1
|
Hartmann A, Binder T, Rothballer M. Quorum sensing-related activities of beneficial and pathogenic bacteria have important implications for plant and human health. FEMS Microbiol Ecol 2024; 100:fiae076. [PMID: 38744663 PMCID: PMC11149725 DOI: 10.1093/femsec/fiae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/28/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024] Open
Abstract
Eukaryotic organisms coevolved with microbes from the environment forming holobiotic meta-genomic units. Members of host-associated microbiomes have commensalic, beneficial/symbiotic, or pathogenic phenotypes. More than 100 years ago, Lorenz Hiltner, pioneer of soil microbiology, introduced the term 'Rhizosphere' to characterize the observation that a high density of saprophytic, beneficial, and pathogenic microbes are attracted by root exudates. The balance between these types of microbes decide about the health of the host. Nowadays we know, that for the interaction of microbes with all eukaryotic hosts similar principles and processes of cooperative and competitive functions are in action. Small diffusible molecules like (phyto)hormones, volatiles and quorum sensing signals are examples for mediators of interspecies and cross-kingdom interactions. Quorum sensing of bacteria is mediated by different autoinducible metabolites in a density-dependent manner. In this perspective publication, the role of QS-related activities for the health of hosts will be discussed focussing mostly on N-acyl-homoserine lactones (AHL). It is also considered that in some cases very close phylogenetic relations exist between plant beneficial and opportunistic human pathogenic bacteria. Based on a genome and system-targeted new understanding, sociomicrobiological solutions are possible for the biocontrol of diseases and the health improvement of eukaryotic hosts.
Collapse
Affiliation(s)
- Anton Hartmann
- Faculty of Biology, Microbe-Host Interactions, Ludwig-Maximilian-University Munich, Grosshaderner Str. 2, D-82152 Planegg/Martinsried, Germany
- Department of Environmental Sciences, Helmholtz Zentrum Munich, German Research Center for Health and Environment, Research Unit Microbe-Plant Interactions, Ingolstädter Landstr. 1, D-85762 Neuherberg, Germany
| | - Tatiana Binder
- Department of Environmental Sciences, Helmholtz Zentrum Munich, German Research Center for Health and Environment, Research Unit Microbe-Plant Interactions, Ingolstädter Landstr. 1, D-85762 Neuherberg, Germany
| | - Michael Rothballer
- Department of Environmental Sciences, Helmholtz Zentrum Munich, German Research Center for Health and Environment, Research Unit Microbe-Plant Interactions, Ingolstädter Landstr. 1, D-85762 Neuherberg, Germany
- Helmholtz Zentrum Munich, German Research Center for Health and Environment, Institute of Network Biology, Ingolstädter Landstr. 1 D-85762 Neuherberg, Germany
| |
Collapse
|
2
|
Gonzales M, Jacquet P, Gaucher F, Chabrière É, Plener L, Daudé D. AHL-Based Quorum Sensing Regulates the Biosynthesis of a Variety of Bioactive Molecules in Bacteria. JOURNAL OF NATURAL PRODUCTS 2024; 87:1268-1284. [PMID: 38390739 DOI: 10.1021/acs.jnatprod.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Bacteria are social microorganisms that use communication systems known as quorum sensing (QS) to regulate diverse cellular behaviors including the production of various secreted molecules. Bacterial secondary metabolites are widely studied for their bioactivities including antibiotic, antifungal, antiparasitic, and cytotoxic compounds. Besides playing a crucial role in natural bacterial niches and intermicrobial competition by targeting neighboring organisms and conferring survival advantages to the producer, these bioactive molecules may be of prime interest to develop new antimicrobials or anticancer therapies. This review focuses on bioactive compounds produced under acyl homoserine lactone-based QS regulation by Gram-negative bacteria that are pathogenic to humans and animals, including the Burkholderia, Serratia, Pseudomonas, Chromobacterium, and Pseudoalteromonas genera. The synthesis, regulation, chemical nature, biocidal effects, and potential applications of these identified toxic molecules are presented and discussed in light of their role in microbial interactions.
Collapse
Affiliation(s)
- Mélanie Gonzales
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
- Gene&GreenTK, Marseille 13005, France
| | | | | | - Éric Chabrière
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
| | | | | |
Collapse
|
3
|
Lin H, Ning X, Wang D, Wang Q, Bai Y, Qu J. Quorum-sensing gene regulates hormetic effects induced by sulfonamides in Comamonadaceae. Appl Environ Microbiol 2023; 89:e0166223. [PMID: 38047646 PMCID: PMC10734536 DOI: 10.1128/aem.01662-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/17/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE Antibiotics can induce dose-dependent hormetic effects on bacterial cell proliferation, i.e., low-dose stimulation and high-dose inhibition. However, the underlying molecular basis has yet to be clarified. Here, we showed that sulfonamides play dual roles as a weapon and signal against Comamonas testosteroni that can modulate cell physiology and phenotype. Subsequently, through investigating the hormesis mechanism, we proposed a comprehensive regulatory pathway for the hormetic effects of Comamonas testosteroni low-level sulfonamides and determined the generality of the observed regulatory model in the Comamonadaceae family. Considering the prevalence of Comamonadaceae in human guts and environmental ecosystems, we provide critical insights into the health and ecological effects of antibiotics.
Collapse
Affiliation(s)
- Hui Lin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Science, Beijing, China
| | - Xue Ning
- MaREI Centre, Environmental Research Institute, School of Engineering, University College Cork, Cork, Ireland
| | - Donglin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Qiaojuan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Science, Beijing, China
| | - Yaohui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jiuhui Qu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Cell-Cell Signaling Proteobacterial LuxR Solos: a Treasure Trove of Subgroups Having Different Origins, Ligands, and Ecological Roles. mSystems 2023; 8:e0103922. [PMID: 36802056 PMCID: PMC10134790 DOI: 10.1128/msystems.01039-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Many proteobacteria possess LuxR solos which are quorum sensing LuxR-type regulators that are not paired with a cognate LuxI-type synthase. LuxR solos have been implicated in intraspecies, interspecies, and interkingdom communication by sensing endogenous and exogenous acyl-homoserine lactones (AHLs) as well as non-AHL signals. LuxR solos are likely to play a major role in microbiome formation, shaping, and maintenance through many different cell-cell signaling mechanisms. This review intends to assess the different types and discuss the possible functional roles of the widespread family of LuxR solo regulators. In addition, an analysis of LuxR solo types and variability among the totality of publicly available proteobacterial genomes is presented. This highlights the importance of these proteins and will encourage scientists to mobilize and study them in order to increase our knowledge of novel cell-cell mechanisms that drive bacterial interactions in the context of complex bacterial communities.
Collapse
|
5
|
Lucero CT, Lorda GS, Halliday N, Ambrosino ML, Cámara M, Taurian T. Impact of quorum sensing from native peanut phosphate solubilizing Serratia sp. S119 strain on interactions with agronomically important crops. Symbiosis 2022. [DOI: 10.1007/s13199-022-00893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Chávez-Moctezuma MP, Martínez-Cámara R, Hernández-Salmerón J, Moreno-Hagelsieb G, Santoyo G, Valencia-Cantero E. Comparative genomic and functional analysis of Arthrobacter sp. UMCV2 reveals the presence of luxR-related genes inducible by the biocompound N, N-dimethylhexadecilamine. Front Microbiol 2022; 13:1040932. [PMID: 36386619 PMCID: PMC9659744 DOI: 10.3389/fmicb.2022.1040932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/10/2022] [Indexed: 09/29/2023] Open
Abstract
Quorum sensing (QS) is a bacterial cell-cell communication system with genetically regulated mechanisms dependent on cell density. Canonical QS systems in gram-negative bacteria possess an autoinducer synthase (LuxI family) and a transcriptional regulator (LuxR family) that respond to an autoinducer molecule. In Gram-positive bacteria, the LuxR transcriptional regulators "solo" (not associated with a LuxI homolog) may play key roles in intracellular communication. Arthrobacter sp. UMCV2 is an actinobacterium that promotes plant growth by emitting the volatile organic compound N, N-dimethylhexadecylamine (DMHDA). This compound induces iron deficiency, defense responses in plants, and swarming motility in Arthrobacter sp. UMCV2. In this study, the draft genome of this bacterium was assembled and compared with the genomes of type strains of the Arthrobacter genus, finding that it does not belong to any previously described species. Genome explorations also revealed the presence of 16 luxR-related genes, but no luxI homologs were discovered. Eleven of these sequences possess the LuxR characteristic DNA-binding domain with a helix-turn-helix motif and were designated as auto-inducer-related regulators (AirR). Four sequences possessed LuxR analogous domains and were designated as auto-inducer analogous regulators (AiaR). When swarming motility was induced with DMHDA, eight airR genes and two aiaR genes were upregulated. These results indicate that the expression of multiple luxR-related genes is induced in actinobacteria, such as Arthrobacter sp. UMCV2, by the action of the bacterial biocompound DMHDA when QS behavior is produced.
Collapse
Affiliation(s)
| | - Ramiro Martínez-Cámara
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
- Tecnológico Nacional de México, Morelia, Michoacán, Mexico
| | | | | | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Eduardo Valencia-Cantero
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| |
Collapse
|
7
|
Bridges AA, Prentice JA, Wingreen NS, Bassler BL. Signal Transduction Network Principles Underlying Bacterial Collective Behaviors. Annu Rev Microbiol 2022; 76:235-257. [PMID: 35609948 PMCID: PMC9463083 DOI: 10.1146/annurev-micro-042922-122020] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria orchestrate collective behaviors and accomplish feats that would be unsuccessful if carried out by a lone bacterium. Processes undertaken by groups of bacteria include bioluminescence, biofilm formation, virulence factor production, and release of public goods that are shared by the community. Collective behaviors are controlled by signal transduction networks that integrate sensory information and transduce the information internally. Here, we discuss network features and mechanisms that, even in the face of dramatically changing environments, drive precise execution of bacterial group behaviors. We focus on representative quorum-sensing and second-messenger cyclic dimeric GMP (c-di-GMP) signal relays. We highlight ligand specificity versus sensitivity, how small-molecule ligands drive discrimination of kin versus nonkin, signal integration mechanisms, single-input sensory systems versus coincidence detectors, and tuning of input-output dynamics via feedback regulation. We summarize how different features of signal transduction systems allow groups of bacteria to successfully interpret and collectively react to dynamically changing environments.
Collapse
Affiliation(s)
- Andrew A Bridges
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; , , ,
| | - Jojo A Prentice
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; , , ,
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; , , ,
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; , , ,
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
8
|
Sati D, Joshi T, Pandey SC, Pande V, Mathpal S, Chandra S, Samant M. Identification of Putative Elicitors From Plant Root Exudates Responsible for PsoR Activation in Plant-Beneficial Pseudomonas spp. by Docking and Molecular Dynamics Simulation Approaches to Decipher Plant-Microbe Interaction. FRONTIERS IN PLANT SCIENCE 2022; 13:875494. [PMID: 35463415 PMCID: PMC9020294 DOI: 10.3389/fpls.2022.875494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Plants and rhizobacteria are coexisting since the beginning, but the exact mechanism of communication between them remains enigmatic. The PsoR protein of plant-beneficial Pseudomonas spp., a group of root-associated bacteria, is known to produce a range of antifungal and insecticidal secondary metabolites like 2,4-diacetyl phloroglucinol (DAPG), pyrrolnitrin, and chitinase making them great biocontrol agents and thus helping in plant growth promotion. To better understand the inter-kingdom signaling between plants and plant growth-promoting rhizobacteria (PGPR), the interaction of PsoR with various root exudates was investigated computationally. For this, we first modeled the PsoR protein and confirmed it using the Ramachandran plot. A total of 59 different low molecular weight phytochemicals, secreted as root exudates by plants, were identified by extensive text mining. They were virtually screened with the PsoR protein by molecular docking. Based on the lowest binding energy, ranging from -7.1 to -6.3 kcal mol-1, the top five exudates were chosen. To analyze the stability of the docked protein-ligand complex, a molecular dynamics (MD) simulation of 100 nanoseconds was done. Two root exudates, saponarin and 2-benzoxazolinone (BOA), showed suitable binding with PsoR by forming hydrogen, hydrophobic, and Van der Waals interactions. To confirm the MD simulation results, RMSF, RG, SASA, and interaction energy were calculated. This computational study first time reports that saponarin and 2-BOA, predominantly present in the root exudates of barley and wheat, respectively, demonstrate effective binding with the modeled PsoR protein and are likely of showing cross-kingdom interactions.
Collapse
Affiliation(s)
- Diksha Sati
- Cell and Molecular Biology Laboratory, Department of Zoology (DST-FIST Sponsored), Soban Singh Jeena University Campus, Almora, India
- Department of Zoology, Kumaun University, Nainital, India
| | - Tushar Joshi
- Department of Biotechnology, Kumaun University, Sir J C Bose Technical Campus, Bhimtal, India
| | - Satish Chandra Pandey
- Cell and Molecular Biology Laboratory, Department of Zoology (DST-FIST Sponsored), Soban Singh Jeena University Campus, Almora, India
| | - Veni Pande
- Cell and Molecular Biology Laboratory, Department of Zoology (DST-FIST Sponsored), Soban Singh Jeena University Campus, Almora, India
- Department of Biotechnology, Kumaun University, Sir J C Bose Technical Campus, Bhimtal, India
| | - Shalini Mathpal
- Department of Biotechnology, Kumaun University, Sir J C Bose Technical Campus, Bhimtal, India
| | - Subhash Chandra
- Computational Biology & Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University Campus, Almora, India
| | - Mukesh Samant
- Cell and Molecular Biology Laboratory, Department of Zoology (DST-FIST Sponsored), Soban Singh Jeena University Campus, Almora, India
| |
Collapse
|
9
|
Host-specific signal perception by PsaR2 LuxR solo induces Pseudomonas syringae pv. actinidiae virulence traits. Microbiol Res 2022; 260:127048. [DOI: 10.1016/j.micres.2022.127048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/23/2022] [Accepted: 04/19/2022] [Indexed: 11/19/2022]
|
10
|
Refactoring transcription factors for metabolic engineering. Biotechnol Adv 2022; 57:107935. [PMID: 35271945 DOI: 10.1016/j.biotechadv.2022.107935] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/04/2022] [Accepted: 03/03/2022] [Indexed: 12/19/2022]
Abstract
Due to the ability to regulate target metabolic pathways globally and dynamically, metabolic regulation systems composed of transcription factors have been widely used in metabolic engineering and synthetic biology. This review introduced the categories, action principles, prediction strategies, and related databases of transcription factors. Then, the application of global transcription machinery engineering technology and the transcription factor-based biosensors and quorum sensing systems are overviewed. In addition, strategies for optimizing the transcriptional regulatory tools' performance by refactoring transcription factors are summarized. Finally, the current limitations and prospects of constructing various regulatory tools based on transcription factors are discussed. This review will provide theoretical guidance for the rational design and construction of transcription factor-based metabolic regulation systems.
Collapse
|
11
|
Quintieri L, Caputo L, Brasca M, Fanelli F. Recent Advances in the Mechanisms and Regulation of QS in Dairy Spoilage by Pseudomonas spp. Foods 2021; 10:3088. [PMID: 34945641 PMCID: PMC8701193 DOI: 10.3390/foods10123088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/28/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Food spoilage is a serious issue dramatically impacting the worldwide need to counteract food insecurity. Despite the very expensive application of low temperatures, the proper conservation of fresh dairy products is continuously threatened at different stages of production and commercialization by psychrotrophic populations mainly belonging to the Pseudomonas genus. These bacteria cause discolouration, loss of structure, and off-flavours, with fatal implications on the quality and shelf-life of products. While the effects of pseudomonad decay have been widely reported, the mechanisms responsible for the activation and regulation of spoilage pathways are still poorly explored. Recently, molecule signals and regulators involved in quorum sensing (QS), such as homoserine lactones, the luxR/luxI system, hdtS, and psoR, have been detected in spoiled products and bacterial spoiler species; this evidence suggests the role of bacterial cross talk in dairy spoilage and paves the way towards the search for novel preservation strategies based on QS inhibition. The aim of this review was to investigate the advancements achieved by the application of omic approaches in deciphering the molecular mechanisms controlled by QS systems in pseudomonads, by focusing on the regulators and metabolic pathways responsible for spoilage of fresh dairy products. In addition, due the ability of pseudomonads to quickly spread in the environment as biofilm communities, which may also include pathogenic and multidrug-resistant (MDR) species, the risk derived from the gaps in clearly defined and regulated sanitization actions is underlined.
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy; (L.C.); (F.F.)
| | - Leonardo Caputo
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy; (L.C.); (F.F.)
| | - Milena Brasca
- Institute of Sciences of Food Production, National Research Council of Italy, 20133 Milan, Italy;
| | - Francesca Fanelli
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy; (L.C.); (F.F.)
| |
Collapse
|
12
|
Importance of N-Acyl-Homoserine Lactone-Based Quorum Sensing and Quorum Quenching in Pathogen Control and Plant Growth Promotion. Pathogens 2021; 10:pathogens10121561. [PMID: 34959516 PMCID: PMC8706166 DOI: 10.3390/pathogens10121561] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
The biological control of plant pathogens is linked to the composition and activity of the plant microbiome. Plant-associated microbiomes co-evolved with land plants, leading to plant holobionts with plant-beneficial microbes but also with plant pathogens. A diverse range of plant-beneficial microbes assists plants to reach their optimal development and growth under both abiotic and biotic stress conditions. Communication within the plant holobiont plays an important role, and besides plant hormonal interactions, quorum-sensing signalling of plant-associated microbes plays a central role. Quorum-sensing (QS) autoinducers, such as N-acyl-homoserine lactones (AHL) of Gram-negative bacteria, cause a pronounced interkingdom signalling effect on plants, provoking priming processes of pathogen defence and insect pest control. However, plant pathogenic bacteria also use QS signalling to optimise their virulence; these QS activities can be controlled by quorum quenching (QQ) and quorum-sensing inhibition (QSI) approaches by accompanying microbes and also by plants. Plant growth-promoting bacteria (PGPB) have also been shown to demonstrate QQ activity. In addition, some PGPB only harbour genes for AHL receptors, so-called luxR-solo genes, which can contribute to plant growth promotion and biological control. The presence of autoinducer solo receptors may reflect ongoing microevolution processes in microbe–plant interactions. Different aspects of QS systems in bacteria–plant interactions of plant-beneficial and pathogenic bacteria will be discussed, and practical applications of bacteria with AHL-producing or -quenching activity; QS signal molecules stimulating pathogen control and plant growth promotion will also be presented.
Collapse
|
13
|
Singh S, Bhatia S. Quorum Sensing Inhibitors: Curbing Pathogenic Infections through Inhibition of Bacterial Communication. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:486-514. [PMID: 34567177 PMCID: PMC8457738 DOI: 10.22037/ijpr.2020.113470.14318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Currently, most of the developed and developing countries are facing the problem of infectious diseases. The genius way of an exaggerated application of antibiotics led the infectious agents to respond by bringing a regime of persisters to resist antibiotics attacks prolonging their survival. Persisters have the dexterity to communicate among themself using signal molecules via the process of Quorum Sensing (QS), which regulates virulence gene expression and biofilms formation, making them more vulnerable to antibiotic attack. Our review aims at the different approaches applied in the ordeal to solve the riddle for QS inhibitors. QS inhibitors, their origin, structures and key interactions for QS inhibitory activity have been summarized. Solicitation of a potent QS inhibitor molecule would be beneficial, giving new life to the simplest antibiotics in adjuvant therapy.
Collapse
Affiliation(s)
- Shaminder Singh
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3 Milestone, Faridabad-Gurugram Expressway, Faridabad - 121 001, Haryana, India
| | - Sonam Bhatia
- Department of Pharmaceutical Science, SHALOM Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Naini-211007, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
14
|
Quorum Sensing Regulation in Phytopathogenic Bacteria. Microorganisms 2021; 9:microorganisms9020239. [PMID: 33498890 PMCID: PMC7912708 DOI: 10.3390/microorganisms9020239] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/17/2022] Open
Abstract
Quorum sensing is a type of chemical communication by which bacterial populations control expression of their genes in a coordinated manner. This regulatory mechanism is commonly used by pathogens to control the expression of genes encoding virulence factors and that of genes involved in the bacterial adaptation to variations in environmental conditions. In phytopathogenic bacteria, several mechanisms of quorum sensing have been characterized. In this review, we describe the different quorum sensing systems present in phytopathogenic bacteria, such as those using the signal molecules named N-acyl-homoserine lactone (AHL), diffusible signal factor (DSF), and the unknown signal molecule of the virulence factor modulating (VFM) system. We focus on studies performed on phytopathogenic bacteria of major importance, including Pseudomonas, Ralstonia, Agrobacterium, Xanthomonas, Erwinia, Xylella,Dickeya, and Pectobacterium spp. For each system, we present the mechanism of regulation, the functions targeted by the quorum sensing system, and the mechanisms by which quorum sensing is regulated.
Collapse
|
15
|
Sousa EH, Carepo MS, Moura JJ. Nitrate-nitrite fate and oxygen sensing in dormant Mycobacterium tuberculosis: A bioinorganic approach highlighting the importance of transition metals. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
16
|
Lau YY, How KY, Yin WF, Chan KG. Functional characterization of quorum sensing LuxR-type transcriptional regulator, EasR in Enterobacter asburiae strain L1. PeerJ 2020; 8:e10068. [PMID: 33150063 PMCID: PMC7585371 DOI: 10.7717/peerj.10068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 09/08/2020] [Indexed: 01/17/2023] Open
Abstract
Over the past decades, Enterobacter spp. have been identified as challenging and important pathogens. The emergence of multidrug-resistant Enterobacteria especially those that produce Klebsiella pneumoniae carbapenemase has been a very worrying health crisis. Although efforts have been made to unravel the complex mechanisms that contribute to the pathogenicity of different Enterobacter spp., there is very little information associated with AHL-type QS mechanism in Enterobacter spp. Signaling via N-acyl homoserine lactone (AHL) is the most common quorum sensing (QS) mechanism utilized by Proteobacteria. A typical AHL-based QS system involves two key players: a luxI gene homolog to synthesize AHLs and a luxR gene homolog, an AHL-dependent transcriptional regulator. These signaling molecules enable inter-species and intra-species interaction in response to external stimuli according to population density. In our recent study, we reported the genome of AHL-producing bacterium, Enterobacter asburiae strain L1. Whole genome sequencing and in silico analysis revealed the presence of a pair of luxI/R genes responsible for AHL-type QS, designated as easI/R, in strain L1. In a QS system, a LuxR transcriptional protein detects and responds to the concentration of a specific AHL controlling gene expression. In E. asburiae strain L1, EasR protein binds to its cognate AHLs, N-butanoyl homoserine lactone (C4-HSL) and N–hexanoyl homoserine lactone (C6-HSL), modulating the expression of targeted genes. In this current work, we have cloned the 693 bp luxR homolog of strain L1 for further characterization. The functionality and specificity of EasR protein in response to different AHL signaling molecules to activate gene transcription were tested and validated with β-galactosidase assays. Higher β-galactosidase activities were detected for cells harboring EasR, indicating EasR is a functional transcriptional regulator. This is the first report documenting the cloning and characterization of transcriptional regulator, luxR homolog of E. asburiae.
Collapse
Affiliation(s)
- Yin Yin Lau
- International Genome Centre, Jiangsu University, Zhenjiang, China.,Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Malaysia
| | - Kah Yan How
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Malaysia
| | - Kok-Gan Chan
- International Genome Centre, Jiangsu University, Zhenjiang, China.,Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Malaysia
| |
Collapse
|
17
|
Xu G. Evolution of LuxR solos in bacterial communication: receptors and signals. Biotechnol Lett 2019; 42:181-186. [PMID: 31732826 DOI: 10.1007/s10529-019-02763-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022]
Abstract
Cell-cell communication in bacteria needs chemical signals and cognate receptors. Many Gram-negative bacteria use acyl-homoserine lactones (AHLs) and cognate LuxR-type receptors to regulate their quorum sensing (QS) systems. The signal synthase-receptor (LuxI-LuxR) pairs may have co-evolved together. However, many LuxR solo (orphan LuxR) regulators sense more signals than just AHLs, and expand the regulatory networks for inter-species and inter-kingdom communication. Moreover, there are also some QS regulators from the TetR family. LuxR solo regulators might have evolved by gene duplication and horizontal gene transfer. An increased understanding of the evolutionary roles of QS regulators would be helpful for engineering of cell-cell communication circuits in bacteria.
Collapse
Affiliation(s)
- Gangming Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
18
|
Lessons from One Fastidious Bacterium to Another: What Can We Learn about Liberibacter Species from Xylella fastidiosa. INSECTS 2019; 10:insects10090300. [PMID: 31527458 PMCID: PMC6780969 DOI: 10.3390/insects10090300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
Huanglongbing is causing economic devastation to the citrus industry in Florida, and threatens the industry everywhere the bacterial pathogens in the Candidatus Liberibacter genus and their insect vectors are found. Bacteria in the genus cannot be cultured and no durable strategy is available for growers to control plant infection or pathogen transmission. However, scientists and grape growers were once in a comparable situation after the emergence of Pierce’s disease, which is caused by Xylella fastidiosa and spread by its hemipteran insect vector. Proactive quarantine and vector control measures coupled with interdisciplinary data-driven science established control of this devastating disease and pushed the frontiers of knowledge in the plant pathology and vector biology fields. Our review highlights the successful strategies used to understand and control X. fastidiosa and their potential applicability to the liberibacters associated with citrus greening, with a focus on the interactions between bacterial pathogen and insect vector. By placing the study of Candidatus Liberibacter spp. within the current and historical context of another fastidious emergent plant pathogen, future basic and applied research to develop control strategies can be prioritized.
Collapse
|
19
|
Hartmann A, Fischer D, Kinzel L, Chowdhury SP, Hofmann A, Baldani JI, Rothballer M. Assessment of the structural and functional diversities of plant microbiota: Achievements and challenges - A review. J Adv Res 2019; 19:3-13. [PMID: 31341665 PMCID: PMC6629839 DOI: 10.1016/j.jare.2019.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/28/2022] Open
Abstract
Analyses of the spatial localization and the functions of bacteria in host plant habitats through in situ identification by immunological and molecular genetic techniques combined with high resolving microscopic tools and 3D-image analysis contributed substantially to a better understanding of the functional interplay of the microbiota in plants. Among the molecular genetic methods, 16S-rRNA genes were of central importance to reconstruct the phylogeny of newly isolated bacteria and to localize them in situ. However, they usually do not allow resolution for phylogenetic affiliations below genus level. Especially, the separation of opportunistic human pathogens from plant beneficial strains, currently allocated to the same species, needs genome-based resolving techniques. Whole bacterial genome sequences allow to discriminate phylogenetically closely related strains. In addition, complete genome sequences enable strain-specific monitoring for biotechnologically relevant strains. In this mini-review we present high resolving approaches for analysis of the composition and key functions of plant microbiota, focusing on interactions of diazotrophic plant growth promoting bacteria, like Azospirillum brasilense, with non-legume host plants. Combining high resolving microscopic analyses with specific immunological detection methods and molecular genetic tools, including especially transcriptome analyses of both the bacterial and plant partners, enables new insights into key traits of beneficial bacteria-plant interactions in holobiontic systems.
Collapse
Affiliation(s)
- Anton Hartmann
- Ludwig-Maximilians-Universität (LMU) München, Faculty of Biology, Host-Microbe interactions, Großhaderner Str. 2-4, D-82152 Martinsried, Germany
| | - Doreen Fischer
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Munich, Germany
| | - Linda Kinzel
- Research Unit Microbe-Plant Interactions, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Munich, Germany
| | - Soumitra Paul Chowdhury
- Institute of Network Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Munich, Germany
| | - Andreas Hofmann
- EMBRAPA-Agrobiologia, Br 465, Km 07, Seropédica–RJ–CEP 23891-000, Brazil
| | - Jose Ivo Baldani
- EMBRAPA-Agrobiologia, Br 465, Km 07, Seropédica–RJ–CEP 23891-000, Brazil
| | - Michael Rothballer
- Institute of Network Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Munich, Germany
| |
Collapse
|
20
|
Passera A, Compant S, Casati P, Maturo MG, Battelli G, Quaglino F, Antonielli L, Salerno D, Brasca M, Toffolatti SL, Mantegazza F, Delledonne M, Mitter B. Not Just a Pathogen? Description of a Plant-Beneficial Pseudomonas syringae Strain. Front Microbiol 2019; 10:1409. [PMID: 31293547 PMCID: PMC6598456 DOI: 10.3389/fmicb.2019.01409] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/04/2019] [Indexed: 11/13/2022] Open
Abstract
Plants develop in a microbe-rich environment and must interact with a plethora of microorganisms, both pathogenic and beneficial. Indeed, such is the case of Pseudomonas, and its model organisms P. fluorescens and P. syringae, a bacterial genus that has received particular attention because of its beneficial effect on plants and its pathogenic strains. The present study aims to compare plant-beneficial and pathogenic strains belonging to the P. syringae species to get new insights into the distinction between the two types of plant–microbe interactions. In assays carried out under greenhouse conditions, P. syringae pv. syringae strain 260-02 was shown to promote plant-growth and to exert biocontrol of P. syringae pv. tomato strain DC3000, against the Botrytis cinerea fungus and the Cymbidium Ringspot Virus. This P. syringae strain also had a distinct volatile emission profile, as well as a different plant-colonization pattern, visualized by confocal microscopy and gfp labeled strains, compared to strain DC3000. Despite the different behavior, the P. syringae strain 260-02 showed great similarity to pathogenic strains at a genomic level. However, genome analyses highlighted a few differences that form the basis for the following hypotheses regarding strain 260-02. P. syringae strain 260-02: (i) possesses non-functional virulence genes, like the mangotoxin-producing operon Mbo; (ii) has different regulation pathways, suggested by the difference in the autoinducer system and the lack of a virulence activator gene; (iii) has genes encoding DNA methylases different from those found in other P. syringae strains, suggested by the presence of horizontal-gene-transfer-obtained methylases that could affect gene expression.
Collapse
Affiliation(s)
- Alessandro Passera
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Stéphane Compant
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Paola Casati
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Maria Giovanna Maturo
- Functional Genomics Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | - Giovanna Battelli
- Institute of Sciences of Food Production, Italian National Research Council, Milan, Italy
| | - Fabio Quaglino
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Livio Antonielli
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Domenico Salerno
- Department Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Vedano al Lambro, Italy
| | - Milena Brasca
- Institute of Sciences of Food Production, Italian National Research Council, Milan, Italy
| | - Silvia Laura Toffolatti
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Francesco Mantegazza
- Department Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Vedano al Lambro, Italy
| | - Massimo Delledonne
- Functional Genomics Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | - Birgit Mitter
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| |
Collapse
|
21
|
McIntosh M, Serrania J, Lacanna E. A novel LuxR-type solo of Sinorhizobium meliloti, NurR, is regulated by the chromosome replication coordinator, DnaA and activates quorum sensing. Mol Microbiol 2019; 112:678-698. [PMID: 31124196 DOI: 10.1111/mmi.14312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2019] [Indexed: 12/16/2022]
Abstract
The genome of Sinorhizobium meliloti, a model for studying plant-bacteria symbiosis, contains eight genes coding for LuxR-like proteins. Two of these, SinR and ExpR, are essential for quorum sensing (QS). Roles and regulation surrounding the others are mostly unknown. Here, we reveal the DNA recognition sequence and regulon of the LuxR-like protein SMc00877. Unlike ExpR, which uses the long-chain acyl homoserine lactones (AHLs) as inducers, SMc00877 functioned independently of AHLs and was even functional in Escherichia coli. A target of SMc00877 is SinR, the major regulator of AHL production in S. meliloti. Disruption of SMc00877 decreased AHL production. A weaker production of AHLs resulted in smaller microcolonies, starting from single cells, and delayed AHL-dependent regulation. SMc00877 was expressed only in growing cells in the presence of replete nutrients. Therefore, we renamed it NurR (nutrient sensitive LuxR-like regulator). We traced this nutrient-sensitive expression to transcription control by the DNA replication initiation factor, DnaA, which is essential for growth. These results indicate that NurR has a role in modulating the threshold of QS activation according to growth. We propose growth behavior as an additional prerequisite to population density for the activation of QS in S. meliloti.
Collapse
Affiliation(s)
- Matthew McIntosh
- LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, 35043, Germany.,Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany.,Institut für Mikrobiologie und Molekularbiologie, Universität Giessen, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Javier Serrania
- LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, 35043, Germany.,Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
| | - Egidio Lacanna
- LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, 35043, Germany.,Faculty of Biology, Philipps-Universität Marburg, Marburg, 35043, Germany
| |
Collapse
|
22
|
Gualpa J, Lopez G, Nievas S, Coniglio A, Halliday N, Cámara M, Cassán F. Azospirillum brasilense Az39, a model rhizobacterium with AHL quorum-quenching capacity. J Appl Microbiol 2019; 126:1850-1860. [PMID: 30924989 DOI: 10.1111/jam.14269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 03/06/2019] [Accepted: 03/24/2019] [Indexed: 12/20/2022]
Abstract
AIMS The aim of this research was to analyse the quorum-sensing (QS) and quorum-quenching (QQ) mechanisms based on N-acyl-l-homoserine lactones (AHLs) in Azospirillum brasilense Az39, a strain with remarkable capacity to benefit a wide range of crops under agronomic conditions. METHODS AND RESULTS We performed an in silico and in vitro analysis of the quorum mechanisms in A. brasilense Az39. The results obtained in vitro using the reporter strains Chromobacterium violaceum and Agrobacterium tumefaciens and liquid chromatography coupled with mass-mass spectrometry analysis showed that although Az39 does not produce AHL molecules, it is capable of degrading them by at least two hypothetical enzymes identified by bioinformatics approach, associated with the bacterial cell. In Az39 cultures supplemented with 500 nmol l-1 of the C3 unsubstituted AHLs (C4, C6, C8, C10, C12, C14), AHL levels were lower than in noninoculated LB media controls. Similar results were observed upon the addition of AHLs with hydroxy (OH-) and keto (oxo-) substitutions in C3. These results not only demonstrate the ability of Az39 to degrade AHLs. They also show the wide spectrum of molecules that can be degraded by this bacterium. CONCLUSIONS Although A. brasilense Az39 is a silent bacterium unable to produce AHL signals, it is able to interrupt the communications between other bacteria and/or plants by a QQ activity. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report confirming by unequivocal methodology the ability of A. brasilense, one of the most agriculturally used benefic bacteria around the world, to degrade AHLs by a QQ mechanism.
Collapse
Affiliation(s)
- J Gualpa
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-Microorganismo, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - G Lopez
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-Microorganismo, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - S Nievas
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-Microorganismo, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - A Coniglio
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-Microorganismo, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - N Halliday
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - M Cámara
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - F Cassán
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-Microorganismo, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| |
Collapse
|
23
|
Malleilactone Is a Burkholderia pseudomallei Virulence Factor Regulated by Antibiotics and Quorum Sensing. J Bacteriol 2018; 200:JB.00008-18. [PMID: 29735757 DOI: 10.1128/jb.00008-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, encodes almost a dozen predicted polyketide (PK) biosynthetic gene clusters. Many of these are regulated by LuxR-I-type acyl-homoserine (AHL) quorum-sensing systems. One of the PK gene clusters, the mal gene cluster, is conserved in the close relative Burkholderia thailandensis The B. thailandensis mal genes code for the cytotoxin malleilactone and are regulated by a genetically linked LuxR-type transcription factor, MalR. Although AHLs typically interact with LuxR-type proteins to modulate gene transcription, the B. thailandensis MalR does not appear to be an AHL receptor. Here, we characterize the mal genes and MalR in B. pseudomallei We use chemical analyses to demonstrate that the B. pseudomallei mal genes code for malleilactone. Our results show that MalR and the mal genes contribute to the ability of B. pseudomallei to kill Caenorhabditis elegans In B. thailandensis, antibiotics like trimethoprim can activate MalR by driving transcription of the mal genes, and we demonstrate that some of the same antibiotics induce expression of B. pseudomallei malR We also demonstrate that B. pseudomallei MalR does not respond directly to AHLs. Our results suggest that MalR is indirectly repressed by AHLs, possibly through a repressor, ScmR. We further show that malleilactone is a B. pseudomallei virulence factor and provide the foundation for understanding how malleilactone contributes to the pathology of melioidosis infections.IMPORTANCE Many bacterially produced polyketides are cytotoxic to mammalian cells and are potentially important contributors to pathogenesis during infection. We are interested in the polyketide gene clusters present in Burkholderia pseudomallei, which causes the often-fatal human disease melioidosis. Using knowledge gained by studies in the close relative Burkholderia thailandensis, we show that one of the B. pseudomallei polyketide biosynthetic clusters produces a cytotoxic polyketide, malleilactone. Malleilactone contributes to B. pseudomallei virulence in a Caenorhabditis elegans infection model and is regulated by an orphan LuxR family quorum-sensing transcription factor, MalR. Our studies demonstrate that malleilactone biosynthesis or MalR could be new targets for developing therapeutics to treat melioidosis.
Collapse
|
24
|
Calatrava-Morales N, McIntosh M, Soto MJ. Regulation Mediated by N-Acyl Homoserine Lactone Quorum Sensing Signals in the Rhizobium-Legume Symbiosis. Genes (Basel) 2018; 9:genes9050263. [PMID: 29783703 PMCID: PMC5977203 DOI: 10.3390/genes9050263] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023] Open
Abstract
Soil-dwelling bacteria collectively referred to as rhizobia synthesize and perceive N-acyl-homoserine lactone (AHL) signals to regulate gene expression in a population density-dependent manner. AHL-mediated signaling in these bacteria regulates several functions which are important for the establishment of nitrogen-fixing symbiosis with legume plants. Moreover, rhizobial AHL act as interkingdom signals triggering plant responses that impact the plant-bacteria interaction. Both the regulatory mechanisms that control AHL synthesis in rhizobia and the set of bacterial genes and associated traits under quorum sensing (QS) control vary greatly among the rhizobial species. In this article, we focus on the well-known QS system of the alfalfa symbiont Sinorhizobium(Ensifer)meliloti. Bacterial genes, environmental factors and transcriptional and posttranscriptional regulatory mechanisms that control AHL production in this Rhizobium, as well as the effects of the signaling molecule on bacterial phenotypes and plant responses will be reviewed. Current knowledge of S. meliloti QS will be compared with that of other rhizobia. Finally, participation of the legume host in QS by interfering with rhizobial AHL perception through the production of molecular mimics will also be addressed.
Collapse
Affiliation(s)
- Nieves Calatrava-Morales
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC; Granada 18008, Spain.
| | - Matthew McIntosh
- Institut für Mikrobiologie und Molekularbiologie, Universität Giessen, 35392 Giessen, Germany.
| | - María J Soto
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC; Granada 18008, Spain.
| |
Collapse
|
25
|
Acyl-homoserine-lactones receptor LuxR of Shewanella baltica involved in the development of microbiota and spoilage of refrigerated shrimp. Journal of Food Science and Technology 2018; 55:2795-2800. [PMID: 30042596 DOI: 10.1007/s13197-018-3172-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/30/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
Abstract
Numerous bacterial species utilize quorum sensing molecules acyl-homoserine-lactones (AHLs) to communicate, however, crosstalk often complicates the dynamics and behaviors of mixed populations. In this study, we developed a luxR mutant of wild type Shewanella baltica SA03 (WT SA03), and aimed to investigate the role of S. baltica LuxR (AHLs receptor) involved in the spoilage of refrigerated shrimp (Litopenaeus vannamei) by inoculating WT SA03 and luxR mutant of S. baltica SA03 (ΔluxR SA03), respectively. The results indicated the maximum growth rate of total viable bacteria in shrimp inoculated with ΔluxR SA03 was 73.34% lower than that of WT SA03. The lag time of total bacteria in shrimp treated with ΔluxR SA03 were 87.6 h, significantly longer than that of WT SA03. Meanwhile, the total volatile basic nitrogen concentrations of shrimp treated with WT SA03 were significantly higher than that of ΔluxR SA03 after 2 days of storage, which were in agreement with the decrease of the content of AHLs of the shrimp. The results indicated S. baltica might utilize AHLs produced by other bacteria and accelerate the shrimp spoilage process through LuxR receptor system.
Collapse
|
26
|
Haskett TL, Terpolilli JJ, Ramachandran VK, Verdonk CJ, Poole PS, O’Hara GW, Ramsay JP. Sequential induction of three recombination directionality factors directs assembly of tripartite integrative and conjugative elements. PLoS Genet 2018; 14:e1007292. [PMID: 29565971 PMCID: PMC5882170 DOI: 10.1371/journal.pgen.1007292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/03/2018] [Accepted: 03/06/2018] [Indexed: 12/14/2022] Open
Abstract
Tripartite integrative and conjugative elements (ICE3) are a novel form of ICE that exist as three separate DNA regions integrated within the genomes of Mesorhizobium spp. Prior to conjugative transfer the three ICE3 regions of M. ciceri WSM1271 ICEMcSym1271 combine and excise to form a single circular element. This assembly requires three coordinated recombination events involving three site-specific recombinases IntS, IntG and IntM. Here, we demonstrate that three excisionases–or recombination directionality factors—RdfS, RdfG and RdfM are required for ICE3 excision. Transcriptome sequencing revealed that expression of ICE3 transfer and conjugation genes was induced by quorum sensing. Quorum sensing activated expression of rdfS, and in turn RdfS stimulated transcription of both rdfG and rdfM. Therefore, RdfS acts as a “master controller” of ICE3 assembly and excision. The dependence of all three excisive reactions on RdfS ensures that ICE3 excision occurs via a stepwise sequence of recombination events that avoids splitting the chromosome into a non-viable configuration. These discoveries expose a surprisingly simple control system guiding molecular assembly of these novel and complex mobile genetic elements and highlight the diverse and critical functions of excisionase proteins in control of horizontal gene transfer. Bacteria evolve and adapt quickly through the horizontal transfer of DNA. A major mechanism facilitating this transfer is conjugation. Conjugative DNA elements that integrate into the chromosome are termed ‘Integrative and Conjugative Elements’ (ICE). We recently discovered a unique form of ICE that undergoes a complex series of recombination events with the host chromosome to split itself into three separate parts. This tripartite ICE must also precisely order its recombination when leaving the current host to avoid splitting the host chromosome and the ICE into non-viable parts. In this work, we show that the tripartite ICEs use chemical cell-cell communication to stimulate recombination and that recombination events are specifically ordered through cascaded transcriptional activation of small DNA-binding proteins called recombination directionality factors. Despite the inherent complexity of tripartite ICEs this work exposes a surprisingly simple system to stimulate their precise and ordered molecular assembly prior to horizontal transfer.
Collapse
Affiliation(s)
- Timothy L. Haskett
- Centre for Rhizobium Studies, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
- * E-mail:
| | - Jason J. Terpolilli
- Centre for Rhizobium Studies, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | | | - Callum J. Verdonk
- School of Pharmacy and Biomedical Sciences and the Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Phillip S. Poole
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Graham W. O’Hara
- Centre for Rhizobium Studies, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Joshua P. Ramsay
- School of Pharmacy and Biomedical Sciences and the Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| |
Collapse
|
27
|
Chapelais-Baron M, Goubet I, Péteri R, Pereira MDF, Mignot T, Jabveneau A, Rosenfeld E. Colony analysis and deep learning uncover 5-hydroxyindole as an inhibitor of gliding motility and iridescence in Cellulophaga lytica. MICROBIOLOGY-SGM 2018; 164:308-321. [PMID: 29458680 DOI: 10.1099/mic.0.000617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Iridescence is an original type of colouration that is relatively widespread in nature but has been either incompletely described or entirely neglected in prokaryotes. Recently, we reported a brilliant 'pointillistic' iridescence in agar-grown colony biofilms of Cellulophaga lytica and some other marine Flavobacteria that exhibit gliding motility. Bacterial iridescence is created by a unique self-organization of sub-communities of cells, but the mechanisms underlying such living photonic crystals are unknown. In this study, we used Petri dish assays to screen a large panel of potential activators or inhibitors of C. lytica's iridescence. Derivatives potentially interfering with quorum-sensing and other communication or biofilm formation processes were tested, as well as metabolic poisons or algal exoproducts. We identified an indole derivative, 5-hydroxyindole (5HI, 250 µM) which inhibited both gliding and iridescence at the colonial level. 5HI did not affect growth or cell respiration. At the microscopic level, phase-contrast imaging confirmed that 5HI inhibits the gliding motility of cells. Moreover, the lack of iridescence correlated with a perturbation of self-organization of the cell sub-communities in both the WT and a gliding-negative mutant. This effect was proved using recent advances in machine learning (deep neuronal networks). In addition to its effect on colony biofilms, 5HI was found to stimulate biofilm formation in microplates. Our data are compatible with possible roles of 5HI or marine analogues in the eco-biology of iridescent bacteria.
Collapse
Affiliation(s)
- Maylis Chapelais-Baron
- UMR 7266 CNRS- Littoral Environnement et Sociétés, Microbial Physiology Group - Université de La Rochelle, Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Isabelle Goubet
- UMR 7266 CNRS- Littoral Environnement et Sociétés, Microbial Physiology Group - Université de La Rochelle, Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Renaud Péteri
- Laboratoire Mathématiques, Image et Applications EA 3165, Université de La Rochelle, La Rochelle, France
| | - Maria de Fatima Pereira
- UMR 7266 CNRS- Littoral Environnement et Sociétés, Microbial Physiology Group - Université de La Rochelle, Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042 La Rochelle, France.,Université de Caen Normandie, UNICAEN, CERMN - EA 4258, FR CNRS 3038 INC3M, SF 4206 ICORE Boulevard Becquerel, F-14032 Caen, France
| | - Tâm Mignot
- UMR 7283 CNRS Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, University of Aix-Marseille, Marseille, France
| | - Apolline Jabveneau
- UMR 7266 CNRS- Littoral Environnement et Sociétés, Microbial Physiology Group - Université de La Rochelle, Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Eric Rosenfeld
- UMR 7266 CNRS- Littoral Environnement et Sociétés, Microbial Physiology Group - Université de La Rochelle, Faculté des Sciences et Technologies, Avenue Michel Crépeau, 17042 La Rochelle, France
| |
Collapse
|
28
|
Fukami J, Abrantes JLF, del Cerro P, Nogueira MA, Ollero FJ, Megías M, Hungria M. Revealing strategies of quorum sensing in Azospirillum brasilense strains Ab-V5 and Ab-V6. Arch Microbiol 2017; 200:47-56. [DOI: 10.1007/s00203-017-1422-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/21/2017] [Accepted: 07/30/2017] [Indexed: 11/24/2022]
|
29
|
Interkingdom signaling in plant-microbe interactions. SCIENCE CHINA-LIFE SCIENCES 2017; 60:785-796. [PMID: 28755299 DOI: 10.1007/s11427-017-9092-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/04/2017] [Indexed: 12/18/2022]
Abstract
The widespread communications between prokaryotes and eukaryotes via signaling molecules are believed to affect gene expression in both partners. During the communication process, the contacted organisms produce and release small molecules that establish communication channels between two kingdoms-this procedure is known as interkingdom signaling. Interkingdom communications are widespread between pathogenic or beneficial bacteria and their host plants, with diversified outcomes depending on the specific chemical-triggered signaling pathways. Deciphering the signals or language of this interkingdom communication and uncovering the underlying mechanisms are major current challenges in this field. It is evident that diverse signaling molecules can be produced or derived from bacteria and plants, and researchers have sought to identify these signals and explore the mechanisms of the signaling pathways. The results of such studies will lead to the development of strategies to improve plant disease resistance through controlling interkingdom signals, rather than directly killing the pathogenic bacteria. Also, the identification of signals produced by beneficial bacteria will be useful for agricultural applications. In this review, we summarize the recent progress of cross-kingdom interactions between plant and bacteria, and how LuxR-family transcription factors in plant associated bacterial quorum sensing system are involved in the interkingdom signaling.
Collapse
|
30
|
Sun YQ, Busche T, Rückert C, Paulus C, Rebets Y, Novakova R, Kalinowski J, Luzhetskyy A, Kormanec J, Sekurova ON, Zotchev SB. Development of a Biosensor Concept to Detect the Production of Cluster-Specific Secondary Metabolites. ACS Synth Biol 2017; 6:1026-1033. [PMID: 28221784 DOI: 10.1021/acssynbio.6b00353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Genome mining of actinomycete bacteria aims at the discovery of novel bioactive secondary metabolites that can be developed into drugs. A new repressor-based biosensor to detect activated secondary metabolite biosynthesis gene clusters in Streptomyces was developed. Biosynthetic gene clusters for undecylprodigiosin and coelimycin in the genome of Streptomyces lividans TK24, which encoded TetR-like repressors and appeared to be almost "silent" based on the RNA-seq data, were chosen for the proof-of-principle studies. The bpsA reporter gene for indigoidine synthetase was placed under control of the promotor/operator regions presumed to be controlled by the cluster-associated TetR-like repressors. While the biosensor for undecylprodigiosin turned out to be nonfunctional, the coelimycin biosensor was shown to perform as expected, turning on biosynthesis of indigoidine in response to the concomitant production of coelimycin. The developed reporter system concept can be applied to those cryptic gene clusters that encode metabolite-sensing repressors to speed up discovery of novel bioactive compounds in Streptomyces.
Collapse
Affiliation(s)
- Yi-Qian Sun
- Department
of Biotechnology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- The
Department of Laboratory Medicine, Children’s and Women’s
Health (LBK), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Tobias Busche
- Center
for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Christian Rückert
- Center
for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Constanze Paulus
- Helmholtz Institute for Pharmaceutical Research Saarland, Actinobacteria Metabolic Engineering Group, 66123 Saarbrücken, Germany
- Universität des Saarlandes, Pharmaceutical Biotechnology, 66123 Saarbrücken, Germany
| | - Yuriy Rebets
- Helmholtz Institute for Pharmaceutical Research Saarland, Actinobacteria Metabolic Engineering Group, 66123 Saarbrücken, Germany
| | - Renata Novakova
- Institute
of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| | - Jörn Kalinowski
- Center
for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Andriy Luzhetskyy
- Helmholtz Institute for Pharmaceutical Research Saarland, Actinobacteria Metabolic Engineering Group, 66123 Saarbrücken, Germany
- Universität des Saarlandes, Pharmaceutical Biotechnology, 66123 Saarbrücken, Germany
| | - Jan Kormanec
- Institute
of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| | - Olga N. Sekurova
- Department
of Pharmacognosy, University of Vienna, 1090 Vienna, Austria
| | - Sergey B. Zotchev
- Department
of Pharmacognosy, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
31
|
Rajput A, Kumar M. Computational Exploration of Putative LuxR Solos in Archaea and Their Functional Implications in Quorum Sensing. Front Microbiol 2017; 8:798. [PMID: 28515720 PMCID: PMC5413776 DOI: 10.3389/fmicb.2017.00798] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/19/2017] [Indexed: 11/13/2022] Open
Abstract
LuxR solos are unexplored in Archaea, despite their vital role in the bacterial regulatory network. They assist bacteria in perceiving acyl homoserine lactones (AHLs) and/or non-AHLs signaling molecules for establishing intraspecies, interspecies, and interkingdom communication. In this study, we explored the potential LuxR solos of Archaea from InterPro v62.0 meta-database employing taxonomic, probable function, distribution, and evolutionary aspects to decipher their role in quorum sensing (QS). Our bioinformatics analyses showed that putative LuxR solos of Archaea shared few conserved domains with bacterial LuxR despite having less similarity within proteins. Functional characterization revealed their ability to bind various AHLs and/or non-AHLs signaling molecules that involve in QS cascades alike bacteria. Further, the phylogenetic study indicates that Archaeal LuxR solos (with less substitution per site) evolved divergently from bacteria and share distant homology along with instances of horizontal gene transfer. Moreover, Archaea possessing putative LuxR solos, exhibit the correlation between taxonomy and ecological niche despite being the inhabitant of diverse habitats like halophilic, thermophilic, barophilic, methanogenic, and chemolithotrophic. Therefore, this study would shed light in deciphering the role of the putative LuxR solos of Archaea to adapt varied habitats via multilevel communication with other organisms using QS.
Collapse
Affiliation(s)
- Akanksha Rajput
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial ResearchChandigarh, India
| | - Manoj Kumar
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial ResearchChandigarh, India
| |
Collapse
|
32
|
Dang HT, Komatsu S, Masuda H, Enomoto K. Characterization of LuxI and LuxR Protein Homologs of N-Acylhomoserine Lactone-Dependent Quorum Sensing System in Pseudoalteromonas sp. 520P1. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:1-10. [PMID: 28083715 DOI: 10.1007/s10126-016-9726-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
Pseudoalteromonas sp. 520P1 (hereafter referred to as strain 520P1) produces N-acylhomoserine lactones (AHLs), which serve as signaling molecules in Gram-negative bacterial quorum sensing. In a previous genomic analysis of the 5.25-Mb genome of strain 520P1, we detected the presence of at least one homolog of the AHL synthase gene (luxI) and five homologs of the transcriptional regulator protein gene (luxR). The LuxI homolog of strain 520P1 (PalI) contained the conserved amino acid motifs shared by all the LuxI family proteins of the different species examined here. The palI gene expressed in Escherichia coli produced two types of AHLs. In the thin-layer chromatography analysis, these AHLs showed identical mobility to the AHLs produced by strain 520P1. The five LuxR homologs of strain 520P1 (PalR1-PalR5) shared only 17-34% amino acid sequence identity, although higher identities were observed in the C-terminal DNA-binding domain. Among the five PalRs, only PalR5 displayed close homology with LuxR family proteins from other Pseudoalteromonas strains. Notably, the palR3 and palI genes were located close together and only 1021 bases apart in the genome. No cognate luxI homolog associated with the four other palR genes was detected. These characteristics of PalI and the PalRs suggest that AHL autoinducers generated by the PalI enzyme might regulate cellular metabolism in cooperation with five transcriptional regulator PalRs, each of which is presumed to play a distinctive role in bacterial signaling.
Collapse
Affiliation(s)
- Hoang Tran Dang
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi, 782-8502, Japan
| | - Shinya Komatsu
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi, 782-8502, Japan
| | - Hideyuki Masuda
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi, 782-8502, Japan
| | - Keiichi Enomoto
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi, 782-8502, Japan.
| |
Collapse
|
33
|
Abstract
Quorum sensing (QS) is a form of chemical communication used by certain bacteria that regulates a wide range of biogeochemically important bacterial behaviors. Although QS was first observed in a marine bacterium nearly four decades ago, only in the past decade has there been a rise in interest in the role that QS plays in the ocean. It has become clear that QS, regulated by signals such as acylated homoserine lactones (AHLs) or furanosyl-borate diesters [autoinducer-2 (AI-2) molecules], is involved in important processes within the marine carbon cycle, in the health of coral reef ecosystems, and in trophic interactions between a range of eukaryotes and their bacterial associates. The most well-studied QS systems in the ocean occur in surface-attached (biofilm) communities and rely on AHL signaling. AHL-QS is highly sensitive to the chemical and biological makeup of the environment and may respond to anthropogenic change, including ocean acidification and rising sea surface temperatures.
Collapse
Affiliation(s)
- Laura R Hmelo
- School of Oceanography, University of Washington, Seattle, Washington 98195;
| |
Collapse
|
34
|
A LuxR Homolog in a Cottonwood Tree Endophyte That Activates Gene Expression in Response to a Plant Signal or Specific Peptides. mBio 2016; 7:mBio.01101-16. [PMID: 27486195 PMCID: PMC4981722 DOI: 10.1128/mbio.01101-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Homologs of the LuxR acyl-homoserine lactone (AHL) quorum-sensing signal receptor are prevalent in Proteobacteria isolated from roots of the Eastern cottonwood tree, Populus deltoides Many of these isolates possess an orphan LuxR homolog, closely related to OryR from the rice pathogen Xanthomonas oryzae OryR does not respond to AHL signals but, instead, responds to an unknown plant compound. We discovered an OryR homolog, PipR, in the cottonwood endophyte Pseudomonas sp. strain GM79. The genes adjacent to pipR encode a predicted ATP-binding cassette (ABC) peptide transporter and peptidases. We purified the putative peptidases, PipA and AapA, and confirmed their predicted activities. A transcriptional pipA-gfp reporter was responsive to PipR in the presence of plant leaf macerates, but it was not influenced by AHLs, similar to findings with OryR. We found that PipR also responded to protein hydrolysates to activate pipA-gfp expression. Among many peptides tested, the tripeptide Ser-His-Ser showed inducer activity but at relatively high concentrations. An ABC peptide transporter mutant failed to respond to leaf macerates, peptone, or Ser-His-Ser, while peptidase mutants expressed higher-than-wild-type levels of pipA-gfp in response to any of these signals. Our studies are consistent with a model where active transport of a peptidelike signal is required for the signal to interact with PipR, which then activates peptidase gene expression. The identification of a peptide ligand for PipR sets the stage to identify plant-derived signals for the OryR family of orphan LuxR proteins. IMPORTANCE We describe the transcription factor PipR from a Pseudomonas strain isolated as a cottonwood tree endophyte. PipR is a member of the LuxR family of transcriptional factors. LuxR family members are generally thought of as quorum-sensing signal receptors, but PipR is one of an emerging subfamily of LuxR family members that respond to compounds produced by plants. We found that PipR responds to a peptidelike compound, and we present a model for Pip system signal transduction. A better understanding of plant-responsive LuxR homologs and the compounds to which they respond is of general importance, as they occur in dozens of bacterial species that are associated with economically important plants and, as we report here, they also occur in members of certain root endophyte communities.
Collapse
|
35
|
Schikora A, Schenk ST, Hartmann A. Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl homoserine lactone group. PLANT MOLECULAR BIOLOGY 2016; 90:605-12. [PMID: 26898296 DOI: 10.1007/s11103-016-0457-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 02/18/2016] [Indexed: 05/08/2023]
Abstract
Bacterial quorum sensing (QS) mechanisms play a crucial role in the proper performance and ecological fitness of bacterial populations. Many key physiological processes are regulated in a QS-dependent manner by auto-inducers, like the N-acyl homoserine lactones (AHLs) in numerous Gram-negative bacteria. In addition, also the interaction between bacteria and eukaryotic hosts can be regulated by AHLs. Those mechanisms gained much attention, because of the positive effects of different AHL molecules on plants. This positive impact ranges from growth promotion to induced resistance and is quite contrasting to the rather negative effects observed in the interactions between bacterial AHL molecules and animals. Only very recently, we began to understand the molecular mechanisms underpinning plant responses to AHL molecules. In this review, we gathered the latest information in this research field. The first part gives an overview of the bacterial aspects of quorum sensing. Later we focus on the impact of AHLs on plant growth and AHL-priming, as one of the most understood phenomena in respect to the inter-kingdom interactions based on AHL-quorum sensing molecules. Finally, we discuss the potential benefits of the understanding of bacteria-plant interaction for the future agricultural applications.
Collapse
Affiliation(s)
- Adam Schikora
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104, Brunswick, Germany.
| | - Sebastian T Schenk
- Institute of Plant Sciences - Paris-Saclay, INRA/CNRS, 630 rue de Noetzlin, Plateau du Moulon, 91405, Orsay, France
| | - Anton Hartmann
- Research Unit Microbe-Plant Interactions, Department for Environmental Sciences, German Research Center for Environmental Health (GmbH), Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
36
|
Mining the genome of Rhodococcus fascians, a plant growth-promoting bacterium gone astray. N Biotechnol 2016; 33:706-717. [PMID: 26877150 DOI: 10.1016/j.nbt.2016.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/16/2015] [Accepted: 01/05/2016] [Indexed: 11/21/2022]
Abstract
Rhodococcus fascians is a phytopathogenic Gram-positive Actinomycete with a very broad host range encompassing especially dicotyledonous herbaceous perennials, but also some monocots, such as the Liliaceae and, recently, the woody crop pistachio. The pathogenicity of R. fascians strain D188 is known to be encoded by the linear plasmid pFiD188 and to be dictated by its capacity to produce a mixture of cytokinins. Here, we show that D188-5, the nonpathogenic plasmid-free derivative of the wild-type strain D188 actually has a plant growth-promoting effect. With the availability of the genome sequence of R. fascians, the chromosome of strain D188 was mined for putative plant growth-promoting functions and the functionality of some of these activities was tested. This analysis together with previous results suggests that the plant growth-promoting activity of R. fascians is due to production of plant growth modulators, such as auxin and cytokinin, combined with degradation of ethylene through 1-amino-cyclopropane-1-carboxylic acid deaminase. Moreover, R. fascians has several functions that could contribute to efficient colonization and competitiveness, but there is little evidence for a strong impact on plant nutrition. Possibly, the plant growth promotion encoded by the D188 chromosome is imperative for the epiphytic phase of the life cycle of R. fascians and prepares the plant to host the bacteria, thus ensuring proper continuation into the pathogenic phase.
Collapse
|
37
|
Gardiner M, Fernandes ND, Nowakowski D, Raftery M, Kjelleberg S, Zhong L, Thomas T, Egan S. VarR controls colonization and virulence in the marine macroalgal pathogen Nautella italica R11. Front Microbiol 2015; 6:1130. [PMID: 26528274 PMCID: PMC4602140 DOI: 10.3389/fmicb.2015.01130] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/28/2015] [Indexed: 01/16/2023] Open
Abstract
There is increasing evidence to suggest that macroalgae (seaweeds) are susceptible to infectious disease. However, to date, little is known about the mechanisms that facilitate the colonization and virulence of microbial seaweed pathogens. One well-described example of a seaweed disease is the bleaching of the red alga Delisea pulchra, which can be caused by the bacterium Nautella italica R11, a member of the Roseobacter clade. This pathogen contains a unique luxR-type gene, varR, which we hypothesize controls its colonization and virulence. We show here that a varR knock-out strain is deficient in its ability to cause disease in D. pulchra and is defective in biofilm formation and attachment to a common algal polysaccharide. Moreover complementation of the varR gene in trans can restore these functions to the wild type levels. Proteomic analysis of bacterial cells in planktonic and biofilm growth highlight the potential importance of nitrogen scavenging, mobilization of energy reserves, and stress resistance in the biofilm lifestyle of N. italica R11. Moreover, we show that VarR regulates the expression of a specific subset of biofilm-associated proteins. Taken together these data suggest that VarR controls colonization and persistence of N. italica R11 on the surface of a macroalgal host and that it is an important regulator of virulence.
Collapse
Affiliation(s)
- Melissa Gardiner
- School of Biotechnology and Biomolecular Sciences, Centre for Marine Bio-Innovation, The University of New South Wales Sydney, NSW, Australia
| | - Neil D Fernandes
- School of Biotechnology and Biomolecular Sciences, Centre for Marine Bio-Innovation, The University of New South Wales Sydney, NSW, Australia
| | - Dennis Nowakowski
- School of Biotechnology and Biomolecular Sciences, Centre for Marine Bio-Innovation, The University of New South Wales Sydney, NSW, Australia
| | - Mark Raftery
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, The University of New South Wales Sydney, NSW, Australia
| | - Staffan Kjelleberg
- School of Biotechnology and Biomolecular Sciences, Centre for Marine Bio-Innovation, The University of New South Wales Sydney, NSW, Australia ; Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore Singapore
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, The University of New South Wales Sydney, NSW, Australia
| | - Torsten Thomas
- School of Biotechnology and Biomolecular Sciences, Centre for Marine Bio-Innovation, The University of New South Wales Sydney, NSW, Australia
| | - Suhelen Egan
- School of Biotechnology and Biomolecular Sciences, Centre for Marine Bio-Innovation, The University of New South Wales Sydney, NSW, Australia
| |
Collapse
|
38
|
Bringel F, Couée I. Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Front Microbiol 2015; 6:486. [PMID: 26052316 PMCID: PMC4440916 DOI: 10.3389/fmicb.2015.00486] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/03/2015] [Indexed: 11/13/2022] Open
Abstract
The phyllosphere, which lato sensu consists of the aerial parts of plants, and therefore primarily, of the set of photosynthetic leaves, is one of the most prevalent microbial habitats on earth. Phyllosphere microbiota are related to original and specific processes at the interface between plants, microorganisms and the atmosphere. Recent -omics studies have opened fascinating opportunities for characterizing the spatio-temporal structure of phyllosphere microbial communities in relation with structural, functional, and ecological properties of host plants, and with physico-chemical properties of the environment, such as climate dynamics and trace gas composition of the surrounding atmosphere. This review will analyze recent advances, especially those resulting from environmental genomics, and how this novel knowledge has revealed the extent of the ecosystemic impact of the phyllosphere at the interface between plants and atmosphere. Highlights • The phyllosphere is one of the most prevalent microbial habitats on earth. • Phyllosphere microbiota colonize extreme, stressful, and changing environments. • Plants, phyllosphere microbiota and the atmosphere present a dynamic continuum. • Phyllosphere microbiota interact with the dynamics of volatile organic compounds and atmospheric trace gasses.
Collapse
Affiliation(s)
- Françoise Bringel
- Laboratory of Molecular Genetics, Genomics, and Microbiology, Université de Strasbourg/CNRS, UNISTRA UMR 7156 Strasbourg, France
| | - Ivan Couée
- Ecosystems-Biodiversity-Evolution, Université de Rennes 1/CNRS, UMR 6553 Rennes, France
| |
Collapse
|
39
|
Xu J, Zhou L, Venturi V, He YW, Kojima M, Sakakibari H, Höfte M, De Vleesschauwer D. Phytohormone-mediated interkingdom signaling shapes the outcome of rice-Xanthomonas oryzae pv. oryzae interactions. BMC PLANT BIOLOGY 2015; 15:10. [PMID: 25605284 PMCID: PMC4307914 DOI: 10.1186/s12870-014-0411-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/30/2014] [Indexed: 05/25/2023]
Abstract
BACKGROUND Small-molecule hormones are well known to play key roles in the plant immune signaling network that is activated upon pathogen perception. In contrast, little is known about whether phytohormones also directly influence microbial virulence, similar to what has been reported in animal systems. RESULTS In this paper, we tested the hypothesis that hormones fulfill dual roles in plant-microbe interactions by orchestrating host immune responses, on the one hand, and modulating microbial virulence traits, on the other. Employing the rice-Xanthomonas oryzae pv. oryzae (Xoo) interaction as a model system, we show that Xoo uses the classic immune hormone salicylic acid (SA) as a trigger to activate its virulence-associated quorum sensing (QS) machinery. Despite repressing swimming motility, sodium salicylate (NaSA) induced production of the Diffusible Signal Factor (DSF) and Diffusible Factor (DF) QS signals, with resultant accumulation of xanthomonadin and extracellular polysaccharides. In contrast, abscisic acid (ABA), which favors infection by Xoo, had little impact on DF- and DSF-mediated QS, but promoted bacterial swimming via the LuxR solo protein OryR. Moreover, we found both DF and DSF to influence SA- and ABA-responsive gene expression in planta. CONCLUSIONS Together our findings indicate that the rice SA and ABA signaling pathways cross-communicate with the Xoo DF and DSF QS systems and underscore the importance of bidirectional interkingdom signaling in molding plant-microbe interactions.
Collapse
Affiliation(s)
- Jing Xu
- Lab of Phytopathology, Department of Crop Protection, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Lian Zhou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy.
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
| | - Hitoshi Sakakibari
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
| | - Monica Höfte
- Lab of Phytopathology, Department of Crop Protection, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - David De Vleesschauwer
- Lab of Phytopathology, Department of Crop Protection, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
40
|
Hartmann A, Schikora A. Editorial: Plant responses to bacterial quorum sensing molecules. FRONTIERS IN PLANT SCIENCE 2015; 6:643. [PMID: 26347761 PMCID: PMC4541025 DOI: 10.3389/fpls.2015.00643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/02/2015] [Indexed: 05/08/2023]
Affiliation(s)
- Anton Hartmann
- Research Unit Microbe-Plant Interactions, Department of Environmental Sciences, Helmholtz Zentrum München - German Research Center for Environmental Health GmbHNeuherberg, Germany
| | - Adam Schikora
- Research Centre for Biosystems, Land Use and Nutrition (IFZ), Institute for Phytopathology, Justus Liebig University GiessenGiessen, Germany
- *Correspondence: Adam Schikora,
| |
Collapse
|
41
|
Sitaraman R. Pseudomonas spp. as models for plant-microbe interactions. FRONTIERS IN PLANT SCIENCE 2015; 6:787. [PMID: 26483805 PMCID: PMC4586426 DOI: 10.3389/fpls.2015.00787] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/11/2015] [Indexed: 05/09/2023]
|