiopia
- ICRISAT-Ethiopia, International Crops Research Institute for the Semi-Arid Tropics, c/o ILRI Campus, Addis Ababa, Addis Ababa, PO Box 5689, Ethiopia
| | - Masresha Fetene
- College of Natural Sciences, Addis Ababa University, Addis Ababa, Addis Ababa, PO Box 1176, Ethiopia
- Ethiopian Academy of Sciences, Addis Ababa, Addis Ababa, PO Box 32228, Ethiopia
| | - Sotirios A Tsaftaris
- Institute for Digital Communications, School of Engineering, University of Edinburgh, Edinburgh, Midlothian, EH9 3FG, UK
| | - Peter Doerner
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, Midlothian, EH9 3BF, UK
| |
Collapse
|
3
|
Concha C, Doerner P. The impact of the rhizobia-legume symbiosis on host root system architecture. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3902-3921. [PMID: 32337556 PMCID: PMC7316968 DOI: 10.1093/jxb/eraa198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/22/2020] [Indexed: 05/20/2023]
Abstract
Legumes form symbioses with rhizobia to fix N2 in root nodules to supplement their nitrogen (N) requirements. Many studies have shown how symbioses affect the shoot, but far less is understood about how they modify root development and root system architecture (RSA). RSA is the distribution of roots in space and over time. RSA reflects host resource allocation into below-ground organs and patterns of host resource foraging underpinning its resource acquisition capacity. Recent studies have revealed a more comprehensive relationship between hosts and symbionts: the latter can affect host resource acquisition for phosphate and iron, and the symbiont's production of plant growth regulators can enhance host resource flux and abundance. We review the current understanding of the effects of rhizobia-legume symbioses on legume root systems. We focus on resource acquisition and allocation within the host to conceptualize the effect of symbioses on RSA, and highlight opportunities for new directions of research.
Collapse
Affiliation(s)
- Cristobal Concha
- Institute for Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Peter Doerner
- Institute for Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Khadka K, Earl HJ, Raizada MN, Navabi A. A Physio-Morphological Trait-Based Approach for Breeding Drought Tolerant Wheat. FRONTIERS IN PLANT SCIENCE 2020; 11:715. [PMID: 32582249 PMCID: PMC7286286 DOI: 10.3389/fpls.2020.00715] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/06/2020] [Indexed: 05/18/2023]
Abstract
In the past, there have been drought events in different parts of the world, which have negatively influenced the productivity and production of various crops including wheat (Triticum aestivum L.), one of the world's three important cereal crops. Breeding new high yielding drought-tolerant wheat varieties is a research priority specifically in regions where climate change is predicted to result in more drought conditions. Commonly in breeding for drought tolerance, grain yield is the basis for selection, but it is a complex, late-stage trait, affected by many factors aside from drought. A strategy that evaluates genotypes for physiological responses to drought at earlier growth stages may be more targeted to drought and time efficient. Such an approach may be enabled by recent advances in high-throughput phenotyping platforms (HTPPs). In addition, the success of new genomic and molecular approaches rely on the quality of phenotypic data which is utilized to dissect the genetics of complex traits such as drought tolerance. Therefore, the first objective of this review is to describe the growth-stage based physio-morphological traits that could be targeted by breeders to develop drought-tolerant wheat genotypes. The second objective is to describe recent advances in high throughput phenotyping of drought tolerance related physio-morphological traits primarily under field conditions. We discuss how these strategies can be integrated into a comprehensive breeding program to mitigate the impacts of climate change. The review concludes that there is a need for comprehensive high throughput phenotyping of physio-morphological traits that is growth stage-based to improve the efficiency of breeding drought-tolerant wheat.
Collapse
Affiliation(s)
- Kamal Khadka
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | | | | | | |
Collapse
|
5
|
Yokawa K, Baluška F. Sense of space: Tactile sense for exploratory behavior of roots. Commun Integr Biol 2018; 11:1-5. [PMID: 30083280 PMCID: PMC6067838 DOI: 10.1080/19420889.2018.1440881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 11/28/2022] Open
Abstract
In soil, plant roots grow in heterogeneous environments. Plant roots are always facing the difficulty of searching effectively the patchy natural resources, such as water, oxygen, ions and mineral nutrition. Numerous studies reported that root apex navigation enables roots to explore complex environments. In this short communication, we characterize how growing maize roots explore narrow space available with two experimental settings: tactile exploration of narrow glass tube and circumnutation in free space. We also discuss root growth in the soil in terms of foraging behavior guided by the sensory root apex.
Collapse
Affiliation(s)
- Ken Yokawa
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan.,IZMB, University of Bonn, Bonn, Germany
| | | |
Collapse
|
6
|
Durand M, Porcheron B, Hennion N, Maurousset L, Lemoine R, Pourtau N. Water Deficit Enhances C Export to the Roots in Arabidopsis thaliana Plants with Contribution of Sucrose Transporters in Both Shoot and Roots. PLANT PHYSIOLOGY 2016; 170:1460-79. [PMID: 26802041 PMCID: PMC4775148 DOI: 10.1104/pp.15.01926] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/21/2016] [Indexed: 05/20/2023]
Abstract
Root high plasticity is an adaptation to its changing environment. Water deficit impairs growth, leading to sugar accumulation in leaves, part of which could be available to roots via sucrose (Suc) phloem transport. Phloem loading is widely described in Arabidopsis (Arabidopsis thaliana), while unloading in roots is less understood. To gain information on leaf-to-root transport, a soil-based culture system was developed to monitor root system architecture in two dimensions. Under water deficit (50% of soil water-holding capacity), total root length was strongly reduced but the depth of root foraging and the shape of the root system were less affected, likely to improve water uptake. (14)CO2 pulse-chase experiments confirmed that water deficit enhanced carbon (C) export to the roots, as suggested by the increased root-to-shoot ratio. The transcript levels of AtSWEET11 (for sugar will eventually be exported transporter), AtSWEET12, and AtSUC2 (for Suc carrier) genes, all three involved in Suc phloem loading, were significantly up-regulated in leaves of water deficit plants, in accordance with the increase in C export from the leaves to the roots. Interestingly, the transcript levels of AtSUC2 and AtSWEET11 to AtSWEET15 were also significantly higher in stressed roots, underlying the importance of Suc apoplastic unloading in Arabidopsis roots and a putative role for these Suc transporters in Suc unloading. These data demonstrate that, during water deficit, plants respond to growth limitation by allocating relatively more C to the roots to maintain an efficient root system and that a subset of Suc transporters is potentially involved in the flux of C to and in the roots.
Collapse
Affiliation(s)
- Mickaël Durand
- Université de Poitiers, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7267, Ecologie et Biologie des Interactions, 86073 Poitiers cedex 9, France
| | - Benoît Porcheron
- Université de Poitiers, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7267, Ecologie et Biologie des Interactions, 86073 Poitiers cedex 9, France
| | - Nils Hennion
- Université de Poitiers, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7267, Ecologie et Biologie des Interactions, 86073 Poitiers cedex 9, France
| | - Laurence Maurousset
- Université de Poitiers, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7267, Ecologie et Biologie des Interactions, 86073 Poitiers cedex 9, France
| | - Rémi Lemoine
- Université de Poitiers, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7267, Ecologie et Biologie des Interactions, 86073 Poitiers cedex 9, France
| | - Nathalie Pourtau
- Université de Poitiers, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7267, Ecologie et Biologie des Interactions, 86073 Poitiers cedex 9, France
| |
Collapse
|
7
|
Delaplace P, Delory BM, Baudson C, Mendaluk-Saunier de Cazenave M, Spaepen S, Varin S, Brostaux Y, du Jardin P. Influence of rhizobacterial volatiles on the root system architecture and the production and allocation of biomass in the model grass Brachypodium distachyon (L.) P. Beauv. BMC PLANT BIOLOGY 2015; 15:195. [PMID: 26264238 PMCID: PMC4531529 DOI: 10.1186/s12870-015-0585-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/03/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plant growth-promoting rhizobacteria are increasingly being seen as a way of complementing conventional inputs in agricultural systems. The effects on their host plants are diverse and include volatile-mediated growth enhancement. This study sought to assess the effects of bacterial volatiles on the biomass production and root system architecture of the model grass Brachypodium distachyon (L.) Beauv. RESULTS An in vitro experiment allowing plant-bacteria interaction throughout the gaseous phase without any physical contact was used to screen 19 bacterial strains for their growth-promotion ability over a 10-day co-cultivation period. Five groups of bacteria were defined and characterised based on their combined influence on biomass production and root system architecture. The observed effects ranged from unchanged to greatly increased biomass production coupled with increased root length and branching. Primary root length was increased only by the volatile compounds emitted by Enterobacter cloacae JM22 and Bacillus pumilus T4. Overall, the most significant results were obtained with Bacillus subtilis GB03, which induced an 81 % increase in total biomass, as well as enhancing total root length, total secondary root length and total adventitious root length by 88.5, 201.5 and 474.5 %, respectively. CONCLUSIONS This study is the first report on bacterial volatile-mediated growth promotion of a grass plant. Contrasting modulations of biomass production coupled with changes in root system architecture were observed. Most of the strains that increased total plant biomass also modulated adventitious root growth. Under our screening conditions, total biomass production was strongly correlated with the length and branching of the root system components, except for primary root length. An analysis of the emission kinetics of the bacterial volatile compounds is being undertaken and should lead to the identification of the compounds responsible for the observed growth-promotion effects. Within the context of the inherent characteristics of our in vitro system, this paper identifies the next critical experimental steps and discusses them from both a fundamental and an applied perspective.
Collapse
Affiliation(s)
- Pierre Delaplace
- University of Liège, Gembloux Agro-Bio Tech, Plant Biology, Passage des Déportés 2, 5030, Gembloux, Belgium.
| | - Benjamin M Delory
- University of Liège, Gembloux Agro-Bio Tech, Plant Biology, Passage des Déportés 2, 5030, Gembloux, Belgium.
| | - Caroline Baudson
- University of Liège, Gembloux Agro-Bio Tech, Plant Biology, Passage des Déportés 2, 5030, Gembloux, Belgium.
| | | | - Stijn Spaepen
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany.
| | - Sébastien Varin
- University of Liège, Gembloux Agro-Bio Tech, Plant Biology, Passage des Déportés 2, 5030, Gembloux, Belgium.
| | - Yves Brostaux
- University of Liège, Gembloux Agro-Bio Tech, Applied Statistics, Computer Science and Modeling, Passage des Déportés 2, 5030, Gembloux, Belgium.
| | - Patrick du Jardin
- University of Liège, Gembloux Agro-Bio Tech, Plant Biology, Passage des Déportés 2, 5030, Gembloux, Belgium.
| |
Collapse
|
8
|
McNickle GG, Brown JS. When Michaelis and Menten met Holling: towards a mechanistic theory of plant nutrient foraging behaviour. AOB PLANTS 2014; 6:plu066. [PMID: 25341427 PMCID: PMC4271705 DOI: 10.1093/aobpla/plu066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/09/2014] [Indexed: 05/15/2023]
Abstract
Plants are adept at assessing and responding to nutrients in soil, and generally proliferate roots into nutrient-rich patches. An analogy between this growth response and animal foraging movement is often drawn, but because of differences between plants and animals it has not always been clear how to directly apply existing foraging theory to plants. Here we suggest one way to unite pre-existing ideas in plant nutrient uptake with foraging theory. First, we show that the Michaelis-Menten equation used by botanists and the Holling disc equation used by zoologists are actually just rearrangements of the same functional response. This mathematical unity permits the translation of existing knowledge about the nutrient uptake physiology of plants into the language of foraging behaviour, and as a result gives botanists direct access to foraging theory. Second, we developed a model of root foraging precision based on the Holling disc equation and the marginal value theorem, and parameterize it from the literature. The model predicts (i) generally plants should invest in higher quality patches compared to lower quality patches, and as patch background-contrast increases; (ii) low encounter rates between roots and nutrients result in high root foraging precision; and (iii) low handling times for nutrients should result in high root foraging precision. The available data qualitatively support these predictions. Third, to parameterize the model above we undertook a review of the literature. From that review we obtained parameter estimates for nitrate and/or ammonium uptake for 45 plant species from 38 studies. We observe that the parameters ranged over six orders of magnitude, there was no trade-off in foraging ability for nitrate versus ammonium: plants that were efficient foragers for one form of nitrogen were efficient foragers for the other, and there was also no phylogenetic signal in the parameter estimates.
Collapse
Affiliation(s)
- Gordon G McNickle
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5, USA
| | - Joel S Brown
- Department of Biological Sciences, University of Illinois at Chicago, 845 W. Taylor St. (MC066), Chicago, IL 6060, USA
| |
Collapse
|
9
|
Schmidt W. Root systems biology. FRONTIERS IN PLANT SCIENCE 2014; 5:215. [PMID: 24904611 PMCID: PMC4032929 DOI: 10.3389/fpls.2014.00215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 04/30/2014] [Indexed: 05/31/2023]
|