1
|
Kang KK, Jung YJ, Cho YG. Genetic Research and Plant Breeding 2.0. Genes (Basel) 2024; 15:1604. [PMID: 39766871 PMCID: PMC11675221 DOI: 10.3390/genes15121604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Recent advances in next-generation sequencing technologies have significantly reduced sequencing costs, resulting in the creation of large-scale genomic data that can be utilized for plant breeding [...].
Collapse
Affiliation(s)
- Kwon-Kyoo Kang
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea;
| | - Yu-Jin Jung
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea;
| | - Yong-Gu Cho
- Department of Crop Science, Chungbuk National University, Cheongju 28644, Republic of Korea;
| |
Collapse
|
2
|
Tam NT, Nhan DK. Identification of Insertion/Deletion Markers for Photoperiod Sensitivity in Rice ( Oryza sativa L.). BIOLOGY 2024; 13:358. [PMID: 38785840 PMCID: PMC11117668 DOI: 10.3390/biology13050358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
The current study aims to identify candidate insertion/deletion (INDEL) markers associated with photoperiod sensitivity (PS) in rice landraces from the Vietnamese Mekong Delta. The whole-genome sequencing of 20 accessions was conducted to analyze INDEL variations between two photoperiod-sensitivity groups. A total of 2240 INDELs were identified between the two photoperiod-sensitivity groups. The selection criteria included INDELs with insertions or deletions of at least 20 base pairs within the improved rice group. Six INDELs were discovered on chromosomes 01 (5 INDELs) and 6 (1 INDEL), and two genes were identified: LOC_Os01g23780 and LOC_Os01g36500. The gene LOC_Os01g23780, which may be involved in rice flowering, was identified in a 20 bp deletion on chromosome 01 from the improved rice accession group. A marker was devised for this gene, indicating a polymorphism rate of 20%. Remarkably, 20% of the materials comprised improved rice accessions. This INDEL marker could explain 100% of the observed distinctions. Further analysis of the mapping population demonstrated that an INDEL marker associated with the MADS-box gene on chromosome 01 was linked to photoperiod sensitivity. The F1 population displayed two bands across all hybrid individuals. The marker demonstrates efficacy in distinguishing improved rice accessions within the indica accessions. This study underscores the potential applicability of the INDEL marker in breeding strategies.
Collapse
Affiliation(s)
- Nguyen Thanh Tam
- Mekong Delta Development Research Institute, Can Tho University, Campus 2, 3-2 Street, Can Tho 94115, Vietnam
| | - Dang Kieu Nhan
- Mekong Delta Development Research Institute, Can Tho University, Campus 2, 3-2 Street, Can Tho 94115, Vietnam
| |
Collapse
|
3
|
Kim S, Lee E, Lee J, An YJ, Oh E, Kim JI, Kim SW, Kim MY, Lee MH, Cho KS. Identification of QTLs and allelic effect controlling lignan content in sesame ( Sesamum indicum L.) using QTL-seq approach. Front Genet 2023; 14:1289793. [PMID: 38148976 PMCID: PMC10750367 DOI: 10.3389/fgene.2023.1289793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
Sesame (Sesamum indicum L.), an oilseed crop, is gaining worldwide recognition for its healthy functional ingredients as consumption increases. The content of lignans, known for their antioxidant and anti-inflammatory effects, is a key agronomic trait that determines the industrialization of sesame. However, the study of the genetics and physiology of lignans in sesame is challenging, as they are influenced by multiple genes and environmental factors, therefore, the understanding of gene function and synthetic pathways related to lignan in sesame is still limited. To address these knowledge gaps, we conducted genetic analyses using F7 recombinant inbred line (RIL) populations derived from Goenbaek and Gomazou as low and high lignin content variants, respectively. Using the QTL-seq approach, we identified three loci, qLignan1-1, qLignan6-1, and qLignan11-1, that control lignan content, specifically sesamin and sesamolin. The allelic effect between loci was evaluated using the RIL population. qLignan6-1 had an additive effect that increased lignan content when combined with the other two loci, suggesting that it could be an important factor in gene pyramiding for the development of high-lignan varieties. This study not only highlights the value of sesame lignan, but also provides valuable insights for the development of high-lignan varieties through the use of DNA markers in breeding strategies. Overall, this research contributes to our understanding of the importance of sesame oil and facilitates progress in sesame breeding for improved lignan content.
Collapse
Affiliation(s)
- Sungup Kim
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Eunsoo Lee
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Jeongeun Lee
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Yeon Ju An
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Eunyoung Oh
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Jung In Kim
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Sang Woo Kim
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Min Young Kim
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Myoung Hee Lee
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Kwang-Soo Cho
- Central Crop Breeding Research Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, Republic of Korea
| |
Collapse
|
4
|
Krishna TPA, Veeramuthu D, Maharajan T, Soosaimanickam M. The Era of Plant Breeding: Conventional Breeding to Genomics-assisted Breeding for Crop Improvement. Curr Genomics 2023; 24:24-35. [PMID: 37920729 PMCID: PMC10334699 DOI: 10.2174/1389202924666230517115912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/31/2023] [Accepted: 04/14/2023] [Indexed: 11/04/2023] Open
Abstract
Plant breeding has made a significant contribution to increasing agricultural production. Conventional breeding based on phenotypic selection is not effective for crop improvement. Because phenotype is considerably influenced by environmental factors, which will affect the selection of breeding materials for crop improvement. The past two decades have seen tremendous progress in plant breeding research. Especially the availability of high-throughput molecular markers followed by genomic-assisted approaches significantly contributed to advancing plant breeding. Integration of speed breeding with genomic and phenomic facilities allowed rapid quantitative trait loci (QTL)/gene identifications and ultimately accelerated crop improvement programs. The advances in sequencing technology helps to understand the genome organization of many crops and helped with genomic selection in crop breeding. Plant breeding has gradually changed from phenotype-to-genotype-based to genotype-to-phenotype-based selection. High-throughput phenomic platforms have played a significant role in the modern breeding program and are considered an essential part of precision breeding. In this review, we discuss the rapid advance in plant breeding technology for efficient crop improvements and provide details on various approaches/platforms that are helpful for crop improvement. This review will help researchers understand the recent developments in crop breeding and improvements.
Collapse
Affiliation(s)
| | - Duraipandiyan Veeramuthu
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, India
| | - Theivanayagam Maharajan
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, India
| | - Mariapackiam Soosaimanickam
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, India
- Department of Advanced Zoology & Biotechnology, Loyola College, Nungambakkam, Chennai, 600034, India
| |
Collapse
|
5
|
Sahoo J, Mahanty B, Mishra R, Joshi RK. Development of SNP markers linked to purple blotch resistance for marker-assisted selection in onion ( Allium cepa L.) breeding. 3 Biotech 2023; 13:137. [PMID: 37124987 PMCID: PMC10130247 DOI: 10.1007/s13205-023-03562-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 04/15/2023] [Indexed: 05/02/2023] Open
Abstract
Purple blotch (PB), caused by Alternaria porri (Ellis) Cifferi, is one of the most destructive diseases of onion worldwide. Rapid development and deployment of resistant onion varieties is the most effective approach to control this disease. A single dominant gene, ApR1 was previously linked to PB resistance in onion cultivar 'Arka Kalyan'. In this study, an advanced RIL population derived from a cross between the resistant (Arka Kalyan) and susceptible (Agrifound Rose) cultivar of onion was used to fine map the resistant locus with SNP markers. Twenty plants from the RIL population, ten each with disease resistance and susceptibility trait, were subjected to restriction site-associated DNA sequencing (RAD-Seq) and generated 7388 single nucleotide polymorphisms (SNPs). Correlation analysis between marker genotypes and PB disease phenotype on the 20 plants identified 27 SNPs as candidate markers linked to ApR1 gene for PB resistance. Six candidate SNPs were converted to Kompetitive Allele-Specific PCR (KASP) markers designated as ApRsnip5, ApRsnip8, ApRsnip14, ApRsnip21, ApRsnip23 and ApRsnip25. Marker-trait association based on disease phenotyping and KASP genotyping data on 153 RILs confirmed that all six KASP markers were tightly associated with ApR1 gene within the genetic distance of 1.3 CentiMorgan (cM). ApRsnip14 co-segregated with the ApR1 locus. Further, the six KASP markers were tested on 27 onion lines with different genetic backgrounds. ApRsnip14, ApRsnip21, ApRsnip5 and ApRsnip23 not only showed the correct resistance allele in 3 resistance genotypes, but also clustered together in the remaining 24 susceptible lines. Alternatively, ApRsnip8 and ApRsnip25 exhibited false positives in two onion lines which do not have the R-gene. Overall, our results suggest that ApRsnip14 and ApRsnip23 with their close linkage to ApR1 locus and greater applicability on breeding germplasm are recommended in marker-assisted selection for PB resistance in onion breeding program. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03562-7.
Collapse
Affiliation(s)
- Jayashree Sahoo
- Department of Biotechnology, Rama Devi Women’s University, Vidya Vihar, Bhubaneswar, Odisha 751022 India
| | - Bijayalaxmi Mahanty
- Department of Biotechnology, Rama Devi Women’s University, Vidya Vihar, Bhubaneswar, Odisha 751022 India
| | - Rukmini Mishra
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha India
| | - Raj Kumar Joshi
- Department of Biotechnology, Rama Devi Women’s University, Vidya Vihar, Bhubaneswar, Odisha 751022 India
| |
Collapse
|
6
|
Larson ER, Armstrong EM, Harper H, Knapp S, Edwards KJ, Grierson D, Poppy G, Chase MW, Jones JDG, Bastow R, Jellis G, Barnes S, Temple P, Clarke M, Oldroyd G, Grierson CS. One hundred important questions for plant science - reflecting on a decade of plant research. THE NEW PHYTOLOGIST 2023; 238:464-469. [PMID: 36924326 DOI: 10.1111/nph.18663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 06/18/2023]
Affiliation(s)
- Emily R Larson
- School of Biological Sciences, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Emily May Armstrong
- School of Biological Sciences, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Helen Harper
- School of Biological Sciences, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Sandra Knapp
- Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Keith J Edwards
- School of Biological Sciences, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Don Grierson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, nr Loughborough, LE12 5RD, UK
| | - Guy Poppy
- Biological Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Mark W Chase
- Department of Environment and Agriculture, Curtin University, Perth, WA, 6845, Australia
- Royal Botanic Gardens Kew, Richmond, London, TW9 3AE, UK
| | | | - Ruth Bastow
- Crop Health and Protection Ltd, York Biotech Campus, Sand Hutton, York, YO41 1LZ, UK
| | - Graham Jellis
- Agrifood Charities Partnership, The Bullock Building, University Way, Cranfield, Bedford, MK43 OGH, UK
| | | | - Paul Temple
- Wold Farm, Driffield, East Yorkshire, YO25 3BB, UK
| | - Matthew Clarke
- Bayer - Crop Science, Monsanto UK Ltd, 230 Science Park, Cambridge, CB4 0WB, UK
| | - Giles Oldroyd
- Crop Science Centre, Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Claire S Grierson
- School of Biological Sciences, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
7
|
Meena RK, Kashyap P, Shamoon A, Dhyani P, Sharma H, Bhandari MS, Barthwal S, Ginwal HS. Genome survey sequencing-based SSR marker development and their validation in Dendrocalamus longispathus. Funct Integr Genomics 2023; 23:103. [PMID: 36973584 DOI: 10.1007/s10142-023-01033-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Bamboo is an important genetic resource in India, supporting rural livelihood and industries. Unfortunately, most Indian bamboo taxa are devoid of basic genomic or marker information required to comprehend the genetic processes for further conservation and management. In this study, we perform genome survey sequencing for development of de novo genomic SSRs in Dendrocalamus longispathus, a socioeconomically important bamboo species of northeast India. Using Illumina platform, 69.49 million raw reads were generated and assembled into 1,145,321 contig with GC content 43% and N50 1228 bp. In total, 46,984 microsatellite repeats were mined-out wherein di-nucleotide repeats were most abundant (54.71%) followed by mono- (31.91%) and tri-repeats (9.85%). Overall, AT-rich repeats were predominant in the genome, but GC-rich motifs were more frequent in tri-repeats. Afterwards, 21,596 SSR loci were successfully tagged with the primer pairs, and a subset of 50 were validated through polymerase chain reaction amplification. Of these, 36 SSR loci were successfully amplified, and 16 demonstrated polymorphism. Using 13 polymorphic SSRs, a moderate level of gene diversity (He = 0.480; Ar = 3.52) was recorded in the analysed populations of D. longispathus. Despite the high gene flow (Nm = 4.928) and low genetic differentiation (FST = 0.119), severe inbreeding (FIS = 0.407) was detected. Further, genetic clustering and STRUCTURE analysis revealed that the entire genetic variability is captured under two major gene pools. Conclusively, we present a comprehensive set of novel SSR markers in D. longispathus as well as other taxa of tropical woody bamboos.
Collapse
Affiliation(s)
- Rajendra K Meena
- Division of Genetics & Tree Improvement, ICFRE-Forest Research Institute, Dehradun, 248 195, Uttarakhand, India.
| | - Priyanka Kashyap
- Division of Genetics & Tree Improvement, ICFRE-Forest Research Institute, Dehradun, 248 195, Uttarakhand, India
| | - Arzoo Shamoon
- Division of Genetics & Tree Improvement, ICFRE-Forest Research Institute, Dehradun, 248 195, Uttarakhand, India
| | - Payal Dhyani
- Division of Genetics & Tree Improvement, ICFRE-Forest Research Institute, Dehradun, 248 195, Uttarakhand, India
| | - Hansraj Sharma
- ICFRE - Bamboo & Rattan Centre, Aizawl, 796007, Mizoram, India
- ICFRE-Rain Forest Research Institute, Jorhat, 785001, Assam, India
| | - Maneesh S Bhandari
- Division of Genetics & Tree Improvement, ICFRE-Forest Research Institute, Dehradun, 248 195, Uttarakhand, India
| | - Santan Barthwal
- Division of Genetics & Tree Improvement, ICFRE-Forest Research Institute, Dehradun, 248 195, Uttarakhand, India
| | - Harish S Ginwal
- Division of Genetics & Tree Improvement, ICFRE-Forest Research Institute, Dehradun, 248 195, Uttarakhand, India
| |
Collapse
|
8
|
Asati R, Tripathi MK, Tiwari S, Yadav RK, Tripathi N. Molecular Breeding and Drought Tolerance in Chickpea. Life (Basel) 2022; 12:1846. [PMID: 36430981 PMCID: PMC9698494 DOI: 10.3390/life12111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cicer arietinum L. is the third greatest widely planted imperative pulse crop worldwide, and it belongs to the Leguminosae family. Drought is the utmost common abiotic factor on plants, distressing their water status and limiting their growth and development. Chickpea genotypes have the natural ability to fight drought stress using certain strategies viz., escape, avoidance and tolerance. Assorted breeding methods, including hybridization, mutation, and marker-aided breeding, genome sequencing along with omics approaches, could be used to improve the chickpea germplasm lines(s) against drought stress. Root features, for instance depth and root biomass, have been recognized as the greatest beneficial morphological factors for managing terminal drought tolerance in the chickpea. Marker-aided selection, for example, is a genomics-assisted breeding (GAB) strategy that can considerably increase crop breeding accuracy and competence. These breeding technologies, notably marker-assisted breeding, omics, and plant physiology knowledge, underlined the importance of chickpea breeding and can be used in future crop improvement programmes to generate drought-tolerant cultivars(s).
Collapse
Affiliation(s)
- Ruchi Asati
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Manoj Kumar Tripathi
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Sushma Tiwari
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Rakesh Kumar Yadav
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Niraj Tripathi
- Directorate of Research Services, Jawaharlal Nehru Agricultural University, Jabalpur 482004, India
| |
Collapse
|
9
|
LIANG XINYUAN, BAI TIANDAO, WANG JIANZHONG, JIANG WEIXIN. Genome survey and development of 13 SSR markers in Eucalyptus cloeziana by NGS. J Genet 2022. [DOI: 10.1007/s12041-022-01382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Wu L, Fredua-Agyeman R, Strelkov SE, Chang KF, Hwang SF. Identification of Novel Genes Associated with Partial Resistance to Aphanomyces Root Rot in Field Pea by BSR-Seq Analysis. Int J Mol Sci 2022; 23:9744. [PMID: 36077139 PMCID: PMC9456226 DOI: 10.3390/ijms23179744] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 12/04/2022] Open
Abstract
Aphanomyces root rot, caused by Aphanomyces euteiches, causes severe yield loss in field pea (Pisum sativum). The identification of a pea germplasm resistant to this disease is an important breeding objective. Polygenetic resistance has been reported in the field pea cultivar '00-2067'. To facilitate marker-assisted selection (MAS), bulked segregant RNA-seq (BSR-seq) analysis was conducted using an F8 RIL population derived from the cross of 'Carman' × '00-2067'. Root rot development was assessed under controlled conditions in replicated experiments. Resistant (R) and susceptible (S) bulks were constructed based on the root rot severity in a greenhouse study. The BSR-seq analysis of the R bulks generated 44,595,510~51,658,688 reads, of which the aligned sequences were linked to 44,757 genes in a reference genome. In total, 2356 differentially expressed genes were identified, of which 44 were used for gene annotation, including defense-related pathways (jasmonate, ethylene and salicylate) and the GO biological process. A total of 344.1 K SNPs were identified between the R and S bulks, of which 395 variants were located in 31 candidate genes. The identification of novel genes associated with partial resistance to Aphanomyces root rot in field pea by BSR-seq may facilitate efforts to improve management of this important disease.
Collapse
Affiliation(s)
| | | | | | | | - Sheau-Fang Hwang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
11
|
Meng Q, Manghwar H, Hu W. Study on Supergenus Rubus L.: Edible, Medicinal, and Phylogenetic Characterization. PLANTS (BASEL, SWITZERLAND) 2022; 11:1211. [PMID: 35567211 PMCID: PMC9102695 DOI: 10.3390/plants11091211] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Rubus L. is one of the most diverse genera belonging to Rosaceae; it consists of more than 700 species with a worldwide distribution. It thus provides an ideal natural "supergenus" for studying the importance of its edible, medicinal, and phylogenetic characteristics for application in our daily lives and fundamental scientific studies. The Rubus genus includes many economically important species, such as blackberry (R. fruticosus L.), red raspberry (R. ideaus L.), black raspberry (R. occidentalis L.), and raspberry (R. chingii Hu), which are widely utilized in the fresh fruit market and the medicinal industry. Although Rubus species have existed in human civilization for hundreds of years, their utilization as fruit and in medicine is still largely inadequate, and many questions on their complex phylogenetic relationships need to be answered. In this review, we briefly summarize the history and progress of studies on Rubus, including its domestication as a source of fresh fruit, its medicinal uses in pharmacology, and its systematic position in the phylogenetic tree. Recent available evidence indicates that (1) thousands of Rubus cultivars were bred via time- and labor-consuming methods from only a few wild species, and new breeding strategies and germplasms were thus limited; (2) many kinds of species in Rubus have been used as medicinal herbs, though only a few species (R. ideaus L., R. chingii Hu, and R. occidentalis L.) have been well studied; (3) the phylogeny of Rubus is very complex, with the main reason for this possibly being the existence of multiple reproductive strategies (apomixis, hybridization, and polyploidization). Our review addresses the utilization of Rubus, summarizing major relevant achievements and proposing core prospects for future application, and thus could serve as a useful roadmap for future elite cultivar breeding and scientific studies.
Collapse
Affiliation(s)
- Qinglin Meng
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (Q.M.); (H.M.)
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (Q.M.); (H.M.)
| | - Weiming Hu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (Q.M.); (H.M.)
| |
Collapse
|
12
|
Zhang Y, Zou D, Zhu T, Xu T, Chen M, Niu G, Zong W, Pan R, Jing W, Sang J, Liu C, Xiong Y, Sun Y, Zhai S, Chen H, Zhao W, Xiao J, Bao Y, Hao L, Zhang Z. Gene Expression Nebulas (GEN): a comprehensive data portal integrating transcriptomic profiles across multiple species at both bulk and single-cell levels. Nucleic Acids Res 2022; 50:D1016-D1024. [PMID: 34591957 PMCID: PMC8728231 DOI: 10.1093/nar/gkab878] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 01/07/2023] Open
Abstract
Transcriptomic profiling is critical to uncovering functional elements from transcriptional and post-transcriptional aspects. Here, we present Gene Expression Nebulas (GEN, https://ngdc.cncb.ac.cn/gen/), an open-access data portal integrating transcriptomic profiles under various biological contexts. GEN features a curated collection of high-quality bulk and single-cell RNA sequencing datasets by using standardized data processing pipelines and a structured curation model. Currently, GEN houses a large number of gene expression profiles from 323 datasets (157 bulk and 166 single-cell), covering 50 500 samples and 15 540 169 cells across 30 species, which are further categorized into six biological contexts. Moreover, GEN integrates a full range of transcriptomic profiles on expression, RNA editing and alternative splicing for 10 bulk datasets, providing opportunities for users to conduct integrative analysis at both transcriptional and post-transcriptional levels. In addition, GEN provides abundant gene annotations based on value-added curation of transcriptomic profiles and delivers online services for data analysis and visualization. Collectively, GEN presents a comprehensive collection of transcriptomic profiles across multiple species, thus serving as a fundamental resource for better understanding genetic regulatory architecture and functional mechanisms from tissues to cells.
Collapse
Affiliation(s)
- Yuansheng Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Zou
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Tongtong Zhu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyi Xu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Ming Chen
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangyi Niu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenting Zong
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Pan
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Jing
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Sang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Liu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujia Xiong
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100069, China
| | - Yubin Sun
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Shuang Zhai
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Huanxin Chen
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Wenming Zhao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingfa Xiao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Bao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Hao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Zhang Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Salgotra RK, Thompson M, Chauhan BS. Unravelling the genetic potential of untapped crop wild genetic resources for crop improvement. CONSERV GENET RESOUR 2021. [DOI: 10.1007/s12686-021-01242-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Gogolev YV, Ahmar S, Akpinar BA, Budak H, Kiryushkin AS, Gorshkov VY, Hensel G, Demchenko KN, Kovalchuk I, Mora-Poblete F, Muslu T, Tsers ID, Yadav NS, Korzun V. OMICs, Epigenetics, and Genome Editing Techniques for Food and Nutritional Security. PLANTS (BASEL, SWITZERLAND) 2021; 10:1423. [PMID: 34371624 PMCID: PMC8309286 DOI: 10.3390/plants10071423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022]
Abstract
The incredible success of crop breeding and agricultural innovation in the last century greatly contributed to the Green Revolution, which significantly increased yields and ensures food security, despite the population explosion. However, new challenges such as rapid climate change, deteriorating soil, and the accumulation of pollutants require much faster responses and more effective solutions that cannot be achieved through traditional breeding. Further prospects for increasing the efficiency of agriculture are undoubtedly associated with the inclusion in the breeding strategy of new knowledge obtained using high-throughput technologies and new tools in the future to ensure the design of new plant genomes and predict the desired phenotype. This article provides an overview of the current state of research in these areas, as well as the study of soil and plant microbiomes, and the prospective use of their potential in a new field of microbiome engineering. In terms of genomic and phenomic predictions, we also propose an integrated approach that combines high-density genotyping and high-throughput phenotyping techniques, which can improve the prediction accuracy of quantitative traits in crop species.
Collapse
Affiliation(s)
- Yuri V. Gogolev
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, 420111 Kazan, Russia;
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
| | - Sunny Ahmar
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile; (S.A.); (F.M.-P.)
| | | | - Hikmet Budak
- Montana BioAg Inc., Missoula, MT 59802, USA; (B.A.A.); (H.B.)
| | - Alexey S. Kiryushkin
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (A.S.K.); (K.N.D.)
| | - Vladimir Y. Gorshkov
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, 420111 Kazan, Russia;
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, 40225 Dusseldorf, Germany;
- Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371 Olomouc, Czech Republic
| | - Kirill N. Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (A.S.K.); (K.N.D.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (I.K.); (N.S.Y.)
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile; (S.A.); (F.M.-P.)
| | - Tugdem Muslu
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey;
| | - Ivan D. Tsers
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
| | - Narendra Singh Yadav
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (I.K.); (N.S.Y.)
| | - Viktor Korzun
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
- KWS SAAT SE & Co. KGaA, Grimsehlstr. 31, 37555 Einbeck, Germany
| |
Collapse
|
15
|
Balestrini R, Brunetti C, Cammareri M, Caretto S, Cavallaro V, Cominelli E, De Palma M, Docimo T, Giovinazzo G, Grandillo S, Locatelli F, Lumini E, Paolo D, Patanè C, Sparvoli F, Tucci M, Zampieri E. Strategies to Modulate Specialized Metabolism in Mediterranean Crops: From Molecular Aspects to Field. Int J Mol Sci 2021; 22:2887. [PMID: 33809189 PMCID: PMC7999214 DOI: 10.3390/ijms22062887] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/21/2022] Open
Abstract
Plant specialized metabolites (SMs) play an important role in the interaction with the environment and are part of the plant defense response. These natural products are volatile, semi-volatile and non-volatile compounds produced from common building blocks deriving from primary metabolic pathways and rapidly evolved to allow a better adaptation of plants to environmental cues. Specialized metabolites include terpenes, flavonoids, alkaloids, glucosinolates, tannins, resins, etc. that can be used as phytochemicals, food additives, flavoring agents and pharmaceutical compounds. This review will be focused on Mediterranean crop plants as a source of SMs, with a special attention on the strategies that can be used to modulate their production, including abiotic stresses, interaction with beneficial soil microorganisms and novel genetic approaches.
Collapse
Affiliation(s)
- Raffaella Balestrini
- National Research Council (CNR)-Institute of Sustainable Plant Protection (IPSP), Viale Mattioli 25 and Strada delle Cacce 73, 10125 and 10135 Torino, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.B.); (E.L.); (E.Z.)
| | - Cecilia Brunetti
- National Research Council (CNR)-Institute of Sustainable Plant Protection (IPSP), Viale Mattioli 25 and Strada delle Cacce 73, 10125 and 10135 Torino, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.B.); (E.L.); (E.Z.)
| | - Maria Cammareri
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Sofia Caretto
- CNR-Institute of Sciences of Food Production, Via Monteroni, 73100 Lecce, Italy; (S.C.); (G.G.)
| | - Valeria Cavallaro
- CNR-Institute of Bioeconomy (IBE), Via Paolo Gaifami, 18, 95126 Catania, Italy; (V.C.); (C.P.)
| | - Eleonora Cominelli
- CNR-Institute of Agricultural Biology and Biotechnology, Via Edoardo Bassini 15, 20133 Milan, Italy; (E.C.); (F.L.); (D.P.); (F.S.)
| | - Monica De Palma
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Teresa Docimo
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Giovanna Giovinazzo
- CNR-Institute of Sciences of Food Production, Via Monteroni, 73100 Lecce, Italy; (S.C.); (G.G.)
| | - Silvana Grandillo
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Franca Locatelli
- CNR-Institute of Agricultural Biology and Biotechnology, Via Edoardo Bassini 15, 20133 Milan, Italy; (E.C.); (F.L.); (D.P.); (F.S.)
| | - Erica Lumini
- National Research Council (CNR)-Institute of Sustainable Plant Protection (IPSP), Viale Mattioli 25 and Strada delle Cacce 73, 10125 and 10135 Torino, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.B.); (E.L.); (E.Z.)
| | - Dario Paolo
- CNR-Institute of Agricultural Biology and Biotechnology, Via Edoardo Bassini 15, 20133 Milan, Italy; (E.C.); (F.L.); (D.P.); (F.S.)
| | - Cristina Patanè
- CNR-Institute of Bioeconomy (IBE), Via Paolo Gaifami, 18, 95126 Catania, Italy; (V.C.); (C.P.)
| | - Francesca Sparvoli
- CNR-Institute of Agricultural Biology and Biotechnology, Via Edoardo Bassini 15, 20133 Milan, Italy; (E.C.); (F.L.); (D.P.); (F.S.)
| | - Marina Tucci
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Elisa Zampieri
- National Research Council (CNR)-Institute of Sustainable Plant Protection (IPSP), Viale Mattioli 25 and Strada delle Cacce 73, 10125 and 10135 Torino, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.B.); (E.L.); (E.Z.)
| |
Collapse
|
16
|
Kumar T, Tiwari N, Bharadwaj C, Sarker A, Pappula SPR, Singh S, Singh M. Identification of Allelic Variation in Drought Responsive Dehydrin Gene Based on Sequence Similarity in Chickpea ( Cicer arietinum L.). Front Genet 2021; 11:584527. [PMID: 33381148 PMCID: PMC7767992 DOI: 10.3389/fgene.2020.584527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/18/2020] [Indexed: 11/13/2022] Open
Abstract
Chickpea (Cicer arietinum L.) is an economically important food legume grown in arid and semi-arid regions of the world. Chickpea is cultivated mainly in the rainfed, residual moisture, and restricted irrigation condition. The crop is always prone to drought stress which is resulting in flower drop, unfilled pods, and is a major yield reducer in many parts of the world. The present study elucidates the association between candidate gene and morpho-physiological traits for the screening of drought tolerance in chickpea. Abiotic stress-responsive gene Dehydrin (DHN) was identified in some of the chickpea genotypes based on the sequence similarity approach to play a major role in drought tolerance. Analysis of variance revealed a significant effect of drought on relative water content, membrane stability index, plant height, and yield traits. The genotypes Pusa1103, Pusa362, and ICC4958 were found most promising genotypes for drought tolerance as they maintained the higher value of osmotic regulations and yield characters. The results were further supported by a sequence similarity approach for the dehydrin gene when analyzed for the presence of single nucleotide polymorphisms (SNPs) and indels. Homozygous indels and single nucleotide polymorphisms were found after the sequencing in some of the selected genotypes.
Collapse
Affiliation(s)
- Tapan Kumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India.,International Center for Agricultural Research in the Dry Areas, Bhopal, India
| | - Neha Tiwari
- International Center for Agricultural Research in the Dry Areas, Bhopal, India
| | | | - Ashutosh Sarker
- International Center for Agricultural Research in the Dry Areas, Bhopal, India
| | | | - Sarvjeet Singh
- Department of Plant Breeding & Genetics, Punjab Agricultural University, Ludhiana, India
| | - Mohar Singh
- Department of Plant Breeding & Genetics, ICAR-NBPGR Regional Station, Shimla, India
| |
Collapse
|
17
|
Hazra A, Kumar R, Sengupta C, Das S. Genome-wide SNP discovery from Darjeeling tea cultivars - their functional impacts and application toward population structure and trait associations. Genomics 2020; 113:66-78. [PMID: 33276009 DOI: 10.1016/j.ygeno.2020.11.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/20/2020] [Accepted: 11/29/2020] [Indexed: 01/07/2023]
Abstract
Genotyping by sequencing and identification of functionally relevant nucleotide variations in crop accessions are the key steps to unravel genetic control of desirable traits. Elite cultivars of Darjeeling tea were undergone SNP genotyping by double-digest restriction-site associated DNA sequencing method. This study reports a set of 54,206 high-quality SNP markers discovered from ~10.4 GB sequence data, encompassing 15 chromosomes of the reference tea genome. Genetic relatedness among the accessions conforms to the analyses of Bayesian clustering, UPGMA, and PCoA methods. Genomic positions of the discovered SNPs and their putative effect on annotated genes designated a thoughtful understanding of their functional aspects in tea system biology. A group of 95 genes was identified to be affected by high impact variants. Genome-wide association analyses of 21 agronomic and biochemical phenotypes resulted in trait-linked polymorphic loci with strong confidence (p < 0.05 and 0.001).
Collapse
Affiliation(s)
- Anjan Hazra
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata 700108, India
| | - Rakesh Kumar
- Darjeeling Tea Research and Development center, Kurseong, West Bengal 734203, India
| | - Chandan Sengupta
- Department of Botany, University of Kalyani, Nadia 742325, India
| | - Sauren Das
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata 700108, India.
| |
Collapse
|
18
|
Rosero A, Granda L, Berdugo-Cely JA, Šamajová O, Šamaj J, Cerkal R. A Dual Strategy of Breeding for Drought Tolerance and Introducing Drought-Tolerant, Underutilized Crops into Production Systems to Enhance Their Resilience to Water Deficiency. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1263. [PMID: 32987964 PMCID: PMC7600178 DOI: 10.3390/plants9101263] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Water scarcity is the primary constraint on crop productivity in arid and semiarid tropical areas suffering from climate alterations; in accordance, agricultural systems have to be optimized. Several concepts and strategies should be considered to improve crop yield and quality, particularly in vulnerable regions where such environmental changes cause a risk of food insecurity. In this work, we review two strategies aiming to increase drought stress tolerance: (i) the use of natural genes that have evolved over time and are preserved in crop wild relatives and landraces for drought tolerance breeding using conventional and molecular methods and (ii) exploiting the reservoir of neglected and underutilized species to identify those that are known to be more drought-tolerant than conventional staple crops while possessing other desired agronomic and nutritive characteristics, as well as introducing them into existing cropping systems to make them more resilient to water deficiency conditions. In the past, the existence of drought tolerance genes in crop wild relatives and landraces was either unknown or difficult to exploit using traditional breeding techniques to secure potential long-term solutions. Today, with the advances in genomics and phenomics, there are a number of new tools available that facilitate the discovery of drought resistance genes in crop wild relatives and landraces and their relatively easy transfer into advanced breeding lines, thus accelerating breeding progress and creating resilient varieties that can withstand prolonged drought periods. Among those tools are marker-assisted selection (MAS), genomic selection (GS), and targeted gene editing (clustered regularly interspaced short palindromic repeat (CRISPR) technology). The integration of these two major strategies, the advances in conventional and molecular breeding for the drought tolerance of conventional staple crops, and the introduction of drought-tolerant neglected and underutilized species into existing production systems has the potential to enhance the resilience of agricultural production under conditions of water scarcity.
Collapse
Affiliation(s)
- Amparo Rosero
- Corporación Colombiana de Investigación Agropecuaria–AGROSAVIA, Centro de Investigación Turipaná, Km 13 vía Montería, 250047 Cereté, Colombia;
| | - Leiter Granda
- Department of Crop Science, Breeding and Plant Medicine, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (L.G.); (R.C.)
| | - Jhon A. Berdugo-Cely
- Corporación Colombiana de Investigación Agropecuaria–AGROSAVIA, Centro de Investigación Turipaná, Km 13 vía Montería, 250047 Cereté, Colombia;
| | - Olga Šamajová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (O.Š.); (J.Š.)
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (O.Š.); (J.Š.)
| | - Radim Cerkal
- Department of Crop Science, Breeding and Plant Medicine, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (L.G.); (R.C.)
| |
Collapse
|
19
|
Khadka K, Raizada MN, Navabi A. Recent Progress in Germplasm Evaluation and Gene Mapping to Enable Breeding of Drought-Tolerant Wheat. FRONTIERS IN PLANT SCIENCE 2020; 11:1149. [PMID: 32849707 PMCID: PMC7417477 DOI: 10.3389/fpls.2020.01149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/15/2020] [Indexed: 05/02/2023]
Abstract
There is a need to increase wheat productivity to meet the food demands of the ever-growing human population. However, accelerated development of high yielding varieties is hindered by drought, which is worsening due to climate change. In this context, germplasm diversity is central to the development of drought-tolerant wheat. Extensive collections of these genetic resources are conserved in national and international genebanks. In addition to phenotypic assessments, the use of advanced molecular techniques (e.g., genotype by sequencing) to identify quantitative trait loci (QTLs) for drought tolerance related traits is useful for genome- and marker-assisted selection based approaches. Therefore, to assist wheat breeders at a critical time, we searched the recent peer-reviewed literature (2011-current), first, to identify wheat germplasm observed to be useful genetic sources for drought tolerance, and second, to report QTLs associated with drought tolerance. Though many breeders limit the parents used in breeding programs to a familiar core collection, the results of this review show that larger germplasm collections have been sources of useful genes for drought tolerance in wheat. The review also demonstrates that QTLs for drought tolerance in wheat are associated with diverse physio-morphological traits, at different growth stages. Here, we also briefly discuss the potential of genome engineering/editing to improve drought tolerance in wheat. The use of CRISPR-Cas9 and other gene-editing technologies can be used to fine-tune the expression of genes controlling drought adaptive traits, while high throughput phenotyping (HTP) techniques can potentially accelerate the selection process. These efforts are empowered by wheat researcher consortia.
Collapse
Affiliation(s)
- Kamal Khadka
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | | | | |
Collapse
|
20
|
van Deventer R, Rhode C, Marx M, Roodt-Wilding R. The development of genome-wide single nucleotide polymorphisms in blue wildebeest using the DArTseq platform. Genomics 2020; 112:3455-3464. [PMID: 32574831 DOI: 10.1016/j.ygeno.2020.04.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/24/2020] [Accepted: 04/17/2020] [Indexed: 12/30/2022]
Abstract
Blue wildebeest (Connochaetes taurinus taurinus) are economically important antelope that are widely utilised in the South African wildlife industry. However, very few genomic resources are available for blue wildebeest that can assist in breeding management and facilitate research. This study aimed to develop a set of genome-wide single nucleotide polymorphism (SNP) markers for blue wildebeest. The DArTseq genotyping platform, commonly used in polyploid plant species, was selected for SNP discovery. A limited number of published articles have described the use of the DArTseq platform in animals and, therefore, this study also provided a unique opportunity to assess the performance of the DArTseq platform in an animal species. A total of 20,563 SNPs, each located within a 69 bp sequence, were generated. The developed SNP markers had a high average scoring reproducibility (>99%) and a low percentage missing data (~9.21%) compared to other reduced representation sequencing approaches that have been used in animal studies. Furthermore, the number of candidate SNPs per nucleotide position decreased towards the 3' end of sequence reads, and the ratio of transitions (Ts) to transversions (Tv) remained similar for each read position. These observations indicate that there was no read position bias, such as the identification of false SNPs due to low sequencing quality, towards the tail-end of sequencing reads. The DArTseq platform was also successful in identifying a large number of informative SNPs with desirable polymorphism parameters such as a high minor allele frequency (MAF). The Bos taurus genome was used for the in silico mapping of the marker sequences and a total of 6020 (29.28%) sequences were successfully mapped against the bovine genome. The marker sequences mapped to all of the bovine chromosomes establishing the genome-wide distribution of the SNPs. Moreover, the high observed Ts:Tv ratio (2.84:1) indicate that the DArTseq platform targeted gene-rich regions of the blue wildebeest genome. Finally, functional annotation of the marker sequences revealed a wide range of different putative functions indicating that these SNP markers can be useful in functional gene studies. The DArTseq platform, therefore, represents a high-throughput, robust and cost-effective genotyping platform, which may find adoption in several other African antelope and animal species.
Collapse
Affiliation(s)
- Riana van Deventer
- Department of Genetics, Stellenbosch University, Stellenbosch 7602, South Africa; Unistel Medical Laboratories (Pty) Ltd, Parow North 7500, South Africa.
| | - Clint Rhode
- Department of Genetics, Stellenbosch University, Stellenbosch 7602, South Africa.
| | - Munro Marx
- Unistel Medical Laboratories (Pty) Ltd, Parow North 7500, South Africa.
| | - Rouvay Roodt-Wilding
- Department of Genetics, Stellenbosch University, Stellenbosch 7602, South Africa.
| |
Collapse
|
21
|
Hrbáčková M, Dvořák P, Takáč T, Tichá M, Luptovčiak I, Šamajová O, Ovečka M, Šamaj J. Biotechnological Perspectives of Omics and Genetic Engineering Methods in Alfalfa. FRONTIERS IN PLANT SCIENCE 2020; 11:592. [PMID: 32508859 PMCID: PMC7253590 DOI: 10.3389/fpls.2020.00592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/20/2020] [Indexed: 05/07/2023]
Abstract
For several decades, researchers are working to develop improved major crops with better adaptability and tolerance to environmental stresses. Forage legumes have been widely spread in the world due to their great ecological and economic values. Abiotic and biotic stresses are main factors limiting legume production, however, alfalfa (Medicago sativa L.) shows relatively high level of tolerance to drought and salt stress. Efforts focused on alfalfa improvements have led to the release of cultivars with new traits of agronomic importance such as high yield, better stress tolerance or forage quality. Alfalfa has very high nutritional value due to its efficient symbiotic association with nitrogen-fixing bacteria, while deep root system can help to prevent soil water loss in dry lands. The use of modern biotechnology tools is challenging in alfalfa since full genome, unlike to its close relative barrel medic (Medicago truncatula Gaertn.), was not released yet. Identification, isolation, and improvement of genes involved in abiotic or biotic stress response significantly contributed to the progress of our understanding how crop plants cope with these environmental challenges. In this review, we provide an overview of the progress that has been made in high-throughput sequencing, characterization of genes for abiotic or biotic stress tolerance, gene editing, as well as proteomic and metabolomics techniques bearing biotechnological potential for alfalfa improvement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
22
|
Rubio B, Lalanne-Tisné G, Voisin R, Tandonnet JP, Portier U, Van Ghelder C, Lafargue M, Petit JP, Donnart M, Joubard B, Bert PF, Papura D, Le Cunff L, Ollat N, Esmenjaud D. Characterization of genetic determinants of the resistance to phylloxera, Daktulosphaira vitifoliae, and the dagger nematode Xiphinema index from muscadine background. BMC PLANT BIOLOGY 2020; 20:213. [PMID: 32398088 PMCID: PMC7218577 DOI: 10.1186/s12870-020-2310-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/26/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Muscadine (Muscadinia rotundifolia) is known as a resistance source to many pests and diseases in grapevine. The genetics of its resistance to two major grapevine pests, the phylloxera D. vitifoliae and the dagger nematode X. index, vector of the Grapevine fanleaf virus (GFLV), was investigated in a backcross progeny between the F1 resistant hybrid material VRH8771 (Vitis-Muscadinia) derived from the muscadine R source 'NC184-4' and V. vinifera cv. 'Cabernet-Sauvignon' (CS). RESULTS In this pseudo-testcross, parental maps were constructed using simple-sequence repeats markers and single nucleotide polymorphism markers from a GBS approach. For the VRH8771 map, 2271 SNP and 135 SSR markers were assembled, resulting in 19 linkage groups (LG) and an average distance between markers of 0.98 cM. Phylloxera resistance was assessed by monitoring root nodosity number in an in planta experiment and larval development in a root in vitro assay. Nematode resistance was studied using 10-12 month long tests for the selection of durable resistance and rating criteria based on nematode reproduction factor and gall index. A major QTL for phylloxera larval development, explaining more than 70% of the total variance and co-localizing with a QTL for nodosity number, was identified on LG 7 and designated RDV6. Additional QTLs were detected on LG 3 (RDV7) and LG 10 (RDV8), depending on the in planta or in vitro experiments, suggesting that various loci may influence or modulate nodosity formation and larval development. Using a Bulked Segregant Analysis approach and a proportion test, markers clustered in three regions on LG 9, LG 10 and LG 18 were shown to be associated to the nematode resistant phenotype. QTL analysis confirmed the results and QTLs were thus designated respectively XiR2, XiR3 and XiR4, although a LOD-score below the significant threshold value was obtained for the QTL on LG 18. CONCLUSIONS Based on a high-resolution linkage map and a segregating grapevine backcross progeny, the first QTLs for resistance to D. vitifoliae and to X. index were identified from a muscadine source. All together these results open the way to the development of marker-assisted selection in grapevine rootstock breeding programs based on muscadine derived resistance to phylloxera and to X. index in order to delay GFLV transmission.
Collapse
Affiliation(s)
- Bernadette Rubio
- INRAE, UMR EGFV, 33883, Villenave d'Ornon, France
- IFV, Domaine de l'Espiguette, 30240, Le Grau du Roi, France
| | - Guillaume Lalanne-Tisné
- INRAE, UMR EGFV, 33883, Villenave d'Ornon, France
- IFV, Domaine de l'Espiguette, 30240, Le Grau du Roi, France
| | - Roger Voisin
- INRAE, Université Nice Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
| | | | - Ulysse Portier
- INRAE, Université Nice Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Cyril Van Ghelder
- INRAE, Université Nice Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
| | | | | | | | | | | | | | - Loïc Le Cunff
- IFV, Domaine de l'Espiguette, 30240, Le Grau du Roi, France
| | | | - Daniel Esmenjaud
- INRAE, Université Nice Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
| |
Collapse
|
23
|
Tam NT, Dwiyanti MS, Koide Y, Nagano AJ, Ky H, Tin HQ, Hien NL, Dung LV, Kishima Y. Profiling SNP and Nucleotide Diversity to Characterize Mekong Delta Rice Landraces in Southeast Asian Populations. THE PLANT GENOME 2019; 12:1-11. [PMID: 33016580 DOI: 10.3835/plantgenome2019.06.0042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/23/2019] [Indexed: 06/11/2023]
Abstract
Single nucleotide polymorphism (SNP) analyses are a powerful tool to examine structure of local rice population. 3000 dataset of IRRI facilitates SNP profiling of Southeast Asian rice populations. Mekong Delta population is featured by comparisons with the other populations. The low π-value SNPs well-profile unique genetic regions in their genomes. Recent analyses using single nucleotide polymorphism (SNP) are a feasible mean for local collections which potentially possess useful, but not large, genetic variations. Genomic sequences of more than 3000 accessions released by the International Rice Research Institute (IRRI) can be used to characterize various local rice (Oryza sativa) populations. The aim of this study was to develop a method to facilitate genomic characterization of local rice populations. We mainly used 99 indica rice accessions (81 landraces and 18 improved varieties) from the Mekong Delta Development Research Institute (MDI). We obtained 2301 SNPs after a genomic sequencing analysis of the 99 rice accessions and subsequent filtering. Within the IRRI's dataset, the landraces fell into a cluster consisting of accessions from Southeast Asian countries (Ind3 cluster), and the MDI improved varieties were grouped in a cluster containing IRRI improved varieties (Ind1B cluster). A principal component analysis suggested that geographical location strongly affects phylogenetic relationships, and the MDI landraces were placed into a Vietnam+Cambodia group. To detect the nucleotide diversity within a population, π-value is commonly used. We think that whole genome distribution of π-values representing the nucleotide diversity of each population can be used to characterize local populations. Our simple profiling using low π-value genomic regions was able to reveal regional characteristics of rice genomes and should be useful for identifying local rice populations.
Collapse
Affiliation(s)
- Nguyen Thanh Tam
- Mekong Delta Development Research Institute, Can Tho Univ., Vietnam
- Research Faculty of Agriculture, Hokkaido Univ., Japan
| | | | - Yohei Koide
- Research Faculty of Agriculture, Hokkaido Univ., Japan
| | | | - Huynh Ky
- College of Agriculture, Can Tho Univ., Vietnam
| | - Huynh Quang Tin
- Mekong Delta Development Research Institute, Can Tho Univ., Vietnam
| | | | | | - Yuji Kishima
- Research Faculty of Agriculture, Hokkaido Univ., Japan
| |
Collapse
|
24
|
Basak M, Uzun B, Yol E. Genetic diversity and population structure of the Mediterranean sesame core collection with use of genome-wide SNPs developed by double digest RAD-Seq. PLoS One 2019; 14:e0223757. [PMID: 31600316 PMCID: PMC6786593 DOI: 10.1371/journal.pone.0223757] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022] Open
Abstract
The Mediterranean sesame core collection contains agro-morphologically superior sesame accessions from geographically diverse regions in four continents. In the present investigation, the genetic diversity and population structure of this collection was analyzed with 5292 high-quality SNPs discovered by double-digest restriction site associated DNA (ddRAD) sequencing, a cost-effective and flexible next-generation sequencing method. The genetic distance between pairs of accessions varied from 0.023 to 0.524. The gene diversity was higher in accessions from Asia than from America, Africa, and Europe. The highest genetic differentiation was observed between accessions collected from America and Europe. Structure analysis showed the presence of three subpopulations among the sesame accessions, and only six accessions were placed in an admixture group. Phylogenetic tree and principal coordinate analysis clustered the accessions based on their countries of origin. However, no clear division was evident among the sesame accessions with regard to their continental locations. This result was supported by an AMOVA analysis, which revealed a genetic variation among continental groups of 5.53% of the total variation. The large number of SNPs clearly indicated that the Mediterranean sesame core collection is a highly diverse genetic resource. The collection can be exploited by breeders to select appropriate accessions that will provide high genetic gain in sesame improvement programs. The high-quality SNP data generated here should also be used in genome-wide association studies to explore qualitative trait loci and SNPs related to economically and agronomically important traits in sesame.
Collapse
Affiliation(s)
- Merve Basak
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
| | - Bulent Uzun
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
| | - Engin Yol
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, Antalya, Turkey
- * E-mail:
| |
Collapse
|
25
|
Roncallo PF, Beaufort V, Larsen AO, Dreisigacker S, Echenique V. Genetic diversity and linkage disequilibrium using SNP (KASP) and AFLP markers in a worldwide durum wheat (Triticum turgidum L. var durum) collection. PLoS One 2019; 14:e0218562. [PMID: 31251752 PMCID: PMC6741835 DOI: 10.1371/journal.pone.0218562] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/04/2019] [Indexed: 11/18/2022] Open
Abstract
The aim of this work was to analyze the genetic diversity and linkage disequilibrium in a collection of 168 durum wheat accessions (Triticum turgidum L. var. durum) of different origins. Our collection was mainly composed of released and unreleased Argentinian germplasm, with additional genotypes from Italy, Chile, France, CIMMYT, Cyprus, USA and WANA region. To this end, the entire collection was characterized with 85 Single Nucleotide Polymorphism (SNP) markers obtained by Kompetitive Allele Specific PCR (KASP), giving a heterozygosity (He) mean value of 0.183 and a coefficient of genetic differentiation (Gst) value of 0.139. A subset of 119 accessions was characterized with six Amplified Fragment Length Polymorphism (AFLP) primer combinations. A total of 181 polymorphic markers (125 AFLP and 56 SNP) amplified across this subset revealed He measures of 0.352 and 0.182, respectively. Of these, 134 were selected to estimate the genome-wide linkage disequilibrium obtaining low significant values (r2 = 0.11) in the subset, indicating its suitability for future genome-wide association studies (GWAS). The structure analysis conducted in the entire collection with SNP detected two subpopulations. However, the structure analysis conducted with AFLP markers in the subset of 119 accessions proved to have greater degree of resolution and detect six subpopulations. The information provided by both marker types was complementary and showed a strong association between old Argentinian and Italian germplasm and a contribution of CIMMYT germplasm to modern Argentinian, Chilean and Cypriot accessions. The influence of Mediterranean germplasm, mainly from Italy, on part of the modern Argentinian cultivars or breeding lines was also clearly evidenced. Although our analysis yields conclusive results and useful information for association mapping studies, further analyses are needed to refine the number of subpopulations present in the germplasm collection analyzed.
Collapse
Affiliation(s)
- Pablo Federico Roncallo
- Centro de Recursos Naturales Renovables de la Zona Semiárida
(CERZOS–CCT–CONICET Bahía Blanca) and Departamento de Agronomía, Universidad
Nacional del Sur, Bahía Blanca, Argentina
| | - Valeria Beaufort
- Centro de Recursos Naturales Renovables de la Zona Semiárida
(CERZOS–CCT–CONICET Bahía Blanca) and Departamento de Agronomía, Universidad
Nacional del Sur, Bahía Blanca, Argentina
| | - Adelina Olga Larsen
- CEI Barrow, Instituto Nacional de Tecnología Agropecuaria (INTA), Tres
Arroyos, Buenos Aires, Argentina
| | - Susanne Dreisigacker
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Edo.
de México, México
| | - Viviana Echenique
- Centro de Recursos Naturales Renovables de la Zona Semiárida
(CERZOS–CCT–CONICET Bahía Blanca) and Departamento de Agronomía, Universidad
Nacional del Sur, Bahía Blanca, Argentina
- * E-mail:
| |
Collapse
|
26
|
Ridzuan R, Rafii MY, Ismail SI, Mohammad Yusoff M, Miah G, Usman M. Breeding for Anthracnose Disease Resistance in Chili: Progress and Prospects. Int J Mol Sci 2018; 19:E3122. [PMID: 30314374 PMCID: PMC6213496 DOI: 10.3390/ijms19103122] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 11/16/2022] Open
Abstract
Chili anthracnose is one of the most devastating fungal diseases affecting the quality and yield production of chili. The aim of this review is to summarize the current knowledge concerning the chili anthracnose disease, as well as to explore the use of marker-assisted breeding programs aimed at improving anthracnose disease resistance in this species. This disease is caused by the Colletotrichum species complex, and there have been ongoing screening methods of chili pepper genotypes with resistance to anthracnose in the field, as well as in laboratories. Conventional breeding involves phenotypic selection in the field, and it is more time-consuming compared to molecular breeding. The use of marker-assisted selection (MAS) on the basis of inheritance, the segregation ratio of resistance to susceptibility, and the gene-controlling resistance may contribute to the development of an improved chili variety and speed up the selection process, while also reducing genetic drag in the segregating population. More importantly, by using molecular markers, the linkage groups are determined dominantly and co-dominantly, meaning that the implementation of a reliable method to produce resistant varieties is crucial in future breeding programs. This updated information will offer a supportive direction for chili breeders to develop an anthracnose-resistant chili variety.
Collapse
Affiliation(s)
- Raihana Ridzuan
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Mohd Y Rafii
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Siti Izera Ismail
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Martini Mohammad Yusoff
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Gous Miah
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Magaji Usman
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
27
|
Taheri S, Lee Abdullah T, Yusop MR, Hanafi MM, Sahebi M, Azizi P, Shamshiri RR. Mining and Development of Novel SSR Markers Using Next Generation Sequencing (NGS) Data in Plants. Molecules 2018; 23:E399. [PMID: 29438290 PMCID: PMC6017569 DOI: 10.3390/molecules23020399] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/11/2018] [Accepted: 01/13/2018] [Indexed: 11/17/2022] Open
Abstract
Microsatellites, or simple sequence repeats (SSRs), are one of the most informative and multi-purpose genetic markers exploited in plant functional genomics. However, the discovery of SSRs and development using traditional methods are laborious, time-consuming, and costly. Recently, the availability of high-throughput sequencing technologies has enabled researchers to identify a substantial number of microsatellites at less cost and effort than traditional approaches. Illumina is a noteworthy transcriptome sequencing technology that is currently used in SSR marker development. Although 454 pyrosequencing datasets can be used for SSR development, this type of sequencing is no longer supported. This review aims to present an overview of the next generation sequencing, with a focus on the efficient use of de novo transcriptome sequencing (RNA-Seq) and related tools for mining and development of microsatellites in plants.
Collapse
Affiliation(s)
- Sima Taheri
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Thohirah Lee Abdullah
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohd Rafii Yusop
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohamed Musa Hanafi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mahbod Sahebi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Parisa Azizi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Redmond Ramin Shamshiri
- Smart Farming Technology Research Center, Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
28
|
NGS-Based Genotyping, High-Throughput Phenotyping and Genome-Wide Association Studies Laid the Foundations for Next-Generation Breeding in Horticultural Crops. DIVERSITY-BASEL 2017. [DOI: 10.3390/d9030038] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Demographic trends and changes to climate require a more efficient use of plant genetic resources in breeding programs. Indeed, the release of high-yielding varieties has resulted in crop genetic erosion and loss of diversity. This has produced an increased susceptibility to severe stresses and a reduction of several food quality parameters. Next generation sequencing (NGS) technologies are being increasingly used to explore “gene space” and to provide high-resolution profiling of nucleotide variation within germplasm collections. On the other hand, advances in high-throughput phenotyping are bridging the genotype-to-phenotype gap in crop selection. The combination of allelic and phenotypic data points via genome-wide association studies is facilitating the discovery of genetic loci that are associated with key agronomic traits. In this review, we provide a brief overview on the latest NGS-based and phenotyping technologies and on their role to unlocking the genetic potential of vegetable crops; then, we discuss the paradigm shift that is underway in horticultural crop breeding.
Collapse
|
29
|
Ruggieri V, Anzar I, Paytuvi A, Calafiore R, Cigliano RA, Sanseverino W, Barone A. Exploiting the great potential of Sequence Capture data by a new tool, SUPER-CAP. DNA Res 2017; 24:81-91. [PMID: 28011720 PMCID: PMC5381350 DOI: 10.1093/dnares/dsw050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/26/2016] [Indexed: 01/08/2023] Open
Abstract
The recent development of Sequence Capture methodology represents a powerful strategy for enhancing data generation to assess genetic variation of targeted genomic regions. Here, we present SUPER-CAP, a bioinformatics web tool aimed at handling Sequence Capture data, fine calculating the allele frequency of variations and building genotype-specific sequence of captured genes. The dataset used to develop this in silico strategy consists of 378 loci and related regulative regions in a collection of 44 tomato landraces. About 14,000 high-quality variants were identified. The high depth (>40×) of coverage and adopting the correct filtering criteria allowed identification of about 4,000 rare variants and 10 genes with a different copy number variation. We also show that the tool is capable to reconstruct genotype-specific sequences for each genotype by using the detected variants. This allows evaluating the combined effect of multiple variants in the same protein. The architecture and functionality of SUPER-CAP makes the software appropriate for a broad set of analyses including SNP discovery and mining. Its functionality, together with the capability to process large data sets and efficient detection of sequence variation, makes SUPER-CAP a valuable bioinformatics tool for genomics and breeding purposes.
Collapse
Affiliation(s)
- Valentino Ruggieri
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici (NA), Italy.,Sequentia Biotech SL, Calle Compte d'Urgell, 240, 08035 Barcelona, Spain
| | - Irantzu Anzar
- Sequentia Biotech SL, Calle Compte d'Urgell, 240, 08035 Barcelona, Spain
| | - Andreu Paytuvi
- Sequentia Biotech SL, Calle Compte d'Urgell, 240, 08035 Barcelona, Spain
| | - Roberta Calafiore
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici (NA), Italy
| | | | - Walter Sanseverino
- Sequentia Biotech SL, Calle Compte d'Urgell, 240, 08035 Barcelona, Spain
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici (NA), Italy
| |
Collapse
|
30
|
Mercenaro L, Nieddu G, Porceddu A, Pezzotti M, Camiolo S. Sequence Polymorphisms and Structural Variations among Four Grapevine ( Vitis vinifera L.) Cultivars Representing Sardinian Agriculture. FRONTIERS IN PLANT SCIENCE 2017; 8:1279. [PMID: 28775732 PMCID: PMC5517397 DOI: 10.3389/fpls.2017.01279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/06/2017] [Indexed: 05/04/2023]
Abstract
The genetic diversity among grapevine (Vitis vinifera L.) cultivars that underlies differences in agronomic performance and wine quality reflects the accumulation of single nucleotide polymorphisms (SNPs) and small indels as well as larger genomic variations. A combination of high throughput sequencing and mapping against the grapevine reference genome allows the creation of comprehensive sequence variation maps. We used next generation sequencing and bioinformatics to generate an inventory of SNPs and small indels in four widely cultivated Sardinian grape cultivars (Bovale sardo, Cannonau, Carignano and Vermentino). More than 3,200,000 SNPs were identified with high statistical confidence. Some of the SNPs caused the appearance of premature stop codons and thus identified putative pseudogenes. The analysis of SNP distribution along chromosomes led to the identification of large genomic regions with uninterrupted series of homozygous SNPs. We used a digital comparative genomic hybridization approach to identify 6526 genomic regions with significant differences in copy number among the four cultivars compared to the reference sequence, including 81 regions shared between all four cultivars and 4953 specific to single cultivars (representing 1.2 and 75.9% of total copy number variation, respectively). Reads mapping at a distance that was not compatible with the insert size were used to identify a dataset of putative large deletions with cultivar Cannonau revealing the highest number. The analysis of genes mapping to these regions provided a list of candidates that may explain some of the phenotypic differences among the Bovale sardo, Cannonau, Carignano and Vermentino cultivars.
Collapse
Affiliation(s)
- Luca Mercenaro
- Dipartimento di Agraria, Università degli Studi di SassariSassari, Italy
| | - Giovanni Nieddu
- Dipartimento di Agraria, Università degli Studi di SassariSassari, Italy
| | - Andrea Porceddu
- Dipartimento di Agraria, Università degli Studi di SassariSassari, Italy
| | - Mario Pezzotti
- Dipartimento di Biotecnologie, Università degli Studi di VeronaVerona, Italy
| | - Salvatore Camiolo
- Dipartimento di Agraria, Università degli Studi di SassariSassari, Italy
- *Correspondence: Salvatore Camiolo,
| |
Collapse
|
31
|
Bhat JA, Ali S, Salgotra RK, Mir ZA, Dutta S, Jadon V, Tyagi A, Mushtaq M, Jain N, Singh PK, Singh GP, Prabhu KV. Genomic Selection in the Era of Next Generation Sequencing for Complex Traits in Plant Breeding. Front Genet 2016; 7:221. [PMID: 28083016 PMCID: PMC5186759 DOI: 10.3389/fgene.2016.00221] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/12/2016] [Indexed: 12/31/2022] Open
Abstract
Genomic selection (GS) is a promising approach exploiting molecular genetic markers to design novel breeding programs and to develop new markers-based models for genetic evaluation. In plant breeding, it provides opportunities to increase genetic gain of complex traits per unit time and cost. The cost-benefit balance was an important consideration for GS to work in crop plants. Availability of genome-wide high-throughput, cost-effective and flexible markers, having low ascertainment bias, suitable for large population size as well for both model and non-model crop species with or without the reference genome sequence was the most important factor for its successful and effective implementation in crop species. These factors were the major limitations to earlier marker systems viz., SSR and array-based, and was unimaginable before the availability of next-generation sequencing (NGS) technologies which have provided novel SNP genotyping platforms especially the genotyping by sequencing. These marker technologies have changed the entire scenario of marker applications and made the use of GS a routine work for crop improvement in both model and non-model crop species. The NGS-based genotyping have increased genomic-estimated breeding value prediction accuracies over other established marker platform in cereals and other crop species, and made the dream of GS true in crop breeding. But to harness the true benefits from GS, these marker technologies will be combined with high-throughput phenotyping for achieving the valuable genetic gain from complex traits. Moreover, the continuous decline in sequencing cost will make the WGS feasible and cost effective for GS in near future. Till that time matures the targeted sequencing seems to be more cost-effective option for large scale marker discovery and GS, particularly in case of large and un-decoded genomes.
Collapse
Affiliation(s)
- Javaid A Bhat
- Division of Genetics, Indian Agricultural Research Institute New Delhi, India
| | - Sajad Ali
- National Research Centre for Plant Biotechnology New Delhi, India
| | - Romesh K Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu Chatha, India
| | - Zahoor A Mir
- National Research Centre for Plant Biotechnology New Delhi, India
| | - Sutapa Dutta
- Division of Genetics, Indian Agricultural Research Institute New Delhi, India
| | - Vasudha Jadon
- Division of Genetics, Indian Agricultural Research Institute New Delhi, India
| | - Anshika Tyagi
- National Research Centre for Plant Biotechnology New Delhi, India
| | - Muntazir Mushtaq
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu Chatha, India
| | - Neelu Jain
- Division of Genetics, Indian Agricultural Research Institute New Delhi, India
| | - Pradeep K Singh
- Division of Genetics, Indian Agricultural Research Institute New Delhi, India
| | - Gyanendra P Singh
- Division of Genetics, Indian Agricultural Research Institute New Delhi, India
| | - K V Prabhu
- Division of Genetics, Indian Agricultural Research Institute New Delhi, India
| |
Collapse
|
32
|
Taranto F, D'Agostino N, Greco B, Cardi T, Tripodi P. Genome-wide SNP discovery and population structure analysis in pepper (Capsicum annuum) using genotyping by sequencing. BMC Genomics 2016; 17:943. [PMID: 27871227 PMCID: PMC5117568 DOI: 10.1186/s12864-016-3297-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 11/15/2016] [Indexed: 01/03/2023] Open
Abstract
Background Knowledge on population structure and genetic diversity in vegetable crops is essential for association mapping studies and genomic selection. Genotyping by sequencing (GBS) represents an innovative method for large scale SNP detection and genotyping of genetic resources. Herein we used the GBS approach for the genome-wide identification of SNPs in a collection of Capsicum spp. accessions and for the assessment of the level of genetic diversity in a subset of 222 cultivated pepper (Capsicum annum) genotypes. Results GBS analysis generated a total of 7,568,894 master tags, of which 43.4% uniquely aligned to the reference genome CM334. A total of 108,591 SNP markers were identified, of which 105,184 were in C. annuum accessions. In order to explore the genetic diversity of C. annuum and to select a minimal core set representing most of the total genetic variation with minimum redundancy, a subset of 222 C. annuum accessions were analysed using 32,950 high quality SNPs. Based on Bayesian and Hierarchical clustering it was possible to divide the collection into three clusters. Cluster I had the majority of varieties and landraces mainly from Southern and Northern Italy, and from Eastern Europe, whereas clusters II and III comprised accessions of different geographical origins. Considering the genome-wide genetic variation among the accessions included in cluster I, a second round of Bayesian (K = 3) and Hierarchical (K = 2) clustering was performed. These analysis showed that genotypes were grouped not only based on geographical origin, but also on fruit-related features. Conclusions GBS data has proven useful to assess the genetic diversity in a collection of C. annuum accessions. The high number of SNP markers, uniformly distributed on the 12 chromosomes, allowed the accessions to be distinguished according to geographical origin and fruit-related features. SNP markers and information on population structure developed in this study will undoubtedly support genome-wide association mapping studies and marker-assisted selection programs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3297-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- F Taranto
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria-Centro di ricerca per l'orticoltura (CREA-ORT), Via dei Cavalleggeri 25, 84098, Pontecagnano Faiano, SA, Italy
| | - N D'Agostino
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria-Centro di ricerca per l'orticoltura (CREA-ORT), Via dei Cavalleggeri 25, 84098, Pontecagnano Faiano, SA, Italy
| | - B Greco
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria-Centro di ricerca per l'orticoltura (CREA-ORT), Via dei Cavalleggeri 25, 84098, Pontecagnano Faiano, SA, Italy
| | - T Cardi
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria-Centro di ricerca per l'orticoltura (CREA-ORT), Via dei Cavalleggeri 25, 84098, Pontecagnano Faiano, SA, Italy
| | - P Tripodi
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria-Centro di ricerca per l'orticoltura (CREA-ORT), Via dei Cavalleggeri 25, 84098, Pontecagnano Faiano, SA, Italy.
| |
Collapse
|
33
|
Sharma S, Shrivastava N. Renaissance in phytomedicines: promising implications of NGS technologies. PLANTA 2016; 244:19-38. [PMID: 27002972 DOI: 10.1007/s00425-016-2492-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
Medicinal plant research is growing significantly in faith to discover new and more biologically compatible phytomedicines. Deposition of huge genome/trancriptome sequence data assisted by NGS technologies has revealed the new possibilities for producing upgraded bioactive molecules in medicinal plants. Growing interest of investors and consumers in the herbal drugs raises the need for extensive research to open the facts and details of every inch of life canvas of medicinal plants to produce improved quality of phytomedicines. As in agriculture crops, knowledge emergence from medicinal plant's genome/transcriptome, can be used to assure their amended quality and these improved varieties are then transported to the fields for cultivation. Genome studies generate huge sequence data which can be exploited further for obtaining information regarding genes/gene clusters involved in biosynthesis as well as regulation. This can be achieved rapidly at a very large scale with NGS platforms. Identification of new RNA molecules has become possible, which can lead to the discovery of novel compounds. Sequence information can be combined with advanced phytochemical and bioinformatics tools to discover functional herbal drugs. Qualitative and quantitative analysis of small RNA species put a light on the regulatory aspect of biosynthetic pathways for phytomedicines. Inter or intra genomic as well as transcriptomic interactive processes for biosynthetic pathways can be elucidated in depth. Quality management of herbal material will also become rapid and high throughput. Enrichment of sequence information will be used to engineer the plants to get more efficient phytopharmaceuticals. The present review comprises of role of NGS technologies to boost genomic studies of pharmaceutically important plants and further, applications of sequence information aiming to produce enriched phytomedicines. Emerging knowledge from the medicinal plants genome/transcriptome can give birth to deep understanding of the processes responsible for biosynthesis of medicinally important compounds.
Collapse
Affiliation(s)
- Sonal Sharma
- B.V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Sarkhej - Gandhinagar Highway, Ahmedabad, Gujarat, India
- Nirma University, Ahmedabad, Gujarat, India
| | - Neeta Shrivastava
- B.V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Sarkhej - Gandhinagar Highway, Ahmedabad, Gujarat, India.
| |
Collapse
|
34
|
Tiwari VK, Wang S, Danilova T, Koo DH, Vrána J, Kubaláková M, Hribova E, Rawat N, Kalia B, Singh N, Friebe B, Doležel J, Akhunov E, Poland J, Sabir JSM, Gill BS. Exploring the tertiary gene pool of bread wheat: sequence assembly and analysis of chromosome 5M(g) of Aegilops geniculata. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:733-46. [PMID: 26408103 DOI: 10.1111/tpj.13036] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/03/2015] [Accepted: 09/14/2015] [Indexed: 05/07/2023]
Abstract
Next-generation sequencing (NGS) provides a powerful tool for the discovery of important genes and alleles in crop plants and their wild relatives. Despite great advances in NGS technologies, whole-genome shotgun sequencing is cost-prohibitive for species with complex genomes. An attractive option is to reduce genome complexity to a single chromosome prior to sequencing. This work describes a strategy for studying the genomes of distant wild relatives of wheat by isolating single chromosomes from addition or substitution lines, followed by chromosome sorting using flow cytometry and sequencing of chromosomal DNA by NGS technology. We flow-sorted chromosome 5M(g) from a wheat/Aegilops geniculata disomic substitution line [DS5M(g) (5D)] and sequenced it using an Illumina HiSeq 2000 system at approximately 50 × coverage. Paired-end sequences were assembled and used for structural and functional annotation. A total of 4236 genes were annotated on 5M(g) , in close agreement with the predicted number of genes on wheat chromosome 5D (4286). Single-gene FISH indicated no major chromosomal rearrangements between chromosomes 5M(g) and 5D. Comparing chromosome 5M(g) with model grass genomes identified synteny blocks in Brachypodium distachyon, rice (Oryza sativa), sorghum (Sorghum bicolor) and barley (Hordeum vulgare). Chromosome 5M(g) -specific SNPs and cytogenetic probe-based resources were developed and validated. Deletion bin-mapped and ordered 5M(g) SNP markers will be useful to track 5M-specific introgressions and translocations. This study provides a detailed sequence-based analysis of the composition of a chromosome from a distant wild relative of bread wheat, and opens up opportunities to develop genomic resources for wild germplasm to facilitate crop improvement.
Collapse
Affiliation(s)
- Vijay K Tiwari
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Shichen Wang
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66502, USA
| | - Tatiana Danilova
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Dal Hoe Koo
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Jan Vrána
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, CZ 78371, Olomouc, Czech Republic
| | - Marie Kubaláková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, CZ 78371, Olomouc, Czech Republic
| | - Eva Hribova
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, CZ 78371, Olomouc, Czech Republic
| | - Nidhi Rawat
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Bhanu Kalia
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Narinder Singh
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Bernd Friebe
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, CZ 78371, Olomouc, Czech Republic
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66502, USA
| | - Jesse Poland
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Jamal S M Sabir
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Bikram S Gill
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| |
Collapse
|
35
|
Das P, Nutan KK, Singla-Pareek SL, Pareek A. Understanding salinity responses and adopting 'omics-based' approaches to generate salinity tolerant cultivars of rice. FRONTIERS IN PLANT SCIENCE 2015; 6:712. [PMID: 26442026 PMCID: PMC4563168 DOI: 10.3389/fpls.2015.00712] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/25/2015] [Indexed: 05/21/2023]
Abstract
Soil salinity is one of the main constraints affecting production of rice worldwide, by reducing growth, pollen viability as well as yield of the plant. Therefore, detailed understanding of the response of rice towards soil salinity at the physiological and molecular level is a prerequisite for its effective management. Various approaches have been adopted by molecular biologists or breeders to understand the mechanism for salinity tolerance in plants and to develop salt tolerant rice cultivars. Genome wide analysis using 'omics-based' tools followed by identification and functional validation of individual genes is becoming one of the popular approaches to tackle this task. On the other hand, mutation breeding and insertional mutagenesis has also been exploited to obtain salinity tolerant crop plants. This review looks into various responses at cellular and whole plant level generated in rice plants toward salinity stress thus, evaluating the suitability of intervention of functional genomics to raise stress tolerant plants. We have tried to highlight the usefulness of the contemporary 'omics-based' approaches such as genomics, proteomics, transcriptomics and phenomics towards dissecting out the salinity tolerance trait in rice. In addition, we have highlighted the importance of integration of various 'omics' approaches to develop an understanding of the machinery involved in salinity response in rice and to move forward to develop salt tolerant cultivars of rice.
Collapse
Affiliation(s)
- Priyanka Das
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Kamlesh K. Nutan
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Sneh L. Singla-Pareek
- Plant Molecular Biology Group, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| |
Collapse
|
36
|
Kuravadi NA, Yenagi V, Rangiah K, Mahesh HB, Rajamani A, Shirke MD, Russiachand H, Loganathan RM, Shankara Lingu C, Siddappa S, Ramamurthy A, Sathyanarayana BN, Gowda M. Comprehensive analyses of genomes, transcriptomes and metabolites of neem tree. PeerJ 2015; 3:e1066. [PMID: 26290780 PMCID: PMC4540028 DOI: 10.7717/peerj.1066] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 06/09/2015] [Indexed: 12/13/2022] Open
Abstract
Neem (Azadirachta indica A. Juss) is one of the most versatile tropical evergreen tree species known in India since the Vedic period (1500 BC–600 BC). Neem tree is a rich source of limonoids, having a wide spectrum of activity against insect pests and microbial pathogens. Complex tetranortriterpenoids such as azadirachtin, salanin and nimbin are the major active principles isolated from neem seed. Absolutely nothing is known about the biochemical pathways of these metabolites in neem tree. To identify genes and pathways in neem, we sequenced neem genomes and transcriptomes using next generation sequencing technologies. Assembly of Illumina and 454 sequencing reads resulted in 267 Mb, which accounts for 70% of estimated size of neem genome. We predicted 44,495 genes in the neem genome, of which 32,278 genes were expressed in neem tissues. Neem genome consists about 32.5% (87 Mb) of repetitive DNA elements. Neem tree is phylogenetically related to citrus, Citrus sinensis. Comparative analysis anchored 62% (161 Mb) of assembled neem genomic contigs onto citrus chromomes. Ultrahigh performance liquid chromatography-mass spectrometry-selected reaction monitoring (UHPLC-MS/SRM) method was used to quantify azadirachtin, nimbin, and salanin from neem tissues. Weighted Correlation Network Analysis (WCGNA) of expressed genes and metabolites resulted in identification of possible candidate genes involved in azadirachtin biosynthesis pathway. This study provides genomic, transcriptomic and quantity of top three neem metabolites resource, which will accelerate basic research in neem to understand biochemical pathways.
Collapse
Affiliation(s)
- Nagesh A Kuravadi
- Genomics Laboratory, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Bangalore, Karnataka, India
| | - Vijay Yenagi
- Genomics Laboratory, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Bangalore, Karnataka, India
| | - Kannan Rangiah
- Metabolomics Facility, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Bangalore, Karnataka, India
| | - H B Mahesh
- Genomics Laboratory, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Bangalore, Karnataka, India.,Marker Assisted Selection Laboratory, Department of Genetics and Plant Breeding, University of Agricultural Sciences, GKVK, Bangalore, Karnataka, India
| | - Anantharamanan Rajamani
- Genomics Laboratory, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Bangalore, Karnataka, India
| | - Meghana D Shirke
- Genomics Laboratory, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Bangalore, Karnataka, India
| | - Heikham Russiachand
- Genomics Laboratory, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Bangalore, Karnataka, India
| | - Ramya Malarini Loganathan
- Genomics Laboratory, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Bangalore, Karnataka, India
| | - Chandana Shankara Lingu
- Genomics Laboratory, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Bangalore, Karnataka, India
| | - Shilpa Siddappa
- Genomics Laboratory, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Bangalore, Karnataka, India
| | - Aishwarya Ramamurthy
- Genomics Laboratory, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Bangalore, Karnataka, India
| | - B N Sathyanarayana
- Plant Tissue Culture Laboratory, University of Agricultural Sciences, GKVK, Bangalore, Karnataka, India
| | - Malali Gowda
- Genomics Laboratory, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, Bangalore, Karnataka, India
| |
Collapse
|
37
|
Dorn KM, Fankhauser JD, Wyse DL, Marks MD. A draft genome of field pennycress (Thlaspi arvense) provides tools for the domestication of a new winter biofuel crop. DNA Res 2015; 22:121-31. [PMID: 25632110 PMCID: PMC4401323 DOI: 10.1093/dnares/dsu045] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/21/2014] [Indexed: 12/30/2022] Open
Abstract
Field pennycress (Thlaspi arvense L.) is being domesticated as a new winter cover crop and biofuel species for the Midwestern United States that can be double-cropped between corn and soybeans. A genome sequence will enable the use of new technologies to make improvements in pennycress. To generate a draft genome, a hybrid sequencing approach was used to generate 47 Gb of DNA sequencing reads from both the Illumina and PacBio platforms. These reads were used to assemble 6,768 genomic scaffolds. The draft genome was annotated using the MAKER pipeline, which identified 27,390 predicted protein-coding genes, with almost all of these predicted peptides having significant sequence similarity to Arabidopsis proteins. A comprehensive analysis of pennycress gene homologues involved in glucosinolate biosynthesis, metabolism, and transport pathways revealed high sequence conservation compared with other Brassicaceae species, and helps validate the assembly of the pennycress gene space in this draft genome. Additional comparative genomic analyses indicate that the knowledge gained from years of basic Brassicaceae research will serve as a powerful tool for identifying gene targets whose manipulation can be predicted to result in improvements for pennycress.
Collapse
Affiliation(s)
- Kevin M Dorn
- Department of Plant Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | | | - Donald L Wyse
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA
| | - M David Marks
- Department of Plant Biology, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|