1
|
Unêda-Trevisoli SH, Dirk LMA, Carlos Bezerra Pereira FE, Chakrabarti M, Hao G, Campbell JM, Bassetti Nayakwadi SD, Morrison A, Joshi S, Perry SE, Sharma V, Mensah C, Willard B, de Lorenzo L, Afroza B, Hunt AG, Kawashima T, Vaillancourt L, Pinheiro DG, Downie AB. Dehydrin client proteins identified using phage display affinity selected libraries processed with Paired-End PhAge Sequencing (PEPA-Seq). Mol Cell Proteomics 2024:100867. [PMID: 39442694 DOI: 10.1016/j.mcpro.2024.100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
The LATE EMBRYOGENESIS ABUNDANT PROTEINs (LEAPs) are a class of noncatalytic, intrinsically disordered proteins with a malleable structure. Some LEAPs exhibit a protein and/or membrane binding capacity and LEAP binding to various targets has been positively correlated with abiotic stress tolerance. Regarding the LEAPs' presumptive role in protein protection, identifying client proteins (CtPs) to which LEAPs bind is one practicable means of revealing the mechanism by which they exert their function. To this end, we used phage display affinity selection to screen libraries derived from Arabidopsis thaliana seed mRNA with recombinant orthologous LEAPs from Arabidopsis and soybean (Glycine max). Subsequent high throughput sequencing of DNA from affinity-purified phage was performed to characterize the entire sub-population of phage retained by each LEAP orthologue. This entailed cataloging in-frame fusions, elimination of false positives, and aligning the hits on the CtP scaffold to reveal domains of respective CtPs that bound to orthologous LEAPs. This approach (Paired-end PhAge Sequencing, or PEPA-Seq) revealed a subpopulation of the proteome constituting the CtP repertoire in common between the two DHNs orthologues (LEA14 and GmPm12) compared to BSA (unrelated binding control). The veracity of LEAP:CtP binding for one of the CtPs (LEA14 and GmPM12 self-association) was independently assessed using temperature related intensity change (TRIC) analysis. Moreover, LEAP:CtP interactions for four other CtPs were confirmed in planta using bimolecular fluorescence complementation (BiFC) assays. The results provide insights into the involvement of the DHN Y-segments and K-domains in protein binding.
Collapse
Affiliation(s)
- Sandra Helena Unêda-Trevisoli
- Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0312, USA; University of Kentucky, Seed Biology Program; Department of Crop Production, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
| | - Lynnette M A Dirk
- Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0312, USA; University of Kentucky, Seed Biology Program
| | - Francisco Elder Carlos Bezerra Pereira
- Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0312, USA; University of Kentucky, Seed Biology Program; Department of Crop Production, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil; Pastotech Pasture Seeds, Campo Grande, Mato Grosso do Sul, Brazil
| | - Manohar Chakrabarti
- School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Edinburg, 78539, TX, USA
| | - Guijie Hao
- Department of Plant and Soil Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0312, USA; Catalent Pharma Solution, 801 W Baltimore St, Suite 302, Baltimore, MD 21201, USA
| | - James M Campbell
- Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0312, USA; University of Kentucky, Seed Biology Program; University of Kentucky Agricultural and Medical Biotechnology Program, Lexington, KY, 40546-0312, USA; Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY, 40536-0305, USA
| | - Sai Deepshikha Bassetti Nayakwadi
- Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0312, USA; University of Kentucky, Seed Biology Program; University of Kentucky Agricultural and Medical Biotechnology Program, Lexington, KY, 40546-0312, USA
| | - Ashley Morrison
- Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0312, USA; University of Kentucky, Seed Biology Program; University of Kentucky Agricultural and Medical Biotechnology Program, Lexington, KY, 40546-0312, USA
| | - Sanjay Joshi
- University of Kentucky, Seed Biology Program; Department of Plant and Soil Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0312, USA; Kentucky Tobacco Research and Development Center, 1401 University Drive, Lexington, KY, 40546-0236, USA
| | - Sharyn E Perry
- University of Kentucky, Seed Biology Program; Department of Plant and Soil Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0312, USA
| | - Vijyesh Sharma
- University of Kentucky, Seed Biology Program; Department of Plant and Soil Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0312, USA
| | - Caleb Mensah
- Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0312, USA; University of Kentucky, Seed Biology Program; Carter G. Woodson Academy, Fayette County Public Schools (FCPS), Lexington, KY, 40509, USA
| | - Barbara Willard
- Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0312, USA; University of Kentucky, Seed Biology Program
| | - Laura de Lorenzo
- Department of Plant and Soil Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0312, USA; Department of Biochemistry and Molecular Biology, University of New Mexico, School of Medicine, Albuquerque, NM, 87131-0001, USA
| | - Baseerat Afroza
- Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0312, USA; University of Kentucky, Seed Biology Program; Division of Vegetable Science, SKUAST- Kashmir, India
| | - Arthur G Hunt
- Department of Plant and Soil Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0312, USA
| | - Tomokazu Kawashima
- University of Kentucky, Seed Biology Program; Department of Plant and Soil Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0312, USA
| | - Lisa Vaillancourt
- Department of Plant Pathology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0312, USA
| | - Daniel Guariz Pinheiro
- Department of Crop Production, São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil; Department of Biology, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - A Bruce Downie
- Department of Horticulture, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0312, USA; University of Kentucky, Seed Biology Program
| |
Collapse
|
2
|
Białoskórska M, Rucińska A, Boczkowska M. Molecular Mechanisms Underlying Freezing Tolerance in Plants: Implications for Cryopreservation. Int J Mol Sci 2024; 25:10110. [PMID: 39337593 PMCID: PMC11432106 DOI: 10.3390/ijms251810110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Cryopreservation is a crucial technique for the long-term ex situ conservation of plant genetic resources, particularly in the context of global biodiversity decline. This process entails freezing biological material at ultra-low temperatures using liquid nitrogen, which effectively halts metabolic activities and preserves plant tissues over extended periods. Over the past seven decades, a plethora of techniques for cryopreserving plant materials have been developed. These include slow freezing, vitrification, encapsulation dehydration, encapsulation-vitrification, droplet vitrification, cryo-plates, and cryo-mesh techniques. A key challenge in the advancement of cryopreservation lies in our ability to understand the molecular processes underlying plant freezing tolerance. These mechanisms include cold acclimatization, the activation of cold-responsive genes through pathways such as the ICE-CBF-COR cascade, and the protective roles of transcription factors, non-coding RNAs, and epigenetic modifications. Furthermore, specialized proteins, such as antifreeze proteins (AFPs) and late embryogenesis abundant (LEA) proteins, play crucial roles in protecting plant cells during freezing and thawing. Despite its potential, cryopreservation faces significant challenges, particularly in standardizing protocols for a wide range of plant species, especially those from tropical and subtropical regions. This review highlights the importance of ongoing research and the integration of omics technologies to improve cryopreservation techniques, ensuring their effectiveness across diverse plant species and contributing to global efforts regarding biodiversity conservation.
Collapse
Affiliation(s)
- Magdalena Białoskórska
- Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Błonie, Poland
| | - Anna Rucińska
- Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Błonie, Poland
- Botanical Garden, Center for Biological Diversity Conservation in Powsin, Polish Academy of Science, Prawdziwka 2, 02-976 Warszawa, Poland
| | - Maja Boczkowska
- Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Błonie, Poland
| |
Collapse
|
3
|
Okubara PA, Sharpe RM, Peetz AB, Li X, Zasada IA. Differential induction of defense genes in hexaploid wheat roots by the plant-parasitic nematodes Pratylenchus neglectus and P. thornei. PLoS One 2024; 19:e0306533. [PMID: 39208324 PMCID: PMC11361681 DOI: 10.1371/journal.pone.0306533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/19/2024] [Indexed: 09/04/2024] Open
Abstract
Pratylenchus neglectus and P. thornei are among the most destructive root lesion nematodes of wheat in the Pacific Northwest, United States of America and throughout the world. The aim of this study was to determine whether both nematode species were similar in their ability to induce defense genes in roots of wheat genotype Scarlet, and whether a combination of both species induced a different pattern of gene induction than each species alone. The long-term aspect of the research was to identify nematode-inducible promoters for deploying defense genes in roots in breeding programs. The root transcriptomes of genotype Scarlet were obtained after a one-week infection period with each nematode species separately, or both species combined. Root defense gene expression was induced for all three treatments relative to the no-nematode control, but P. thornei affected expression to a greater extent compared to P. neglectus. The species combination induced the highest number of defense genes. This result was not predicted from nematode enumeration studies, in which P. thornei colonization was substantially lower than that of P. neglectus, and the nematode combination did not show a significant difference. Quantitative real time polymerase chain reaction (qRT-PCR) assays for Dehydrin2, Glucan endo-1,3-beta-glucosidase, 1-cys-Peroxiredoxin, Pathogenesis-related protein 1 and Late embryogenesis-abundant proteins 76 and group 3 authenticated the induction observed in the transcriptome data. In addition, a near-isogenic line of Scarlet harboring genetic resistance to fungal soilborne pathogens, called Scarlet-Rz1, showed similar or higher levels of defense gene expression compared to fungus-susceptible Scarlet in qRT-PCR assays. Finally, transcriptome expression patterns revealed nematode-inducible promoters that are responsive to both P. neglectus and P. thornei.
Collapse
Affiliation(s)
- Patricia A. Okubara
- Wheat Health, Genetics and Quality Research Unit, USDA-ARS, Pullman, Washington, United States of America
| | - Richard M. Sharpe
- Department of Horticulture, Washington State University, Pullman, Washington, United States of America
| | - Amy B. Peetz
- Horticultural Crops Disease and Pest Management Research Unit, USDA-ARS, Corvallis, Oregon, United States of America
| | - Xianran Li
- Wheat Health, Genetics and Quality Research Unit, USDA-ARS, Pullman, Washington, United States of America
| | - Inga A. Zasada
- Horticultural Crops Disease and Pest Management Research Unit, USDA-ARS, Corvallis, Oregon, United States of America
| |
Collapse
|
4
|
Ruszczyńska M, Sytykiewicz H. New Insights into Involvement of Low Molecular Weight Proteins in Complex Defense Mechanisms in Higher Plants. Int J Mol Sci 2024; 25:8531. [PMID: 39126099 PMCID: PMC11313046 DOI: 10.3390/ijms25158531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Dynamic climate changes pose a significant challenge for plants to cope with numerous abiotic and biotic stressors of increasing intensity. Plants have evolved a variety of biochemical and molecular defense mechanisms involved in overcoming stressful conditions. Under environmental stress, plants generate elevated amounts of reactive oxygen species (ROS) and, subsequently, modulate the activity of the antioxidative enzymes. In addition, an increase in the biosynthesis of important plant compounds such as anthocyanins, lignin, isoflavonoids, as well as a wide range of low molecular weight stress-related proteins (e.g., dehydrins, cyclotides, heat shock proteins and pathogenesis-related proteins), was evidenced. The induced expression of these proteins improves the survival rate of plants under unfavorable environmental stimuli and enhances their adaptation to sequentially interacting stressors. Importantly, the plant defense proteins may also have potential for use in medical applications and agriculture (e.g., biopesticides). Therefore, it is important to gain a more thorough understanding of the complex biological functions of the plant defense proteins. It will help to devise new cultivation strategies, including the development of genotypes characterized by better adaptations to adverse environmental conditions. The review presents the latest research findings on selected plant defense proteins.
Collapse
Affiliation(s)
| | - Hubert Sytykiewicz
- Faculty of Natural Sciences, Institute of Biological Sciences, University of Siedlce, 14 Prusa St., 08-110 Siedlce, Poland;
| |
Collapse
|
5
|
Zhang H, Wu J, Fu D, Zhang M, Wang L, Gong M. Prokaryotic expression, purification, and the in vitro and in vivo protection study of dehydrin WDHN2 from Triticum aestivum. PROTOPLASMA 2024; 261:771-781. [PMID: 38342804 DOI: 10.1007/s00709-024-01933-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Dehydrins proteins accumulate and play important protective roles in most plants during abiotic stresses. The objective of this study was to characterize a YSK2-type dehydrin gene, WDHN2, isolated from Triticum aestivum previously. In this work, wheat dehydrin WDHN2 was expressed in Escherichia coli and purified by immobilized metal affinity chromatography, which exhibited as a single band by sodium dodecyl sulfonate polyacrylamide gel electrophoresis and western blotting. We show that WDHN2 is capable of alleviating lactate dehydrogenase inactivation from heat and desiccation in vitro enzyme activity protection assay. In vivo assay of Escherichia coli viability demonstrates the enhancement of cell survival by the overexpression of WDHN2. The protein aggregation prevention assay explores that WDHN2 has a broad protective effect on the cellular proteome. The results show that WDHN2 is mainly accumulated in the nucleus and cytosol, suggesting that this dehydrin may exert its function in both cellular compartments. Our data suggest that WDHN2 acts as a chaperone molecular in vivo.
Collapse
Affiliation(s)
- Hongmei Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, Henan, China
- Key Laboratory of Microbial Resources Exploitation and Utilization, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Jiafa Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, Henan, China
- Key Laboratory of Microbial Resources Exploitation and Utilization, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Dandan Fu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Min Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Lunji Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Minggui Gong
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, Henan, China.
- Key Laboratory of Microbial Resources Exploitation and Utilization, Henan University of Science and Technology, Luoyang, 471023, Henan, China.
| |
Collapse
|
6
|
Lv A, Su L, Fan N, Wen W, Gao L, Mo X, You X, Zhou P, An Y. The MsDHN1-MsPIP2;1-MsmMYB module orchestrates the trade-off between growth and survival of alfalfa in response to drought stress. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1132-1145. [PMID: 38048288 PMCID: PMC11022793 DOI: 10.1111/pbi.14251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/09/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023]
Abstract
Dehydrins and aquaporins play crucial roles in plant growth and stress responses by acting as protector and controlling water transport across membranes, respectively. MsDHN1 (dehydrin) and MsPIP2;1 (aquaporin) were demonstrated to interact with a membrane-anchored MYB protein, MsmMYB (as mMYB) in plasma membrane under normal condition. MsDHN1, MsPIP2;1 and MsDHN1-MsPIP2;1 positively regulated alfalfa tolerance to water deficiency. Water deficiency caused phosphorylation of MsPIP2;1 at Ser 272, which led to release C terminus of mMYB (mMYBΔ83) from plasma membrane and translocate to nucleus, where C terminus of MsDHN1 interacted with mMYBΔ83, and promoted mMYBΔ83 transcriptional activity in response to water deficiency. Overexpression of mMYB and mMYBΔ83 down-regulated the expression of MsCESA3, but up-regulated MsCESA7 expression by directly binding to their promoters, and resulted in high drought tolerance in transgenic hairy roots. These results indicate that the MsDHN1-MsPIP2;1-MsMYB module serves as a key regulator in alfalfa against drought stress.
Collapse
Affiliation(s)
- Aimin Lv
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
- State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityHangzhouChina
| | - Liantai Su
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Nana Fan
- College of life scienceYulin UniversityYulinChina
| | - Wuwu Wen
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Li Gao
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xin Mo
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiangkai You
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Peng Zhou
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yuan An
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory of Urban AgricultureMinistry of AgricultureShanghaiChina
| |
Collapse
|
7
|
Gupta MN, Uversky VN. Reexamining the diverse functions of arginine in biochemistry. Biochem Biophys Res Commun 2024; 705:149731. [PMID: 38432110 DOI: 10.1016/j.bbrc.2024.149731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Arginine in a free-state and as part of peptides and proteins shows distinct tendency to form clusters. In free-form, it has been found useful in cryoprotection, as a drug excipient for both solid and liquid formulations, as an aggregation suppressor, and an eluent in protein chromatography. In many cases, the mechanisms by which arginine acts in all these applications is either debatable or at least continues to attract interest. It is quite possible that arginine clusters may be involved in many such applications. Furthermore, it is possible that such clusters are likely to behave as intrinsically disordered polypeptides. These considerations may help in understanding the roles of arginine in diverse applications and may even lead to better strategies for using arginine in different situations.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India.
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya Str., 7, Pushchino, Moscow Region, 142290, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
8
|
Kang D, Yang MJ, Kim H, Park C. Protective roles of highly conserved motif 1 in tardigrade cytosolic-abundant heat soluble protein in extreme environments. Protein Sci 2024; 33:e4913. [PMID: 38358259 PMCID: PMC10868442 DOI: 10.1002/pro.4913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/16/2024]
Abstract
Tardigrades are remarkable microscopic animals that survive harsh conditions such as desiccation and extreme temperatures. Tardigrade-specific intrinsically disordered proteins (TDPs) play an essential role in the survival of tardigrades in extreme environments. Cytosolic-abundant heat soluble (CAHS) protein, a key TDP, is known to increase desiccation tolerance and to protect the activity of several enzymes under dehydrated conditions. However, the function and properties of each CAHS domain have not yet been elucidated in detail. Here, we aimed to elucidate the protective role of highly conserved motif 1 of CAHS in extreme environmental conditions. To examine CAHS domains, three protein constructs, CAHS Full (1-229), CAHS ∆Core (1-120_184-229), and CAHS Core (121-183), were engineered. The highly conserved CAHS motif 1 (124-142) in the CAHS Core formed an amphiphilic α helix, reducing the aggregate formation and protecting lactate dehydrogenase activity during dehydration-rehydration and freeze-thaw treatments, indicating that CAHS motif 1 in the CAHS Core was essential for maintaining protein solubility and stability. Aggregation assays and confocal microscopy revealed that the intrinsically disordered N- and C-terminal domains were more prone to aggregation under our experimental conditions. By explicating the functions of each domain in CAHS, our study proposes the possibility of using engineered proteins or peptides derived from CAHS as a potential candidate for biological applications in extreme environmental stress responses.
Collapse
Affiliation(s)
- Donguk Kang
- Department of ChemistryGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Min June Yang
- Department of ChemistryGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Hwan Kim
- GIST Advanced Institute of Instrumental Analysis (GAIA), Bio Imaging LaboratoryGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Chin‐Ju Park
- Department of ChemistryGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| |
Collapse
|
9
|
Wang X, Liu H, Li Y, Zhang L, Wang B. Heterologous overexpression of Tawzy1-2 gene encoding an SK 3 dehydrin enhances multiple abiotic stress tolerance in Escherichia coli and Nicotiania benthamiana. PLANTA 2024; 259:39. [PMID: 38265504 DOI: 10.1007/s00425-023-04328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024]
Abstract
MAIN CONCLUSION The nuclear localized TaWZY1-2 helps plants resist abiotic stress by preserving the cell's ability to remove reactive oxygen species and decrease lipid oxidation under such conditions. In light of the unpredictable environmental conditions in which food crops grow, precise strategies must be developed by crops to effectively cope with abiotic stress and minimize damage over their lifespan. A key component in this endeavor is the group II of late embryogenesis abundant (LEA) proteins, known as dehydrins, which play crucial roles in enhancing the tolerance of plants to abiotic stress. Tawzy1-2 is a dehydrin-encoding gene which is constitutively expressed in various tissues of wheat. However, the biological function of TaWZY1-2 is not yet fully understood. In this study, TaWZY1-2 was isolated and identified in the wheat genome, and its functional role in conferring tolerance to abiotic stresses was detected in both prokaryotic and eukaryotic cells. Results showed that TaWZY1-2 is a nuclear localized hydrophilic protein that accumulates in response to multiple stresses. Escherichia coli cells expressing TaWZY1-2 showed enhanced tolerance to multiple stress conditions. Overexpression of TaWZY1-2 in Nicotiania benthamiana improved growth, germination and survival rate of the transgenic plants exposed to four kinds of abiotic stress conditions. Our results show that Tawzy1-2 transgenic plants exhibit improved capability in clearing reactive oxygen species and reducing lipid degradation, thereby enhancing their resistance to abiotic stress. This demonstrates a significant role of TaWZY1-2 in mitigating abiotic stress-induced damage. Consequently, these findings not only establish a basis for future investigation into the functional mechanism of TaWZY1-2 but also contribute to the expansion of functional diversity within the dehydrin protein family. Moreover, they identify potential candidate genes for crop optimization.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong, People's Republic of China
| | - Hao Liu
- College of Agriculture, Ludong University, Yantai, Shandong, People's Republic of China
| | - Yuwei Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong, People's Republic of China
| | - Linsheng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi, People's Republic of China
| | - Bo Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong, People's Republic of China.
| |
Collapse
|
10
|
Hsiao AS. Protein Disorder in Plant Stress Adaptation: From Late Embryogenesis Abundant to Other Intrinsically Disordered Proteins. Int J Mol Sci 2024; 25:1178. [PMID: 38256256 PMCID: PMC10816898 DOI: 10.3390/ijms25021178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Global climate change has caused severe abiotic and biotic stresses, affecting plant growth and food security. The mechanical understanding of plant stress responses is critical for achieving sustainable agriculture. Intrinsically disordered proteins (IDPs) are a group of proteins without unique three-dimensional structures. The environmental sensitivity and structural flexibility of IDPs contribute to the growth and developmental plasticity for sessile plants to deal with environmental challenges. This article discusses the roles of various disordered proteins in plant stress tolerance and resistance, describes the current mechanistic insights into unstructured proteins such as the disorder-to-order transition for adopting secondary structures to interact with specific partners (i.e., cellular membranes, membrane proteins, metal ions, and DNA), and elucidates the roles of liquid-liquid phase separation driven by protein disorder in stress responses. By comparing IDP studies in animal systems, this article provides conceptual principles of plant protein disorder in stress adaptation, reveals the current research gaps, and advises on the future research direction. The highlighting of relevant unanswered questions in plant protein disorder research aims to encourage more studies on these emerging topics to understand the mechanisms of action behind their stress resistance phenotypes.
Collapse
Affiliation(s)
- An-Shan Hsiao
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
11
|
Li XH, Yu CWH, Gomez-Navarro N, Stancheva V, Zhu H, Murthy A, Wozny M, Malhotra K, Johnson CM, Blackledge M, Santhanam B, Liu W, Huang J, Freund SMV, Miller EA, Babu MM. Dynamic conformational changes of a tardigrade group-3 late embryogenesis abundant protein modulate membrane biophysical properties. PNAS NEXUS 2024; 3:pgae006. [PMID: 38269070 PMCID: PMC10808001 DOI: 10.1093/pnasnexus/pgae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024]
Abstract
A number of intrinsically disordered proteins (IDPs) encoded in stress-tolerant organisms, such as tardigrade, can confer fitness advantage and abiotic stress tolerance when heterologously expressed. Tardigrade-specific disordered proteins including the cytosolic-abundant heat-soluble proteins are proposed to confer stress tolerance through vitrification or gelation, whereas evolutionarily conserved IDPs in tardigrades may contribute to stress tolerance through other biophysical mechanisms. In this study, we characterized the mechanism of action of an evolutionarily conserved, tardigrade IDP, HeLEA1, which belongs to the group-3 late embryogenesis abundant (LEA) protein family. HeLEA1 homologs are found across different kingdoms of life. HeLEA1 is intrinsically disordered in solution but shows a propensity for helical structure across its entire sequence. HeLEA1 interacts with negatively charged membranes via dynamic disorder-to-helical transition, mainly driven by electrostatic interactions. Membrane interaction of HeLEA1 is shown to ameliorate excess surface tension and lipid packing defects. HeLEA1 localizes to the mitochondrial matrix when expressed in yeast and interacts with model membranes mimicking inner mitochondrial membrane. Yeast expressing HeLEA1 shows enhanced tolerance to hyperosmotic stress under nonfermentative growth and increased mitochondrial membrane potential. Evolutionary analysis suggests that although HeLEA1 homologs have diverged their sequences to localize to different subcellular organelles, all homologs maintain a weak hydrophobic moment that is characteristic of weak and reversible membrane interaction. We suggest that such dynamic and weak protein-membrane interaction buffering alterations in lipid packing could be a conserved strategy for regulating membrane properties and represent a general biophysical solution for stress tolerance across the domains of life.
Collapse
Affiliation(s)
- Xiao-Han Li
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Conny W H Yu
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | - Hongni Zhu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Andal Murthy
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Michael Wozny
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Ketan Malhotra
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Martin Blackledge
- Université Grenoble Alpes, CNRS, Commissariat à l’Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Balaji Santhanam
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Structural Biology, Center of Excellence for Data-Driven Discovery, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Wei Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | - M Madan Babu
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Structural Biology, Center of Excellence for Data-Driven Discovery, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
12
|
Li X, Feng H, Liu S, Cui J, Liu J, Shi M, Zhao J, Wang L. Dehydrin CaDHN2 Enhances Drought Tolerance by Affecting Ascorbic Acid Synthesis under Drought in Peppers. PLANTS (BASEL, SWITZERLAND) 2023; 12:3895. [PMID: 38005792 PMCID: PMC10675185 DOI: 10.3390/plants12223895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
Peppers (Capsicum annuum L.), as a horticultural crop with one of the highest ascorbic acid contents, are negatively affected by detrimental environmental conditions both in terms of quality and productivity. In peppers, the high level of ascorbic acid is not only a nutrient substance but also plays a role in environmental stress, i.e., drought stress. When suffering from drought stress, plants accumulate dehydrins, which play important roles in the stress response. Here, we isolated an SK3-type DHN gene CaDHN2 from peppers. CaDHN2 was located in the nucleus, cytoplasm, and cell membrane. In CaDHN2-silenced peppers, which are generated by virus-induced gene silencing (VIGS), the survival rate is much lower, the electrolytic leakage is higher, and the accumulation of reactive oxygen species (ROS) is greater when compared with the control under drought stress. Moreover, when CaDHN2 (CaDHN2-OE) is overexpressed in Arabidopsis, theoverexpressing plants show enhanced drought tolerance, increased antioxidant enzyme activities, and lower ROS content. Based on yeast two-hybrid (Y2H), GST-pull down, and bimolecular fluorescence complementation (BiFC) results, we found that CaDHN2 interacts with CaGGP1, the key enzyme in ascorbic acid (AsA) synthesis, in the cytoplasm. Accordingly, the level of ascorbic acid is highly reduced in CaDHN2-silenced peppers, indicating that CaDHN2 interacts with CaGGP1 to affect the synthesis of ascorbic acid under drought stress, thus improving the drought tolerance of peppers. Our research provides a basis for further study of the function of DHN genes.
Collapse
Affiliation(s)
- Xin Li
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China; (X.L.); (S.L.); (J.C.); (J.L.)
| | - Hao Feng
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.F.); (M.S.); (J.Z.)
| | - Sha Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China; (X.L.); (S.L.); (J.C.); (J.L.)
| | - Junjun Cui
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China; (X.L.); (S.L.); (J.C.); (J.L.)
| | - Jiannan Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China; (X.L.); (S.L.); (J.C.); (J.L.)
| | - Mingyu Shi
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.F.); (M.S.); (J.Z.)
| | - Jielong Zhao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (H.F.); (M.S.); (J.Z.)
| | - Lihu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China; (X.L.); (S.L.); (J.C.); (J.L.)
| |
Collapse
|
13
|
Georgieva K, Mihailova G, Gigova L, Popova AV, Velitchkova M, Simova-Stoilova L, Sági-Kazár M, Zelenyánszki H, Solymosi K, Solti Á. Antioxidative Defense, Suppressed Nitric Oxide Accumulation, and Synthesis of Protective Proteins in Roots and Leaves Contribute to the Desiccation Tolerance of the Resurrection Plant Haberlea rhodopensis. PLANTS (BASEL, SWITZERLAND) 2023; 12:2834. [PMID: 37570988 PMCID: PMC10421438 DOI: 10.3390/plants12152834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
The desiccation tolerance of plants relies on defense mechanisms that enable the protection of macromolecules, biological structures, and metabolism. Although the defense of leaf tissues exposed to solar irradiation is challenging, mechanisms that protect the viability of the roots, yet largely unexplored, are equally important for survival. Although the photosynthetic apparatus in leaves contributes to the generation of oxidative stress under drought stress, we hypothesized that oxidative stress and thus antioxidative defense is also predominant in the roots. Thus, we aimed for a comparative analysis of the protective mechanisms in leaves and roots during the desiccation of Haberlea rhodopensis. Consequently, a high content of non-enzymatic antioxidants and high activity of antioxidant enzymes together with the activation of specific isoenzymes were found in both leaves and roots during the final stages of desiccation of H. rhodopensis. Among others, catalase and glutathione reductase activity showed a similar tendency of changes in roots and leaves, whereas, unlike that in the leaves, superoxide dismutase activity was enhanced under severe but not under medium desiccation in roots. Nitric oxide accumulation in the root tips was found to be sensitive to water restriction but suppressed under severe desiccation. In addition to the antioxidative defense, desiccation induced an enhanced abundance of dehydrins, ELIPs, and sHSP 17.7 in leaves, but this was significantly better in roots. In contrast to leaf cells, starch remained in the cells of the central cylinder of desiccated roots. Taken together, protective compounds and antioxidative defense mechanisms are equally important in protecting the roots to survive desiccation. Since drought-induced damage to the root system fundamentally affects the survival of plants, a better understanding of root desiccation tolerance mechanisms is essential to compensate for the challenges of prolonged dry periods.
Collapse
Affiliation(s)
- Katya Georgieva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Academic Georgi Bonchev Str., Building 21, 1113 Sofia, Bulgaria; (G.M.); (L.G.); (L.S.-S.)
| | - Gergana Mihailova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Academic Georgi Bonchev Str., Building 21, 1113 Sofia, Bulgaria; (G.M.); (L.G.); (L.S.-S.)
| | - Liliana Gigova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Academic Georgi Bonchev Str., Building 21, 1113 Sofia, Bulgaria; (G.M.); (L.G.); (L.S.-S.)
| | - Antoaneta V. Popova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Academic Georgi Bonchev Str., Building 21, 1113 Sofia, Bulgaria; (A.V.P.); (M.V.)
| | - Maya Velitchkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Academic Georgi Bonchev Str., Building 21, 1113 Sofia, Bulgaria; (A.V.P.); (M.V.)
| | - Lyudmila Simova-Stoilova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Academic Georgi Bonchev Str., Building 21, 1113 Sofia, Bulgaria; (G.M.); (L.G.); (L.S.-S.)
| | - Máté Sági-Kazár
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary; (M.S.-K.); (H.Z.); (Á.S.)
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary
| | - Helga Zelenyánszki
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary; (M.S.-K.); (H.Z.); (Á.S.)
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary
| | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary;
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary; (M.S.-K.); (H.Z.); (Á.S.)
| |
Collapse
|
14
|
Szlachtowska Z, Rurek M. Plant dehydrins and dehydrin-like proteins: characterization and participation in abiotic stress response. FRONTIERS IN PLANT SCIENCE 2023; 14:1213188. [PMID: 37484455 PMCID: PMC10358736 DOI: 10.3389/fpls.2023.1213188] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023]
Abstract
Abiotic stress has a significant impact on plant growth and development. It causes changes in the subcellular organelles, which, due to their stress sensitivity, can be affected. Cellular components involved in the abiotic stress response include dehydrins, widely distributed proteins forming a class II of late embryogenesis abundant protein family with characteristic properties including the presence of evolutionarily conserved sequence motifs (including lysine-rich K-segment, N-terminal Y-segment, and often phosphorylated S motif) and high hydrophilicity and disordered structure in the unbound state. Selected dehydrins and few poorly characterized dehydrin-like proteins participate in cellular stress acclimation and are also shown to interact with organelles. Through their functioning in stabilizing biological membranes and binding reactive oxygen species, dehydrins and dehydrin-like proteins contribute to the protection of fragile organellar structures under adverse conditions. Our review characterizes the participation of plant dehydrins and dehydrin-like proteins (including some organellar proteins) in plant acclimation to diverse abiotic stress conditions and summarizes recent updates on their structure (the identification of dehydrin less conserved motifs), classification (new proposed subclasses), tissue- and developmentally specific accumulation, and key cellular activities (including organellar protection under stress acclimation). Recent findings on the subcellular localization (with emphasis on the mitochondria and plastids) and prospective applications of dehydrins and dehydrin-like proteins in functional studies to alleviate the harmful stress consequences by means of plant genetic engineering and a genome editing strategy are also discussed.
Collapse
|
15
|
Ghanmi S, Smith MA, Zaidi I, Drira M, Graether SP, Hanin M. Isolation and molecular characterization of an FSK 2-type dehydrin from Atriplex halimus. PHYTOCHEMISTRY 2023:113783. [PMID: 37406790 DOI: 10.1016/j.phytochem.2023.113783] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Dehydrins form the group II LEA protein family and are known to play multiple roles in plant stress tolerance and enzyme protection. They harbor a variable number of conserved lysine rich motifs (K-segments) and may also contain three additional conserved motifs (Y-, F- and S-segments). In this work, we report the isolation and characterization of an FSK2-type dehydrin from the halophytic species Atriplex halimus, which we designate as AhDHN1. In silico analysis of the protein sequence revealed that AhDHN1 contains large number of hydrophilic residues, and is predicted to be intrinsically disordered. In addition, it has an FSK2 architecture with one F-segment, one S-segment, and two K-segments. The expression analysis showed that the AhDHN1 transcript is induced by salt and water stress treatments in the leaves of Atriplex seedlings. Moreover, circular dichroism spectrum performed on recombinant AhDHN1 showed that the dehydrin lacks any secondary structure, confirming its intrinsic disorder nature. However, there is a gain of α-helicity in the presence of membrane-like SDS micelles. In vitro assays revealed that AhDHN1 is able to effectively protect enzymatic activity of the lactate dehydrogenase against cold, heat and dehydration stresses. Our findings strongly suggest that AhDHN1 can be involved in the adaptation mechanisms of halophytes to adverse environments.
Collapse
Affiliation(s)
- Siwar Ghanmi
- Plant Physiology & Functional Genomics Research Unit, Institute of Biotechnology, University of Sfax, 3038 Sfax, Tunisia
| | - Margaret A Smith
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ikram Zaidi
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, BP "1177", University of Sfax, 3018 Sfax, Tunisia
| | - Marwa Drira
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, BP "1177", University of Sfax, 3018 Sfax, Tunisia
| | - Steffen P Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Moez Hanin
- Plant Physiology & Functional Genomics Research Unit, Institute of Biotechnology, University of Sfax, 3038 Sfax, Tunisia.
| |
Collapse
|
16
|
Popova AV, Mihailova G, Geneva M, Peeva V, Kirova E, Sichanova M, Dobrikova A, Georgieva K. Different Responses to Water Deficit of Two Common Winter Wheat Varieties: Physiological and Biochemical Characteristics. PLANTS (BASEL, SWITZERLAND) 2023; 12:2239. [PMID: 37375865 DOI: 10.3390/plants12122239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
Since water scarcity is one of the main risks for the future of agriculture, studying the ability of different wheat genotypes to tolerate a water deficit is fundamental. This study examined the responses of two hybrid wheat varieties (Gizda and Fermer) with different drought resistance to moderate (3 days) and severe (7 days) drought stress, as well as their post-stress recovery to understand their underlying defense strategies and adaptive mechanisms in more detail. To this end, the dehydration-induced alterations in the electrolyte leakage, photosynthetic pigment content, membrane fluidity, energy interaction between pigment-protein complexes, primary photosynthetic reactions, photosynthetic and stress-induced proteins, and antioxidant responses were analyzed in order to unravel the different physiological and biochemical strategies of both wheat varieties. The results demonstrated that Gizda plants are more tolerant to severe dehydration compared to Fermer, as evidenced by the lower decrease in leaf water and pigment content, lower inhibition of photosystem II (PSII) photochemistry and dissipation of thermal energy, as well as lower dehydrins' content. Some of defense mechanisms by which Gizda variety can tolerate drought stress involve the maintenance of decreased chlorophyll content in leaves, increased fluidity of the thylakoid membranes causing structural alterations in the photosynthetic apparatus, as well as dehydration-induced accumulation of early light-induced proteins (ELIPs), an increased capacity for PSI cyclic electron transport and enhanced antioxidant enzyme activity (SOD and APX), thus alleviating oxidative damage. Furthermore, the leaf content of total phenols, flavonoids, and lipid-soluble antioxidant metabolites was higher in Gizda than in Fermer.
Collapse
Affiliation(s)
- Antoaneta V Popova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Gergana Mihailova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Maria Geneva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Violeta Peeva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Elisaveta Kirova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Mariyana Sichanova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Anelia Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Katya Georgieva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| |
Collapse
|
17
|
Mihailova G, Gashi B, Krastev N, Georgieva K. Acquisition of Freezing Tolerance of Resurrection Species from Gesneriaceae, a Comparative Study. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091893. [PMID: 37176950 PMCID: PMC10180725 DOI: 10.3390/plants12091893] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Resurrection plants have the unique ability to restore normal physiological activity after desiccation to an air-dry state. In addition to their desiccation tolerance, some of them, such as Haberlea rhodopensis and Ramonda myconi, are also freezing-tolerant species, as they survive subzero temperatures during winter. Here, we compared the response of the photosynthetic apparatus of two other Gesneriaceae species, Ramonda serbica and Ramonda nathaliae, together with H. rhodopensis, to cold and freezing temperatures. The role of some protective proteins in freezing tolerance was also investigated. The water content of leaves was not affected during cold acclimation but exposure of plants to -10 °C induced dehydration of plants. Freezing stress strongly reduced the quantum yield of PSII photochemistry (Y(II)) and stomatal conductance (gs) on the abaxial leaf side. In addition, the decreased ratio of Fv/Fm suggested photoinhibition or sustained quenching. Freezing-induced desiccation resulted in the inhibition of PSII activity, which was accompanied by increased thermal energy dissipation. In addition, an increase of dehydrins and ELIPs was detected, but the protein pattern differed between species. During recovery, the protein abundance decreased and plants completely recovered their photosynthetic activity. Thus, our results showed that R. serbica, R. nathaliae, and H. rhodopensis survive freezing stress due to some resurrection-linked traits and confirmed their freezing tolerance.
Collapse
Affiliation(s)
- Gergana Mihailova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Bekim Gashi
- Department of Biology, Faculty of Mathematical and Natural Sciences, University of Prishtina "Hasan Prishtina", Eqerem Cabej Str No 51, 10020 Prishtina, Kosovo
| | - Nikola Krastev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Katya Georgieva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| |
Collapse
|
18
|
Domingo G, Marsoni M, Álvarez-Viñas M, Torres MD, Domínguez H, Vannini C. The Role of Protein-Rich Extracts from Chondrus crispus as Biostimulant and in Enhancing Tolerance to Drought Stress in Tomato Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:845. [PMID: 36840193 PMCID: PMC9963589 DOI: 10.3390/plants12040845] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The application of seaweed extract-based biostimulants is a promising approach for achieving sustainable agriculture, with an enormous potential of improving crop yield and mitigating climate change effects. Abiotic stressors, such as drought, are major factors resulting in tomato (Solanum lycopersicum L.) yield losses and seaweed-based biostimulants have been proposed as an eco-friendly strategy to counteract this negative impact. Chondrus crispus is a common red seaweed widely used as source of carrageenans, not yet explored as a plant biostimulant. In this study, a protein hydrolysate-rich C. crispus extract, by-products of the carrageenan extraction, was tested on tomato plants under well-watered condition and water shortage. The foliar application of the protein-rich C. crispus extract conferred drought tolerance to tomato plants resulting in less noticeable visual stress symptoms. Treated plants showed higher shoot height and biomass under both well-watered and water deficit conditions, evidencing the double effect exerted by this new biostimulant, as plant growth promoter and drought stress protector. The treatment with the biostimulant had an effect on levels of abscisic acid and proline, and triggered the expression of Solyc02g084840, a drought marker gene. Finally, a label-free mass spectrometric approach allowed us to identify phycoerythrins and phycocyanins as major bioactive proteins contained in the extract. Altogether, these results indicate that the foliar application of protein hydrolysate-rich extracts from C. crispus improved tomato plant growth and tolerance to drought stress, suggesting a new opportunity for further applications in the agriculture and horticultural sectors.
Collapse
Affiliation(s)
- Guido Domingo
- Biotechnology and Life Science Department, University of Insubria, 21100 Varese, Italy
| | - Milena Marsoni
- Biotechnology and Life Science Department, University of Insubria, 21100 Varese, Italy
| | - Milena Álvarez-Viñas
- CINBIO, Facultade de Ciencias, Universidade de Vigo, Campus Ourense, 32004 Ourense, Spain
| | - M. Dolores Torres
- CINBIO, Facultade de Ciencias, Universidade de Vigo, Campus Ourense, 32004 Ourense, Spain
| | - Herminia Domínguez
- CINBIO, Facultade de Ciencias, Universidade de Vigo, Campus Ourense, 32004 Ourense, Spain
| | - Candida Vannini
- Biotechnology and Life Science Department, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
19
|
Yu Y, Song T, Wang Y, Zhang M, Li N, Yu M, Zhang S, Zhou H, Guo S, Bu Y, Wang T, Xiang J, Zhang X. The wheat WRKY transcription factor TaWRKY1-2D confers drought resistance in transgenic Arabidopsis and wheat (Triticum aestivum L.). Int J Biol Macromol 2023; 226:1203-1217. [PMID: 36442571 DOI: 10.1016/j.ijbiomac.2022.11.234] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/26/2022]
Abstract
The WRKY transcription factor family has been associated with a variety of plant biological processes, such as biotic and abiotic stress responses. In this study, 13 wheat TaWRKY DEGs in transcriptome data before and after drought stress, namely TaWRKY1 to TaWRKY8, including various copies, were identified and classified as Group I, II, or III. TaWRKY1-2D overexpression enhanced drought tolerance in transgenic Arabidopsis. Moreover, the AtRD29A, AtP5CS1, AtPOD1, AtCAT1, and AtSOD (Cu/Zn) genes, which are related to the stress response and antioxidant system, were significantly upregulated in TaWRKY1-2D transgenic Arabidopsis under drought stress. TaWRKY1-2 silencing in wheat increases the MDA content, reduces the contents of proline and chlorophyll and the activities of antioxidant enzymes, and inhibits the expression levels of antioxidant (TaPOD, TaCAT, and TaSOD (Fe))- and stress-related genes (TaP5CS) under drought stress. Yeast two-hybrid screening revealed TaDHN3 as an interaction partner of TaWRKY1-2D; their interaction was further confirmed using yeast two-hybrid and bimolecular fluorescence complementation. Furthermore, TaWRKY1-2D may play essential roles in wheat drought tolerance through posttranslational regulation of TaDHN3. Overall, these findings contribute to our knowledge of the WRKY family in wheat and identify TaWRKY1-2D as a promising candidate gene for improving wheat breeding to generate drought-tolerant wheat.
Collapse
Affiliation(s)
- Yang Yu
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Tianqi Song
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yukun Wang
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Mingfei Zhang
- Academy of Agricultural Sciences, Key Laboratory of Agro-Ecological Protection & Exploitation and Utilization of Animal and Plant Resources in Eastern Inner Mongolia, Chifeng University, Chifeng 024000, China
| | - Nan Li
- Academy of Agricultural Sciences, Key Laboratory of Agro-Ecological Protection & Exploitation and Utilization of Animal and Plant Resources in Eastern Inner Mongolia, Chifeng University, Chifeng 024000, China
| | - Ming Yu
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Shuangxing Zhang
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Hongwei Zhou
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Sihai Guo
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yaning Bu
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Tingting Wang
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Jishan Xiang
- Academy of Agricultural Sciences, Key Laboratory of Agro-Ecological Protection & Exploitation and Utilization of Animal and Plant Resources in Eastern Inner Mongolia, Chifeng University, Chifeng 024000, China.
| | - Xiaoke Zhang
- College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China.
| |
Collapse
|
20
|
Mihailova G, Solti Á, Sárvári É, Hunyadi-Gulyás É, Georgieva K. Protein Changes in Shade and Sun Haberlea rhodopensis Leaves during Dehydration at Optimal and Low Temperatures. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020401. [PMID: 36679114 PMCID: PMC9861795 DOI: 10.3390/plants12020401] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 05/27/2023]
Abstract
Haberlea rhodopensis is a unique resurrection plant of high phenotypic plasticity, colonizing both shady habitats and sun-exposed rock clefts. H. rhodopensis also survives freezing winter temperatures in temperate climates. Although survival in conditions of desiccation and survival in conditions of frost share high morphological and physiological similarities, proteomic changes lying behind these mechanisms are hardly studied. Thus, we aimed to reveal ecotype-level and temperature-dependent variations in the protective mechanisms by applying both targeted and untargeted proteomic approaches. Drought-induced desiccation enhanced superoxide dismutase (SOD) activity, but FeSOD and Cu/ZnSOD-III were significantly better triggered in sun plants. Desiccation resulted in the accumulation of enzymes involved in carbohydrate/phenylpropanoid metabolism (enolase, triosephosphate isomerase, UDP-D-apiose/UDP-D-xylose synthase 2, 81E8-like cytochrome P450 monooxygenase) and protective proteins such as vicinal oxygen chelate metalloenzyme superfamily and early light-induced proteins, dehydrins, and small heat shock proteins, the latter two typically being found in the latest phases of dehydration and being more pronounced in sun plants. Although low temperature and drought stress-induced desiccation trigger similar responses, the natural variation of these responses in shade and sun plants calls for attention to the pre-conditioning/priming effects that have high importance both in the desiccation responses and successful stress recovery.
Collapse
Affiliation(s)
- Gergana Mihailova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Eötvös Loránd University, Pázmány P. Sétány 1/C, H-1117 Budapest, Hungary
| | - Éva Sárvári
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Eötvös Loránd University, Pázmány P. Sétány 1/C, H-1117 Budapest, Hungary
| | - Éva Hunyadi-Gulyás
- Laboratory of Proteomics Research, Biological Research Centre, Eötvös Loránd Research Network, Temesvári Krt. 62., H-6726 Szeged, Hungary
| | - Katya Georgieva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| |
Collapse
|
21
|
Cheng X, Li X, Liao B, Xu J, Hu L. Improved performance of proteomic characterization for Panax ginseng by strong cation exchange extraction and liquid chromatography-mass spectrometry analysis. J Chromatogr A 2023; 1688:463692. [PMID: 36549145 DOI: 10.1016/j.chroma.2022.463692] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Panax ginseng is a precious and ancient medicinal plant. The completion of its genome sequencing has laid the foundation for the study of proteome and peptidome. However, the high abundance of secondary metabolites in ginseng reduces the identification efficiency of proteins and peptides in mass spectrometry. In this report, strong cation exchange pretreatment was carried out to eliminate the interference of impurities. Based on the charge separation of proteolytic peptides and metabolites, the sensitivity of mass spectrometry detection was greatly improved. After pretreatment, 2322 and 2685 proteins were identified from the root and stem leaf extract. Further, the ginseng peptidome was analyzed based on this optimized strategy, where 970 and 653 endogenous peptides were identified from root and stem leaf extract, respectively. Functional analysis of proteins and endogenous peptides provided valuable information on the biological activities, metabolic processes, and ginsenoside biosynthesis pathways of ginseng.
Collapse
Affiliation(s)
- Xianhui Cheng
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun, China
| | - Xiaoying Li
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun, China
| | - Baosheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
22
|
Vilela N, Tomazetto G, Gonçalves TA, Sodré V, Persinoti GF, Moraes EC, de Oliveira AHC, da Silva SN, Fill TP, Damasio A, Squina FM. Integrative omics analyses of the ligninolytic Rhodosporidium fluviale LM-2 disclose catabolic pathways for biobased chemical production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:5. [PMID: 36624471 PMCID: PMC9830802 DOI: 10.1186/s13068-022-02251-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/18/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Lignin is an attractive alternative for producing biobased chemicals. It is the second major component of the plant cell wall and is an abundant natural source of aromatic compounds. Lignin degradation using microbial oxidative enzymes that depolymerize lignin and catabolize aromatic compounds into central metabolic intermediates is a promising strategy for lignin valorization. However, the intrinsic heterogeneity and recalcitrance of lignin severely hinder its biocatalytic conversion. In this context, examining microbial degradation systems can provide a fundamental understanding of the pathways and enzymes that are useful for lignin conversion into biotechnologically relevant compounds. RESULTS Lignin-degrading catabolism of a novel Rhodosporidium fluviale strain LM-2 was characterized using multi-omic strategies. This strain was previously isolated from a ligninolytic microbial consortium and presents a set of enzymes related to lignin depolymerization and aromatic compound catabolism. Furthermore, two catabolic routes for producing 4-vinyl guaiacol and vanillin were identified in R. fluviale LM-2. CONCLUSIONS The multi-omic analysis of R. fluviale LM-2, the first for this species, elucidated a repertoire of genes, transcripts, and secreted proteins involved in lignin degradation. This study expands the understanding of ligninolytic metabolism in a non-conventional yeast, which has the potential for future genetic manipulation. Moreover, this work unveiled critical pathways and enzymes that can be exported to other systems, including model organisms, for lignin valorization.
Collapse
Affiliation(s)
- Nathália Vilela
- grid.442238.b0000 0001 1882 0259Programa de Processos Tecnológicos e Ambientais, University of Sorocaba (UNISO), Sorocaba, Brazil ,grid.411087.b0000 0001 0723 2494Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Geizecler Tomazetto
- grid.7048.b0000 0001 1956 2722Department of Biological and Chemical Engineering (BCE), Aarhus University, 8200 Aarhus, Denmark
| | - Thiago Augusto Gonçalves
- grid.4989.c0000 0001 2348 0746Photobiocatalysis Unit—CPBL, and Biomass Transformation Lab—BTL, École Interfacultaire de Bioingénieurs, Université Libre de Bruxelles, Brussels, Belgium
| | - Victoria Sodré
- grid.7372.10000 0000 8809 1613Department of Chemistry, University of Warwick, Coventry, UK
| | - Gabriela Felix Persinoti
- grid.452567.70000 0004 0445 0877Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Eduardo Cruz Moraes
- grid.411087.b0000 0001 0723 2494Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Arthur Henrique Cavalcante de Oliveira
- grid.11899.380000 0004 1937 0722Department of Chemistry, Faculty of Philosophy Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Stephanie Nemesio da Silva
- grid.411087.b0000 0001 0723 2494Laboratory of Biology Chemical Microbial (LaBioQuiMi), Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - Taícia Pacheco Fill
- grid.411087.b0000 0001 0723 2494Laboratory of Biology Chemical Microbial (LaBioQuiMi), Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - André Damasio
- grid.411087.b0000 0001 0723 2494Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fabio Marcio Squina
- grid.442238.b0000 0001 1882 0259Programa de Processos Tecnológicos e Ambientais, University of Sorocaba (UNISO), Sorocaba, Brazil
| |
Collapse
|
23
|
A YSK-Type Dehydrin from Nicotiana tabacum Enhanced Copper Tolerance in Escherichia coli. Int J Mol Sci 2022; 23:ijms232315162. [PMID: 36499485 PMCID: PMC9737620 DOI: 10.3390/ijms232315162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022] Open
Abstract
Copper is an essential micronutrient for the maintenance of normal cell function but is toxic in excess. Dehydrins are group two late embryogenesis abundant proteins, which facilitate plant survival in harsh environmental conditions. Here, a YSK-type dehydrin, NtDhn17, was cloned from Nicotiana tabacum under copper toxicity and characterized using a heterologous expression system and in vitro or in vivo experiments and exhibited characteristics of intrinsic disorder during in vitro analyses. Heterologous expression of NtDHN17 enhanced the tolerance of E. coli to various metals, osmotic, and oxidative stress. NtDHN17 showed no Cu2+-binding properties in vivo or in vitro, indicating that metal ion binding is not universal among dehydrins. In vitro and in vivo experiments suggested that NtDHN17 behaved as a potent anti-aggregation agent providing strong protection to aggregated proteins induced by excess copper ions, an effect dependent on the K-segment but not on the Y- or S-segments. In summary, the protective role of NtDHN17 towards E. coli under conditions of copper toxicity may be related to anti-aggregation ability rather than its acting as an ion scavenger, which might be a valuable target for the genetic improvement of resistance to heavy metal stresses in plants.
Collapse
|
24
|
Georgieva K, Mihailova G, Fernández-Marín B, Bertazza G, Govoni A, Arzac MI, Laza JM, Vilas JL, García-Plazaola JI, Rapparini F. Protective Strategies of Haberlea rhodopensis for Acquisition of Freezing Tolerance: Interaction between Dehydration and Low Temperature. Int J Mol Sci 2022; 23:ijms232315050. [PMID: 36499377 PMCID: PMC9739172 DOI: 10.3390/ijms232315050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Resurrection plants are able to deal with complete dehydration of their leaves and then recover normal metabolic activity after rehydration. Only a few resurrection species are exposed to freezing temperatures in their natural environments, making them interesting models to study the key metabolic adjustments of freezing tolerances. Here, we investigate the effect of cold and freezing temperatures on physiological and biochemical changes in the leaves of Haberlea rhodopensis under natural and controlled environmental conditions. Our data shows that leaf water content affects its thermodynamical properties during vitrification under low temperatures. The changes in membrane lipid composition, accumulation of sugars, and synthesis of stress-induced proteins were significantly activated during the adaptation of H. rhodopensis to both cold and freezing temperatures. In particular, the freezing tolerance of H. rhodopensis relies on a sucrose/hexoses ratio in favor of hexoses during cold acclimation, while there is a shift in favor of sucrose upon exposure to freezing temperatures, especially evident when leaf desiccation is relevant. This pattern was paralleled by an elevated ratio of unsaturated/saturated fatty acids and significant quantitative and compositional changes in stress-induced proteins, namely dehydrins and early light-induced proteins (ELIPs). Taken together, our data indicate that common responses of H. rhodopensis plants to low temperature and desiccation involve the accumulation of sugars and upregulation of dehydrins/ELIP protein expression. Further studies on the molecular mechanisms underlying freezing tolerance (genes and genetic regulatory mechanisms) may help breeders to improve the resistance of crop plants.
Collapse
Affiliation(s)
- Katya Georgieva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
- Correspondence: ; Tel.: +359-2-979-2620
| | - Gergana Mihailova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Beatriz Fernández-Marín
- Department of Botany, Ecology and Plant Physiology, University of La Laguna (ULL), 38200 Tenerife, Spain
| | - Gianpaolo Bertazza
- Bioeconomy Institute (IBE), Department of Bio-Agrifood Science (DiSBA), National Research Council (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Annalisa Govoni
- Bioeconomy Institute (IBE), Department of Bio-Agrifood Science (DiSBA), National Research Council (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Miren Irati Arzac
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Bilbao, Spain
| | - José Manuel Laza
- Department of Physical Chemistry, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Bilbao, Spain
| | - José Luis Vilas
- Department of Physical Chemistry, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Bilbao, Spain
| | - José Ignacio García-Plazaola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Bilbao, Spain
| | - Francesca Rapparini
- Bioeconomy Institute (IBE), Department of Bio-Agrifood Science (DiSBA), National Research Council (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| |
Collapse
|
25
|
Hernández-Sánchez IE, Maruri-López I, Martinez-Martinez C, Janis B, Jiménez-Bremont JF, Covarrubias AA, Menze MA, Graether SP, Thalhammer A. LEAfing through literature: late embryogenesis abundant proteins coming of age-achievements and perspectives. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6525-6546. [PMID: 35793147 DOI: 10.1093/jxb/erac293] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
To deal with increasingly severe periods of dehydration related to global climate change, it becomes increasingly important to understand the complex strategies many organisms have developed to cope with dehydration and desiccation. While it is undisputed that late embryogenesis abundant (LEA) proteins play a key role in the tolerance of plants and many anhydrobiotic organisms to water limitation, the molecular mechanisms are not well understood. In this review, we summarize current knowledge of the physiological roles of LEA proteins and discuss their potential molecular functions. As these are ultimately linked to conformational changes in the presence of binding partners, post-translational modifications, or water deprivation, we provide a detailed summary of current knowledge on the structure-function relationship of LEA proteins, including their disordered state in solution, coil to helix transitions, self-assembly, and their recently discovered ability to undergo liquid-liquid phase separation. We point out the promising potential of LEA proteins in biotechnological and agronomic applications, and summarize recent advances. We identify the most relevant open questions and discuss major challenges in establishing a solid understanding of how these intriguing molecules accomplish their tasks as cellular sentinels at the limits of surviving water scarcity.
Collapse
Affiliation(s)
- Itzell E Hernández-Sánchez
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Israel Maruri-López
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Coral Martinez-Martinez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Brett Janis
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, 78216, San Luis Potosí, Mexico
| | - Alejandra A Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Michael A Menze
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Steffen P Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Anja Thalhammer
- Department of Physical Biochemistry, University of Potsdam, D-14476 Potsdam, Germany
| |
Collapse
|
26
|
Liu L, Li H, Li N, Li S, Guo J, Li X. Parental salt priming improves the low temperature tolerance in wheat offspring via modulating the seed proteome. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111428. [PMID: 36007631 DOI: 10.1016/j.plantsci.2022.111428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/12/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Low temperature is one of the main abiotic stresses that inhibit wheat growth and development. To understand the physiological mechanism of salt priming induced low temperature tolerance and its transgenerational effects, the chlorophyl b-deficient mutant (ANK) and its wild type (WT) wheat were subjected to low temperature stress after parental salt priming. Salt priming significantly decreased the levels of superoxide anions, hydrogen peroxide and malondialdehyde in both parental and offspring plants under low temperature. The catalase activity in parental wheat and activities of dehydroascorbate reductase and glutathione reductase in the offspring were significantly increased by salt priming under low temperature. Meanwhile, salt priming contributed to mantaining the integrity of chloroplast structure and relatively higher net photosynthetic rate (Pn) in both generations under low temperature. Salt priming also improved the carbohydrate metabolism enzyme activities of parental and offspring plants, such as phosphoglucomutase, fructokinase and sucrose synthase. In addition, ANK plants had significantly higher carbohydrate metabolism enzyme activities than WT plants. The differential expressed proteins (DEP) in seeds of two genotypes under salt priming were mainly related to homeostasis, electron transfer activity, photosynthesis and carbohydrate metabolism. Correlation network analysis showed that the expression of DEP under salt priming was significantly correlated to sucrose concentration and cytoplasmic peroxidase (POX) activity in WT, while that was correlated to various carbohydrate metabolism enzyme activities in ANK plants. These results indicated that the parental salt priming induced modulations of seed proteome regulated the ROS metabolism, photosynthetic carbon assimilation and carbohydrate metabolism, hence enhancing the low temperature tolerance in offspring wheat.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Hui Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Department of Biology, Xinzhou Teachers University, Xinzhou 034000, China
| | - Na Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Shuxin Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhong Guo
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangnan Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Engineering Laboratory for Eco-agriculture in Water Source of Liaoheyuan, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
27
|
Ostendorp A, Ostendorp S, Zhou Y, Chaudron Z, Wolffram L, Rombi K, von Pein L, Falke S, Jeffries CM, Svergun DI, Betzel C, Morris RJ, Kragler F, Kehr J. Intrinsically disordered plant protein PARCL colocalizes with RNA in phase-separated condensates whose formation can be regulated by mutating the PLD. J Biol Chem 2022; 298:102631. [PMID: 36273579 PMCID: PMC9679465 DOI: 10.1016/j.jbc.2022.102631] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/21/2022] Open
Abstract
In higher plants, long-distance RNA transport via the phloem is crucial for communication between distant plant tissues to align development with stress responses and reproduction. Several recent studies suggest that specific RNAs are among the potential long-distance information transmitters. However, it is yet not well understood how these RNAs enter the phloem stream, how they are transported, and how they are released at their destination. It was proposed that phloem RNA-binding proteins facilitate RNA translocation. In the present study, we characterized two orthologs of the phloem-associated RNA chaperone-like (PARCL) protein from Arabidopsis thaliana and Brassica napus at functional and structural levels. Microscale thermophoresis showed that these phloem-abundant proteins can bind a broad spectrum of RNAs and show RNA chaperone activity in FRET-based in vitro assays. Our SAXS experiments revealed a high degree of disorder, typical for RNA-binding proteins. In agroinfiltrated tobacco plants, eYFP-PARCL proteins mainly accumulated in nuclei and nucleoli and formed cytosolic and nuclear condensates. We found that formation of these condensates was impaired by tyrosine-to-glutamate mutations in the predicted prion-like domain (PLD), while C-terminal serine-to-glutamate mutations did not affect condensation but reduced RNA binding and chaperone activity. Furthermore, our in vitro experiments confirmed phase separation of PARCL and colocalization of RNA with the condensates, while mutation as well as phosphorylation of the PLD reduced phase separation. Together, our results suggest that RNA binding and condensate formation of PARCL can be regulated independently by modification of the C-terminus and/or the PLD.
Collapse
Affiliation(s)
- Anna Ostendorp
- Universität Hamburg, Department of Biology, Institute of Plant Science and Microbiology, Hamburg, Germany,For correspondence: Anna Ostendorp
| | - Steffen Ostendorp
- Universität Hamburg, Department of Biology, Institute of Plant Science and Microbiology, Hamburg, Germany
| | - Yuan Zhou
- Max Planck Institute of Molecular Plant Physiology, Department II, Potsdam, Germany
| | - Zoé Chaudron
- Universität Hamburg, Department of Biology, Institute of Plant Science and Microbiology, Hamburg, Germany
| | - Lukas Wolffram
- Universität Hamburg, Department of Biology, Institute of Plant Science and Microbiology, Hamburg, Germany
| | - Khadija Rombi
- Universität Hamburg, Department of Biology, Institute of Plant Science and Microbiology, Hamburg, Germany
| | - Linn von Pein
- Universität Hamburg, Department of Biology, Institute of Plant Science and Microbiology, Hamburg, Germany
| | - Sven Falke
- Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, Hamburg, Germany,Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology, Hamburg, Germany
| | - Cy M. Jeffries
- European Molecular Biology Laboratory (EMBL) Hamburg Site, c/o DESY, Hamburg, Germany
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory (EMBL) Hamburg Site, c/o DESY, Hamburg, Germany
| | - Christian Betzel
- Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, Hamburg, Germany,Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology, Hamburg, Germany
| | - Richard J. Morris
- Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Friedrich Kragler
- Max Planck Institute of Molecular Plant Physiology, Department II, Potsdam, Germany
| | - Julia Kehr
- Universität Hamburg, Department of Biology, Institute of Plant Science and Microbiology, Hamburg, Germany
| |
Collapse
|
28
|
Smith MA, Graether SP. The Effect of Positive Charge Distribution on the Cryoprotective Activity of Dehydrins. Biomolecules 2022; 12:1510. [PMID: 36291719 PMCID: PMC9599493 DOI: 10.3390/biom12101510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 07/25/2023] Open
Abstract
Dehydrins are intrinsically disordered proteins expressed ubiquitously throughout the plant kingdom in response to desiccation. Dehydrins have been found to have a cryoprotective effect on lactate dehydrogenase (LDH) in vitro, which is in large part influenced by their hydrodynamic radius rather than the order of the amino acids within the sequence (alternatively, this may be a sequence specific effect). However, it seems that a different mechanism may underpin the cryoprotection that they confer to the cold-labile yeast frataxin homolog-1 (Yfh1). Circular dichroism spectroscopy (CD) was used to assess the degree of helicity of Yfh1 at 1 °C, both alone and in the presence of several dehydrin constructs. Three constructs were compared to the wild type: YSK2-K→R (lysine residues substituted with arginine), YSK2-Neutral (locally neutralized charge), and YSK2-SpaceK (evenly distributed positive charge). The results show that sequence rearrangements and minor substitutions have little impact on the ability of the dehydrin to preserve LDH activity. However, when the positive charge of the dehydrin is locally neutralized or evenly distributed, the dehydrin becomes less efficient at promoting structure in Yfh1 at low temperatures. This suggests that a stabilizing, charge-based interaction occurs between dehydrins and Yfh1. Dehydrins are intrinsically disordered proteins, expressed by certain organisms to improve desiccation tolerance. These proteins are thought to serve many cellular roles, such as the stabilization of membranes, DNA, and proteins. However, the molecular mechanisms underlying the function of dehydrins are not well understood. Here, we examine the importance of positive charges in dehydrin sequences by making substitutions and comparing their effects in the cryoprotection of two different proteins.
Collapse
Affiliation(s)
- Margaret A. Smith
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Steffen P. Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Graduate Program in Bioinformatics, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
29
|
Nanobiotechnological Approaches to Enhance Drought Tolerance in Catharanthus roseus Plants Using Salicylic Acid in Bulk and Nanoform. Molecules 2022; 27:molecules27165112. [PMID: 36014352 PMCID: PMC9412284 DOI: 10.3390/molecules27165112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/04/2022] Open
Abstract
Drought has a detrimental effect on crop production, affecting economically important plants’ growth rates and development. Catharanthus roseus is an important medicinal plant that produces many pharmacologically active compounds, some of which have significant antitumor activity. The effect of bulk salicylic acid (SA) and salicylic acid nanoparticles (SA-NPs) were evaluated on water-stressed Catharanthus roseus plants. The results showed that SA and SA-NPs alleviated the negative effects of drought in the treated plants by increasing their shoot and root weights, relative water content, leaf area index, chlorophyll content, and total alkaloids percentage. From the results, a low concentration (0.05 mM) of SA-NPs exerted positive effects on the treated plants, while the best results of the bulk SA were recorded after using the highest concentration (0.1 mM). Both treatments increased the expression level of WRKY1, WRKY2, WRKY40, LEA, and MYC2 genes, while the mRNA level of MPKK1 and MPK6 did not show a significant change. This study discussed the importance of SA-NPs in the induction of drought stress tolerance even when used in low concentrations, in contrast to bulk SA, which exerts significant results only at higher concentrations.
Collapse
|
30
|
Drira M, Ghanmi S, Zaidi I, Brini F, Miled N, Hanin M. The heat stable protein fraction from
Opuntia ficus indica
seeds exhibits an enzyme protective effect against thermal denaturation and an antibacterial activity. Biotechnol Appl Biochem 2022; 70:593-602. [PMID: 35789501 DOI: 10.1002/bab.2382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/30/2022] [Indexed: 11/09/2022]
Abstract
Desiccation tolerance in developing seeds occurs through several mechanisms among which, a common group of proteins named dehydrins has received considerable attention. So far, there is no information dealing with the accumulation of dehydrins in seeds of Opuntia ficus-indica. We have initiated here an extraction protocol based on two critical steps: heat and acid treatments, and the purity of this fraction was analyzed by FTIR spectroscopy. Western blot analysis of the heat-stable protein fraction (HSF) revealed two main bands of approximately 45 and 44 kDa, while three others of ∼40, 32, and 31 kDa were faintly visible, which were recognized by anti-dehydrin antibodies. This fraction exhibited a Cu2+ -dependent resistance to protease treatments. Next, we performed a series of assays to compare the functional properties of the HSF with those of the previously characterized wheat dehydrin (DHN-5). Antibacterial assays revealed that HSF exhibits only moderate antibacterial activities against gram-negative and gram-positive bacteria, with a minimum inhibition concentration ranging from 0.25 to 1 mg/ml. However, in vitro assays revealed that compared to DHN-5, HSF exhibits higher protective activities of the lactate dehydrogenase (LDH) when exposed to heat, freezing, and dehydration stresses. The protective role of HSF seems to be linked to its best ability to minimize protein aggregation.
Collapse
Affiliation(s)
- Marwa Drira
- Laboratory of Plant Biotechnology Applied to the Improvement of Cultures Faculty of Sciences of Sfax University of Sfax B.P. 1171, 3000 Sfax 3029 Tunisia
| | - Siwar Ghanmi
- Plant Physiology and Functional Genomics Research Unit Institute of Biotechnology. University of Sfax BP “1175” Sfax 3038 Tunisia
| | - Ikram Zaidi
- Biotechnology and Plant Improvement Laboratory Center of Biotechnology of Sfax (CBS)‐University of Sfax Sfax 3018 Tunisia
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory Center of Biotechnology of Sfax (CBS)‐University of Sfax Sfax 3018 Tunisia
| | - Nabil Miled
- Plant Physiology and Functional Genomics Research Unit Institute of Biotechnology. University of Sfax BP “1175” Sfax 3038 Tunisia
- Department of Biological Sciences College of Science. University of Jeddah Asfan Road Saudi Arabia
| | - Moez Hanin
- Plant Physiology and Functional Genomics Research Unit Institute of Biotechnology. University of Sfax BP “1175” Sfax 3038 Tunisia
| |
Collapse
|
31
|
Xu YY, Zeng RF, Zhou H, Qiu MQ, Gan ZM, Yang YL, Hu SF, Zhou JJ, Hu CG, Zhang JZ. Citrus FRIGIDA cooperates with its interaction partner dehydrin to regulate drought tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:164-182. [PMID: 35460135 DOI: 10.1111/tpj.15785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Drought is a major environmental stress that severely affects plant growth and crop productivity. FRIGIDA (FRI) is a key regulator of flowering time and drought tolerance in model plants. However, little is known regarding its functions in woody plants, including citrus. Thus, we explored the functional role of the citrus FRI ortholog (CiFRI) under drought. Drought treatment induced CiFRI expression. CiFRI overexpression enhanced drought tolerance in transgenic Arabidopsis and citrus, while CiFRI suppression increased drought susceptibility in citrus. Moreover, transcriptomic profiling under drought conditions suggested that CiFRI overexpression altered the expression of numerous genes involved in the stress response, hormone biosynthesis, and signal transduction. Mechanistic studies revealed that citrus dehydrin likely protects CiFRI from stress-induced degradation, thereby enhancing plant drought tolerance. In addition, a citrus brassinazole-resistant (BZR) transcription factor family member (CiBZR1) directly binds to the CiFRI promoter to activate its expression under drought conditions. CiBZR1 also enhanced drought tolerance in transgenic Arabidopsis and citrus. These findings further our understanding of the molecular mechanisms underlying the CiFRI-mediated drought stress response in citrus.
Collapse
Affiliation(s)
- Yuan-Yuan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ren-Fang Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huan Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mei-Qi Qiu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi-Meng Gan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi-Lin Yang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Si-Fan Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing-Jing Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
32
|
Investigating the Functional Role of the Cysteine Residue in Dehydrin from the Arctic Mouse-Ear Chickweed Cerastium arcticum. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092934. [PMID: 35566285 PMCID: PMC9102250 DOI: 10.3390/molecules27092934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/03/2022] [Accepted: 05/03/2022] [Indexed: 11/23/2022]
Abstract
The stress-responsive, SK5 subclass, dehydrin gene, CaDHN, has been identified from the Arctic mouse-ear chickweed Cerastium arcticum. CaDHN contains an unusual single cysteine residue (Cys143), which can form intermolecular disulfide bonds. Mutational analysis and a redox experiment confirmed that the dimerization of CaDHN was the result of an intermolecular disulfide bond between the cysteine residues. The biochemical and physiological functions of the mutant C143A were also investigated by in vitro and in vivo assays using yeast cells, where it enhanced the scavenging of reactive oxygen species (ROS) by neutralizing hydrogen peroxide. Our results show that the cysteine residue in CaDHN helps to enhance C. arcticum tolerance to abiotic stress by regulating the dimerization of the intrinsically disordered CaDHN protein, which acts as a defense mechanism against extreme polar environments.
Collapse
|
33
|
Xu K, Zhao Y, Gu J, Zhou M, Gao L, Sun RX, Wang WW, Zhang SH, Yang XJ. Proteomic analysis reveals the molecular mechanism underlying the cold acclimation and freezing tolerance of wheat (Triticum aestivum L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111242. [PMID: 35351310 DOI: 10.1016/j.plantsci.2022.111242] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 05/27/2023]
Abstract
Cold acclimation (CA) is an important evolutionary adaptive mechanism for wheat freezing resistence. To clarify the molecular basis of wheat CA and freezing tolerance, the effects of CA (4 °C) and non-CA (20 °C) treatments and freezing stress (-5 °C) on the proteins in the wheat crown were characterized via an iTRAQ-based proteomic analysis. A total of 669 differentially accumulated proteins (DAPs) were identified after the CA, of which seven were also DAPs in the CA plants exposed to freezing stress. Additionally, the 15 DAPs in the CA group and the 23 DAPs in the non-CA group after the freezing treatment differed substantially. Functional analyses indicated that CA enhanced freezing tolerance by regulating proteins involved in signal transduction, carbohydrate metabolism, stress and defense responses, and phenylpropanoid biosynthesis. An integrated transcriptomic, proteomic, and metabolomic analysis revealed significant changes in various components of the glutathione metabolic pathway. The overexpression and silencing of Wdhn13 in Arabidopsis and wheat resulted in increased tolerance and sensitivity to freezing stress, respectively, suggesting Wdhn13 promotes freezing tolerance. Overall, our study offers insights into the regulatory network underlying the CA and freezing tolerance of wheat, which may be useful for elucidating wheat freezing resistance.
Collapse
Affiliation(s)
- Ke Xu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Yong Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, Hebei, China.
| | - Jia Gu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Meng Zhou
- Hebei University, Baoding 071000, Hebei, China
| | - Le Gao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Ruo-Xi Sun
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Wei-Wei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, Hebei, China; Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou 061001, Hebei, China
| | - Shu-Hua Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Xue-Ju Yang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, Hebei, China.
| |
Collapse
|
34
|
Liu J, Dai M, Li J, Zhang Y, Ren Y, Xu J, Gao W, Guo S. Expression, Purification, and Preliminary Protection Study of Dehydrin PicW1 From the Biomass of Picea wilsonii. Front Bioeng Biotechnol 2022; 10:870672. [PMID: 35480979 PMCID: PMC9036995 DOI: 10.3389/fbioe.2022.870672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Dehydrins (DHNs) belong to group II of late embryogenesis-abundant (LEA) proteins, which are up-regulated in most plants during cold, drought, heat, or salinity stress. Despite the importance of dehydrins for the plants to resist abiotic stresses, it is necessary to obtain plant-derived dehydrins from different biomass. Generally, dehydrin PicW1 from Picea wilsonii is involved in Kn-type dehydrin with five K-segments, which has a variety of biological activities. In this work, Picea wilsonii dehydrin PicW1 was expressed in Escherichia coli and purified by chitin-affinity chromatography and size-exclusion chromatography, which showed as a single band by SDS-PAGE. A cold-sensitive enzyme of lactate dehydrogenase (LDH) is used to explore the protective activities of other proteins. Temperature stress assays showed that PicW1 had an effective protective effect on LDH activity, which was better than that of bovine serum albumin (BSA). This study provides insights into the purification and protective activity of K5 DHNs for the advancement of dehydrin structure and function from biomass.
Collapse
Affiliation(s)
- Junhua Liu
- Biological Physics Laboratory, College of Science, Beijing Forestry University, Beijing, China
| | - Mei Dai
- Biological Physics Laboratory, College of Science, Beijing Forestry University, Beijing, China
| | - Jiangtao Li
- Biological Physics Laboratory, College of Science, Beijing Forestry University, Beijing, China
| | - Yitong Zhang
- Biological Physics Laboratory, College of Science, Beijing Forestry University, Beijing, China
| | - Yangjie Ren
- Biological Physics Laboratory, College of Science, Beijing Forestry University, Beijing, China
| | - Jichen Xu
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, Beijing, China
| | - Wei Gao
- Biological Physics Laboratory, College of Science, Beijing Forestry University, Beijing, China
| | - Sujuan Guo
- Key Laboratory of Forest Cultivation and Conservation, Ministry of Education, Beijing Forestry University, Beijing, China
| |
Collapse
|
35
|
Murray MR, Graether SP. Physiological, Structural, and Functional Insights Into the Cryoprotection of Membranes by the Dehydrins. FRONTIERS IN PLANT SCIENCE 2022; 13:886525. [PMID: 35574140 PMCID: PMC9096783 DOI: 10.3389/fpls.2022.886525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/07/2022] [Indexed: 06/01/2023]
Abstract
Plants can be exposed to cold temperatures and have therefore evolved several mechanisms to prevent damage caused by freezing. One of the most important targets are membranes, which are particularly susceptible to cold damage. To protect against such abiotic stresses, plants express a family of proteins known as late embryogenesis abundant (LEA) proteins. Many LEA proteins are intrinsically disordered, that is, they do not contain stable secondary or tertiary structures alone in solution. These proteins have been shown in a number of studies to protect plants from damage caused by cold, drought, salinity, and osmotic stress. In this family, the most studied proteins are the type II LEA proteins, better known as dehydrins (dehydration-induced proteins). Many physiological studies have shown that dehydrins are often located near the membrane during abiotic stress and that the expression of dehydrins helps to prevent the formation of oxidation-modified lipids and reduce the amount of electrolyte leakage, two hallmarks of damaged membranes. One of the earliest biophysical clues that dehydrins are involved in membrane cryoprotection came from in vitro studies that demonstrated a binding interaction between the protein and membranes. Subsequent work has shown that one conserved motif, known as K-segments, is involved in binding, while recent studies have used NMR to explore the residue specific structure of dehydrins when bound to membranes. The biophysical techniques also provide insight into the mechanism by which dehydrins protect the membrane from cold stress, which appears to mainly involve the lowering of the transition temperature.
Collapse
Affiliation(s)
- Marijke R. Murray
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Steffen P. Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
- Graduate Program in Bioinformatics, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
36
|
Wang Y, Botella JR. Heterotrimeric G Protein Signaling in Abiotic Stress. PLANTS 2022; 11:plants11070876. [PMID: 35406855 PMCID: PMC9002505 DOI: 10.3390/plants11070876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022]
Abstract
As sessile organisms, plants exhibit extraordinary plasticity and have evolved sophisticated mechanisms to adapt and mitigate the adverse effects of environmental fluctuations. Heterotrimeric G proteins (G proteins), composed of α, β, and γ subunits, are universal signaling molecules mediating the response to a myriad of internal and external signals. Numerous studies have identified G proteins as essential components of the organismal response to stress, leading to adaptation and ultimately survival in plants and animal systems. In plants, G proteins control multiple signaling pathways regulating the response to drought, salt, cold, and heat stresses. G proteins signal through two functional modules, the Gα subunit and the Gβγ dimer, each of which can start either independent or interdependent signaling pathways. Improving the understanding of the role of G proteins in stress reactions can lead to the development of more resilient crops through traditional breeding or biotechnological methods, ensuring global food security. In this review, we summarize and discuss the current knowledge on the roles of the different G protein subunits in response to abiotic stress and suggest future directions for research.
Collapse
|
37
|
Pantelić A, Stevanović S, Komić SM, Kilibarda N, Vidović M. In Silico Characterisation of the Late Embryogenesis Abundant (LEA) Protein Families and Their Role in Desiccation Tolerance in Ramonda serbica Panc. Int J Mol Sci 2022; 23:3547. [PMID: 35408906 PMCID: PMC8998581 DOI: 10.3390/ijms23073547] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 02/03/2023] Open
Abstract
Ramonda serbica Panc. is an ancient resurrection plant able to survive a long desiccation period and recover metabolic functions upon watering. The accumulation of protective late embryogenesis abundant proteins (LEAPs) is a desiccation tolerance hallmark. To propose their role in R. serbica desiccation tolerance, we structurally characterised LEAPs and evaluated LEA gene expression levels in hydrated and desiccated leaves. By integrating de novo transcriptomics and homologues LEAP domains, 318 R. serbica LEAPs were identified and classified according to their conserved motifs and phylogeny. The in silico analysis revealed that hydrophilic LEA4 proteins exhibited an exceptionally high tendency to form amphipathic α-helices. The most abundant, atypical LEA2 group contained more hydrophobic proteins predicted to fold into the defined globular domains. Within the desiccation-upregulated LEA genes, the majority encoded highly disordered DEH1, LEA1, LEA4.2, and LEA4.3 proteins, while the greatest portion of downregulated genes encoded LEA2.3 and LEA2.5 proteins. While dehydrins might chelate metals and bind DNA under water deficit, other intrinsically disordered LEAPs might participate in forming intracellular proteinaceous condensates or adopt amphipathic α-helical conformation, enabling them to stabilise desiccation-sensitive proteins and membranes. This comprehensive LEAPs structural characterisation is essential to understanding their function and regulation during desiccation aiming at crop drought tolerance improvement.
Collapse
Affiliation(s)
- Ana Pantelić
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (A.P.); (S.S.)
| | - Strahinja Stevanović
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (A.P.); (S.S.)
| | - Sonja Milić Komić
- Department of Life Science, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia;
| | - Nataša Kilibarda
- Department of Pharmacy, Singidunum University, Danijelova 32, 11000 Belgrade, Serbia;
| | - Marija Vidović
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (A.P.); (S.S.)
| |
Collapse
|
38
|
Functional and Conformational Plasticity of an Animal Group 1 LEA Protein. Biomolecules 2022; 12:biom12030425. [PMID: 35327618 PMCID: PMC8946055 DOI: 10.3390/biom12030425] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/24/2022] Open
Abstract
Group 1 (Dur-19, PF00477, LEA_5) Late Embryogenesis Abundant (LEA) proteins are present in organisms from all three domains of life, Archaea, Bacteria, and Eukarya. Surprisingly, Artemia is the only genus known to include animals that express group 1 LEA proteins in their desiccation-tolerant life-history stages. Bioinformatics analysis of circular dichroism data indicates that the group 1 LEA protein AfLEA1 is surprisingly ordered in the hydrated state and undergoes during desiccation one of the most pronounced disorder-to-order transitions described for LEA proteins from A. franciscana. The secondary structure in the hydrated state is dominated by random coils (42%) and β-sheets (35%) but converts to predominately α-helices (85%) when desiccated. Interestingly, AfLEA1 interacts with other proteins and nucleic acids, and RNA promotes liquid–liquid phase separation (LLPS) of the protein from the solvent during dehydration in vitro. Furthermore, AfLEA1 protects the enzyme lactate dehydrogenase (LDH) during desiccation but does not aid in restoring LDH activity after desiccation-induced inactivation. Ectopically expressed in D. melanogaster Kc167 cells, AfLEA1 localizes predominantly to the cytosol and increases the cytosolic viscosity during desiccation compared to untransfected control cells. Furthermore, the protein formed small biomolecular condensates in the cytoplasm of about 38% of Kc167 cells. These findings provide additional evidence for the hypothesis that the formation of biomolecular condensates to promote water stress tolerance during anhydrobiosis may be a shared feature across several groups of LEA proteins that display LLPS behaviors.
Collapse
|
39
|
Sharma AD, Rakhra G, Vyas D. Expression analysis and molecular modelling of hydrophilin LEA-2-like gene from wheat. PLANT PHYSIOLOGY REPORTS 2022; 27:160-170. [PMID: 0 DOI: 10.1007/s40502-021-00615-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/27/2021] [Indexed: 05/26/2023]
|
40
|
The Halophyte Dehydrin Sequence Landscape. Biomolecules 2022; 12:biom12020330. [PMID: 35204830 PMCID: PMC8869203 DOI: 10.3390/biom12020330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/04/2022] Open
Abstract
Dehydrins (DHNs) belong to the LEA (late embryogenesis abundant) family group II, that comprise four conserved motifs (the Y-, S-, F-, and K-segments) and are known to play a multifunctional role in plant stress tolerance. Based on the presence and order of these segments, dehydrins are divided into six subclasses: YnSKn, FnSKn, YnKn, SKn, Kn, and KnS. DHNs are rarely studied in halophytes, and their contribution to the mechanisms developed by these plants to survive in extreme conditions remains unknown. In this work, we carried out multiple genomic analyses of the conservation of halophytic DHN sequences to discover new segments, and examine their architectures, while comparing them with their orthologs in glycophytic plants. We performed an in silico analysis on 86 DHN sequences from 10 halophytic genomes. The phylogenetic tree showed that there are different distributions of the architectures among the different species, and that FSKn is the only architecture present in every plant studied. It was found that K-, F-, Y-, and S-segments are highly conserved in halophytes and glycophytes with a few modifications, mainly involving charged amino acids. Finally, expression data collected for three halophytic species (Puccinillia tenuiflora, Eutrema salsugenium, and Hordeum marinum) revealed that many DHNs are upregulated by salt stress, and the intensity of this upregulation depends on the DHN architecture.
Collapse
|
41
|
Smith MA, Graether SP. The Disordered Dehydrin and Its Role in Plant Protection: A Biochemical Perspective. Biomolecules 2022; 12:biom12020294. [PMID: 35204794 PMCID: PMC8961592 DOI: 10.3390/biom12020294] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Dehydrins are intrinsically disordered proteins composed of several well conserved sequence motifs known as the Y-, S-, F-, and K-segments, the latter of which is a defining feature of all dehydrins. These segments are interspersed by regions of low sequence conservation and are organized modularly, which results in seven different architectures: Kn, SKn, YnSKn, YnKn, KnS, FnK and FnSKn. Dehydrins are expressed ubiquitously throughout the plant kingdom during periods of low intracellular water content, and are capable of improving desiccation tolerance in plants. In vitro evidence of dehydrins shows that they are involved in the protection of membranes, proteins and DNA from abiotic stresses. However, the molecular mechanisms by which these actions are achieved are as of yet somewhat unclear. With regards to macromolecule cryoprotection, there is evidence to suggest that a molecular shield-like protective effect is primarily influenced by the hydrodynamic radius of the dehydrin and to a lesser extent by the charge and hydrophobicity. The interaction between dehydrins and membranes is thought to be a surface-level, charge-based interaction that may help to lower the transition temperature, allowing membranes to maintain fluidity at low temperatures and preventing membrane fusion. In addition, dehydrins are able to protect DNA from damage, showing that these abiotic stress protection proteins have multiple roles.
Collapse
Affiliation(s)
- Margaret A. Smith
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Steffen P. Graether
- Department of Molecular and Cellular Biology and Graduate Program in Bioinformatics, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence:
| |
Collapse
|
42
|
Li L, Zhou X, Chen Z, Cao Y, Zhao G. The group 3 LEA protein of Artemia franciscana for cryopreservation. Cryobiology 2022; 106:1-12. [DOI: 10.1016/j.cryobiol.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 11/03/2022]
|
43
|
Crilly CJ, Brom JA, Warmuth O, Esterly HJ, Pielak GJ. Protection by desiccation-tolerance proteins probed at the residue level. Protein Sci 2022; 31:396-406. [PMID: 34766407 PMCID: PMC8819849 DOI: 10.1002/pro.4231] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 02/03/2023]
Abstract
Extremotolerant organisms from all domains of life produce protective intrinsically disordered proteins (IDPs) in response to desiccation stress. In vitro, many of these IDPs protect enzymes from dehydration stress better than U.S. Food and Drug Administration-approved excipients. However, as with most excipients, their protective mechanism is poorly understood. Here, we apply thermogravimetric analysis, differential scanning calorimetry, and liquid-observed vapor exchange (LOVE) NMR to study the protection of two model globular proteins (the B1 domain of staphylococcal protein G [GB1] and chymotrypsin inhibitor 2 [CI2]) by two desiccation-tolerance proteins (CAHS D from tardigrades and PvLEA4 from an anhydrobiotic midge), as well as by disordered and globular protein controls. We find that all protein samples retain similar amounts of water and possess similar glass transition temperatures, suggesting that neither enhanced water retention nor vitrification is responsible for protection. LOVE NMR reveals that IDPs protect against dehydration-induced unfolding better than the globular protein control, generally protect the same regions of GB1 and CI2, and protect GB1 better than CI2. These observations suggest that electrostatic interactions, charge patterning, and expanded conformations are key to protection. Further application of LOVE NMR to additional client proteins and protectants will deepen our understanding of dehydration protection, enabling the streamlined production of dehydrated proteins for expanded use in the medical, biotechnology, and chemical industries.
Collapse
Affiliation(s)
- Candice J. Crilly
- Department of ChemistryUniversity of North Carolina at Chapel Hill (UNC‐CH)Chapel HillNorth CarolinaUSA
| | - Julia A. Brom
- Department of ChemistryUniversity of North Carolina at Chapel Hill (UNC‐CH)Chapel HillNorth CarolinaUSA
| | - Owen Warmuth
- Department of ChemistryUniversity of North Carolina at Chapel Hill (UNC‐CH)Chapel HillNorth CarolinaUSA
| | - Harrison J. Esterly
- Department of ChemistryUniversity of North Carolina at Chapel Hill (UNC‐CH)Chapel HillNorth CarolinaUSA
| | - Gary J. Pielak
- Department of ChemistryUniversity of North Carolina at Chapel Hill (UNC‐CH)Chapel HillNorth CarolinaUSA,Department of Biochemistry & BiophysicsUniversity of North Carolina at Chapel Hill (UNC‐CH)Chapel HillNorth CarolinaUSA,Lineberger Cancer CenterUniversity of North Carolina at Chapel Hill (UNC‐CH)Chapel HillNorth CarolinaUSA,Integrative Program for Biological and Genome SciencesUniversity of North Carolina at Chapel Hill (UNC‐CH)Chapel HillNorth CarolinaUSA
| |
Collapse
|
44
|
Tang J, Bassham DC. Autophagy during drought: function, regulation, and potential application. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:390-401. [PMID: 34469611 DOI: 10.1111/tpj.15481] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Drought is a major challenge for agricultural production since it causes substantial yield reduction and economic loss. Autophagy is a subcellular degradation and recycling pathway that functions in plant development and responses to many stresses, including drought. In this review, we summarize the current understanding of the function of autophagy and how autophagy is upregulated during drought stress. Autophagy helps plants to survive drought stress, and the mechanistic basis for this is beginning to be elucidated. Autophagy can selectively degrade aquaporins to adjust water permeability, and also degrades excess heme and damaged proteins to reduce their toxicity. In addition, autophagy can degrade regulators or components of hormone signaling pathways to promote stress responses. During drought recovery, autophagy degrades drought-induced proteins to reset the cell status. Autophagy is activated by multiple mechanisms during drought stress. Several transcription factors are induced by drought to upregulate autophagy-related gene expression, and autophagy is also regulated post-translationally through protein modification and stability. Based on these observations, manipulation of autophagy activity may be a promising approach for conferring drought tolerance in plants.
Collapse
Affiliation(s)
- Jie Tang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
45
|
Hsiao AS. Plant Protein Disorder: Spatial Regulation, Broad Specificity, Switch of Signaling and Physiological Status. FRONTIERS IN PLANT SCIENCE 2022; 13:904446. [PMID: 35685011 PMCID: PMC9171514 DOI: 10.3389/fpls.2022.904446] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/10/2022] [Indexed: 05/14/2023]
Affiliation(s)
- An-Shan Hsiao
- *Correspondence: An-Shan Hsiao ; orcid.org/0000-0002-2485-9034
| |
Collapse
|
46
|
Adhikary D, Mehta D, Uhrig RG, Rahman H, Kav NNV. A Proteome-Level Investigation Into Plasmodiophora brassicae Resistance in Brassica napus Canola. FRONTIERS IN PLANT SCIENCE 2022; 13:860393. [PMID: 35401597 PMCID: PMC8988049 DOI: 10.3389/fpls.2022.860393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/21/2022] [Indexed: 05/07/2023]
Abstract
Clubroot of Brassicaceae, an economically important soil borne disease, is caused by Plasmodiophora brassicae Woronin, an obligate, biotrophic protist. This disease poses a serious threat to canola and related crops in Canada and around the globe causing significant losses. The pathogen is continuously evolving and new pathotypes are emerging, which necessitates the development of novel resistant canola cultivars to manage the disease. Proteins play a crucial role in many biological functions and the identification of differentially abundant proteins (DAP) using proteomics is a suitable approach to understand plant-pathogen interactions to assist in the development of gene specific markers for developing clubroot resistant (CR) cultivars. In this study, P. brassicae pathotype 3 (P3H) was used to challenge CR and clubroot susceptible (CS) canola lines. Root samples were collected at three distinct stages of pathogenesis, 7-, 14-, and 21-days post inoculation (DPI), protein samples were isolated, digested with trypsin and subjected to liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis. A total of 937 proteins demonstrated a significant (q-value < 0.05) change in abundance in at least in one of the time points when compared between control and inoculated CR-parent, CR-progeny, CS-parent, CS-progeny and 784 proteins were significantly (q < 0.05) changed in abundance in at least in one of the time points when compared between the inoculated- CR and CS root proteomes of parent and progeny across the three time points tested. Functional annotation of differentially abundant proteins (DAPs) revealed several proteins related to calcium dependent signaling pathways. In addition, proteins related to reactive oxygen species (ROS) biochemistry, dehydrins, lignin, thaumatin, and phytohormones were identified. Among the DAPs, 73 putative proteins orthologous to CR proteins and quantitative trait loci (QTL) associated with eight CR loci in different chromosomes including chromosomes A3 and A8 were identified. Proteins including BnaA02T0335400WE, BnaA03T0374600WE, BnaA03T0262200WE, and BnaA03T0464700WE are orthologous to identified CR loci with possible roles in mediating clubroot responses. In conclusion, these results have contributed to an improved understanding of the mechanisms involved in mediating response to P. brassicae in canola at the protein level.
Collapse
Affiliation(s)
- Dinesh Adhikary
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Devang Mehta
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - R. Glen Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Habibur Rahman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Nat N. V. Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Nat N. V. Kav,
| |
Collapse
|
47
|
Sun Y, Liu L, Sun S, Han W, Irfan M, Zhang X, Zhang L, Chen L. AnDHN, a Dehydrin Protein From Ammopiptanthus nanus, Mitigates the Negative Effects of Drought Stress in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:788938. [PMID: 35003177 PMCID: PMC8739915 DOI: 10.3389/fpls.2021.788938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/30/2021] [Indexed: 06/01/2023]
Abstract
Dehydrins (DHNs) play crucial roles in a broad spectrum of abiotic stresses in model plants. However, the evolutionary role of DHNs has not been explored, and the function of DHN proteins is largely unknown in Ammopiptanthus nanus (A. nanus), an ancient and endangered legume species from the deserts of northwestern China. In this study, we isolated a drought-response gene (c195333_g1_i1) from a drought-induced RNA-seq library of A. nanus. Evolutionary bioinformatics showed that c195333_g1_i1 is an ortholog of Arabidopsis DHN, and we renamed it AnDHN. Moreover, DHN proteins may define a class of proteins that are evolutionarily conserved in all angiosperms that have experienced a contraction during the evolution of legumes. Arabidopsis plants overexpressing AnDHN exhibited morpho-physiological changes, such as an increased germination rate, higher relative water content (RWC), higher proline (PRO) content, increased peroxidase (POD) and catalase (CAT) activities, lower contents of malondialdehyde (MDA), H2O2 and O2 -, and longer root length. Our results showed that the transgenic lines had improved drought resistance with deep root system architecture, excellent water retention, increased osmotic adjustment, and enhanced reactive oxygen species (ROS) scavenging. Furthermore, the transgenic lines also had enhanced salt and cold tolerance. Our findings demonstrate that AnDHN may be a good candidate gene for improving abiotic stress tolerance in crops. Key Message: Using transcriptome analysis in Ammopiptanthus nanus, we isolated a drought-responsive gene, AnDHN, that plays a key role in enhancing abiotic stress tolerance in plants, with strong functional diversification in legumes.
Collapse
Affiliation(s)
- Yibo Sun
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture (Ministry of Education), College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Linghao Liu
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shaokun Sun
- Key Laboratory of Protected Horticulture (Ministry of Education), College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Wangzhen Han
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Muhammad Irfan
- Department of Biotechnology, Faculty of Sciences, University of Sargodha, Sargodha, Pakistan
| | - Xiaojia Zhang
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Li Zhang
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Lijing Chen
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture (Ministry of Education), College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
48
|
Sebák F, Horváth LB, Kovács D, Szolomájer J, Tóth GK, Babiczky Á, Bősze S, Bodor A. Novel Lysine-Rich Delivery Peptides of Plant Origin ERD and Human S100: The Effect of Carboxyfluorescein Conjugation, Influence of Aromatic and Proline Residues, Cellular Internalization, and Penetration Ability. ACS OMEGA 2021; 6:34470-34484. [PMID: 34963932 PMCID: PMC8697381 DOI: 10.1021/acsomega.1c04637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/25/2021] [Indexed: 06/14/2023]
Abstract
The need for novel drug delivery peptides is an important issue of the modern pharmaceutical research. Here, we test K-rich peptides from plant dehydrin ERD14 (ERD-A, ERD-B, and ERD-C) and the C-terminal CPP-resembling region of S100A4 (S100) using the 5(6)-carboxyfluorescein (Cf) tag at the N-terminus. Via a combined pH-dependent NMR and fluorescence study, we analyze the effect of the Cf conjugation/modification on the structural behavior, separately investigating the (5)-Cf and (6)-Cf forms. Flow cytometry results show that all peptides internalize; however, there is a slight difference between the cellular internalization of (5)- and (6)-Cf-peptides. We indicate the possible importance of residues with an aromatic sidechain and proline. We prove that ERD-A localizes mostly in the cytosol, ERD-B and S100 have partial colocalization with lysosomal staining, and ERD-C mainly localizes within vesicle-like compartments, while the uptake mechanism mainly occurs through energy-dependent paths.
Collapse
Affiliation(s)
- Fanni Sebák
- Institute
of Chemistry, ELTE−Eötvös
Loránd University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
- Doctoral
School of Pharmaceutical Sciences, Semmelweis
University, Üllői
út 26, H-1085 Budapest, Hungary
| | - Lilla Borbála Horváth
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
- National
Public Health Center, Albert Flórián út 2-6, Budapest H-1097, Hungary
- Hevesy
György PhD School of Chemistry, ELTE
Eötvös Loránd University, Pázmány Péter sétány
1/a, H-1117 Budapest, Hungary
| | - Dániel Kovács
- Institute
of Chemistry, ELTE−Eötvös
Loránd University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
- Hevesy
György PhD School of Chemistry, ELTE
Eötvös Loránd University, Pázmány Péter sétány
1/a, H-1117 Budapest, Hungary
| | - János Szolomájer
- Department
of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Gábor K. Tóth
- Department
of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Ákos Babiczky
- Institute
of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Doctoral
School of Psychology/Cognitive Science, Budapest University of Technology and Economics, Műegyetem rakpart 3, H-1111 Budapest, Hungary
| | - Szilvia Bősze
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
- National
Public Health Center, Albert Flórián út 2-6, Budapest H-1097, Hungary
| | - Andrea Bodor
- Institute
of Chemistry, ELTE−Eötvös
Loránd University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
| |
Collapse
|
49
|
Kimura Y, Ohkubo T, Shimizu K, Magata Y, Park EY, Hara M. Inhibition of cryoaggregation of phospholipid liposomes by an Arabidopsis intrinsically disordered dehydrin and its K-segment. Colloids Surf B Biointerfaces 2021; 211:112286. [PMID: 34929484 DOI: 10.1016/j.colsurfb.2021.112286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/24/2021] [Accepted: 12/11/2021] [Indexed: 01/01/2023]
Abstract
Dehydrin is an intrinsically disordered protein involved in the cold tolerance of plants. Although dehydrins have been thought to protect biomembranes under cold conditions, the underlying protective mechanism has not been confirmed. Here we report that Arabidopsis dehydrin AtHIRD11 inhibited the aggregation of phospholipid liposomes after freezing and thawing. AtHIRD11 showed significantly greater cryoaggregation-prevention activity than cryoprotective agents such as trehalose, proline, and polyethylene glycols. Amino acid sequence segmentation analysis indicated that the K-segment of AtHIRD11 inhibited the cryoaggregation of phosphatidylcholine (PC) liposomes but other segments did not. This showed that K-segments conserved in all dehydrins were likely to be the cryoprotective sites of dehydrins. Amino acid replacement for a typical K-segment (TypK for short) sequence demonstrated that both hydrophobic and charged amino acids were required for the cryoaggregation-prevention activity of PC liposomes. The amino acid shuffling of TypK remarkably reduced cryoprotective activity. Although TypK did not bind to PC liposomes in solution, the addition of liposomes reduced its disordered content under crowded conditions. Together, these results suggested that dehydrins protected biomembranes via conserved K-segments whose sequences were optimized for cryoprotective activities.
Collapse
Affiliation(s)
- Yuki Kimura
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Tomohiro Ohkubo
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Kosuke Shimizu
- Department of Molecular Imaging, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yasuhiro Magata
- Department of Molecular Imaging, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Enoch Y Park
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Masakazu Hara
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| |
Collapse
|
50
|
Matsuo N, Goda N, Tenno T, Hiroaki H. Cryoprotective activities of FK20, a human genome-derived intrinsically disordered peptide against cryosensitive enzymes without a stereospecific molecular interaction. PEERJ PHYSICAL CHEMISTRY 2021. [DOI: 10.7717/peerj-pchem.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background
Intrinsically disordered proteins (IDPs) have been shown to exhibit cryoprotective activity toward other cellular enzymes without any obvious conserved sequence motifs. This study investigated relationships between the physical properties of several human genome-derived IDPs and their cryoprotective activities.
Methods
Cryoprotective activity of three human-genome derived IDPs and their truncated peptides toward lactate dehydrogenase (LDH) and glutathione S-transferase (GST) was examined. After the shortest cryoprotective peptide was defined (named FK20), cryoprotective activity of all-D-enantiomeric isoform of FK20 (FK20-D) as well as a racemic mixture of FK20 and FK20-D was examined. In order to examine the lack of increase of thermal stability of the target enzyme, the CD spectra of GST and LDH in the presence of a racemic mixture of FK20 and FK20-D at varying temperatures were measured and used to estimate Tm.
Results
Cryoprotective activity of IDPs longer than 20 amino acids was nearly independent of the amino acid length. The shortest IDP-derived 20 amino acid length peptide with sufficient cryoprotective activity was developed from a series of TNFRSF11B fragments (named FK20). FK20, FK20-D, and an equimolar mixture of FK20 and FK20-D also showed similar cryoprotective activity toward LDH and GST. Tm of GST in the presence and absence of an equimolar mixture of FK20 and FK20-D are similar, suggesting that IDPs’ cryoprotection mechanism seems partly from a molecular shielding effect rather than a direct interaction with the target enzymes.
Collapse
Affiliation(s)
- Naoki Matsuo
- Graduate School of Pharmaceutical Sciences, Laboratory of Structural and Molecular Pharmacology, Nagoya University, Nagoya, AICHI, JAPAN
| | - Natsuko Goda
- Graduate School of Pharmaceutical Sciences, Laboratory of Structural and Molecular Pharmacology, Nagoya University, Nagoya, AICHI, JAPAN
| | - Takeshi Tenno
- Graduate School of Pharmaceutical Sciences, Laboratory of Structural and Molecular Pharmacology, Nagoya University, Nagoya, AICHI, JAPAN
- BeCellBar, LLC., Nagoya, Aichi, Japan
| | - Hidekazu Hiroaki
- Graduate School of Pharmaceutical Sciences, Laboratory of Structural and Molecular Pharmacology, Nagoya University, Nagoya, AICHI, JAPAN
- BeCellBar, LLC., Nagoya, Aichi, Japan
| |
Collapse
|