1
|
Göttlinger T, Pirritano M, Simon M, Fuß J, Lohaus G. Metabolic and transcriptomic analyses of nectaries reveal differences in the mechanism of nectar production between monocots (Ananas comosus) and dicots (Nicotiana tabacum). BMC PLANT BIOLOGY 2024; 24:940. [PMID: 39385091 PMCID: PMC11462711 DOI: 10.1186/s12870-024-05630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/24/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Nectar is offered by numerous flowering plants to attract pollinators. To date, the production and secretion of nectar have been analyzed mainly in eudicots, particularly rosids such as Arabidopsis. However, due to the enormous diversity of flowering plants, further research on other plant species, especially monocots, is needed. Ananas comosus (monocot) is an economically important species that is ideal for such analyses because it produces easily accessible nectar in sufficient quantities. In addition, the analyses were also carried out with Nicotiana tabacum (dicot, asterids) for comparison. RESULTS We performed transcriptome sequencing (RNA-Seq) analyses of the nectaries of Ananas comosus and Nicotiana tabacum, to test whether the mechanisms described for nectar production and secretion in Arabidopsis are also present in these plant species. The focus of these analyses is on carbohydrate metabolism and transport (e.g., sucrose-phosphate synthases, invertases, sucrose synthases, SWEETs and further sugar transporters). In addition, the metabolites were analyzed in the nectar, nectaries and leaves of both plant species to address the question of whether concentration gradients for different metabolites exist between the nectaries and nectar The nectar of N. tabacum contains large amounts of glucose, fructose and sucrose, and the sucrose concentration in the nectar appears to be similar to the sucrose concentration in the nectaries. Nectar production and secretion in this species closely resemble corresponding processes in some other dicots, including sucrose synthesis in nectaries and sucrose secretion by SWEET9. The nectar of A. comosus also contains large amounts of glucose, fructose and sucrose and in this species the sucrose concentration in the nectar appears to be higher than the sucrose concentration in the nectaries. Furthermore, orthologs of SWEET9 generally appear to be absent in A. comosus and other monocots. Therefore, sucrose export by SWEETs from nectaries into nectar can be excluded; rather, other mechanisms, such as active sugar export or exocytosis, are more likely. CONCLUSION The mechanisms of nectar production and secretion in N. tabacum appear to be largely similar to those in other dicots, whereas in the monocotyledonous species A. comosus, different synthesis and transport processes are involved.
Collapse
Affiliation(s)
- Thomas Göttlinger
- Molecular Plant Science/Plant Biochemistry, University of Wuppertal, Wuppertal, Germany.
| | - Marcello Pirritano
- Molecular Cell Biology and Microbiology, University of Wuppertal, Wuppertal, Germany
| | - Martin Simon
- Molecular Cell Biology and Microbiology, University of Wuppertal, Wuppertal, Germany
| | - Janina Fuß
- Competence Centre for Genomic Analysis, Kiel, Germany
| | - Gertrud Lohaus
- Molecular Plant Science/Plant Biochemistry, University of Wuppertal, Wuppertal, Germany
| |
Collapse
|
2
|
Pollen Coat Proteomes of Arabidopsis thaliana, Arabidopsis lyrata, and Brassica oleracea Reveal Remarkable Diversity of Small Cysteine-Rich Proteins at the Pollen-Stigma Interface. Biomolecules 2023; 13:biom13010157. [PMID: 36671543 PMCID: PMC9856046 DOI: 10.3390/biom13010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The pollen coat is the outermost domain of the pollen grain and is largely derived from the anther tapetum, which is a secretory tissue that degenerates late in pollen development. By being localised at the interface of the pollen-stigma interaction, the pollen coat plays a central role in mediating early pollination events, including molecular recognition. Amongst species of the Brassicaceae, a growing body of data has revealed that the pollen coat carries a range of proteins, with a number of small cysteine-rich proteins (CRPs) being identified as important regulators of the pollen-stigma interaction. By utilising a state-of-the-art liquid chromatography/tandem mass spectrometry (LC-MS/MS) approach, rich pollen coat proteomic profiles were obtained for Arabidopsis thaliana, Arabidopsis lyrata, and Brassica oleracea, which greatly extended previous datasets. All three proteomes revealed a strikingly large number of small CRPs that were not previously reported as pollen coat components. The profiling also uncovered a wide range of other protein families, many of which were enriched in the pollen coat proteomes and had functions associated with signal transduction, cell walls, lipid metabolism and defence. These proteomes provide an excellent source of molecular targets for future investigations into the pollen-stigma interaction and its potential evolutionary links to plant-pathogen interactions.
Collapse
|
3
|
Sequencing of the Arabidopsis NOR2 reveals its distinct organization and tissue-specific rRNA ribosomal variants. Nat Commun 2021; 12:387. [PMID: 33452254 PMCID: PMC7810690 DOI: 10.1038/s41467-020-20728-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/15/2020] [Indexed: 11/20/2022] Open
Abstract
Despite vast differences between organisms, some characteristics of their genomes are conserved, such as the nucleolus organizing region (NOR). The NOR is constituted of multiple, highly repetitive rDNA genes, encoding the catalytic ribosomal core RNAs which are transcribed from 45S rDNA units. Their precise sequence information and organization remain uncharacterized. Here, using a combination of long- and short-read sequencing technologies we assemble contigs of the Arabidopsis NOR2 rDNA domain. We identify several expressed rRNA gene variants which are integrated into translating ribosomes in a tissue-specific manner. These findings support the concept of tissue specific ribosome subpopulations that differ in their rRNA composition and provide insights into the higher order organization of NOR2. The nucleolus organizing region (NOR) consists of multiple, highly repetitive rDNA genes. Here Sims et al. use both long- and short-read sequencing to determine the organization and sequence of Arabidopsis NOR2 rDNA and show that different rRNA gene variants are integrated into translating ribosomes in a tissue-specific manner.
Collapse
|
4
|
Proteomic and transcriptomic profiling of aerial organ development in Arabidopsis. Sci Data 2020; 7:334. [PMID: 33037224 PMCID: PMC7547660 DOI: 10.1038/s41597-020-00678-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/14/2020] [Indexed: 01/20/2023] Open
Abstract
Plant growth and development are regulated by a tightly controlled interplay between cell division, cell expansion and cell differentiation during the entire plant life cycle from seed germination to maturity and seed propagation. To explore some of the underlying molecular mechanisms in more detail, we selected different aerial tissue types of the model plant Arabidopsis thaliana, namely rosette leaf, flower and silique/seed and performed proteomic, phosphoproteomic and transcriptomic analyses of sequential growth stages using tandem mass tag-based mass spectrometry and RNA sequencing. With this exploratory multi-omics dataset, development dynamics of photosynthetic tissues can be investigated from different angles. As expected, we found progressive global expression changes between growth stages for all three omics types and often but not always corresponding expression patterns for individual genes on transcript, protein and phosphorylation site level. The biggest difference between proteomic- and transcriptomic-based expression information could be observed for seed samples. Proteomic and transcriptomic data is available via ProteomeXchange and ArrayExpress with the respective identifiers PXD018814 and E-MTAB-7978.
Collapse
|
5
|
Analyzing Differentially Expressed Genes and Pathways Associated with Pistil Abortion in Japanese Apricot via RNA-Seq. Genes (Basel) 2020; 11:genes11091079. [PMID: 32942711 PMCID: PMC7565994 DOI: 10.3390/genes11091079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Reproduction is a critical stage in the flower development process, and its failure causes serious problems affecting fruit quality and yield. Pistil abortion is one of the main factors in unsuccessful reproduction and occurs in many fruit plants. In Japanese apricot, the problem of pistil abortion is very common and affects fruit quality and plant yield; however, its molecular mechanism is not clearly understood. Therefore, in the current study, we used RNA-Seq to identify the differentially expressed genes (DEGs) and pathways actively involved in pistil abortion. A total of 3882 differentially expressed genes were found after cutoff and pairwise comparison analysis. According to KEGG pathway analysis, plant hormone signaling transduction and metabolic pathways were found most significantly enriched in this study. A total of 60 transcription factor families such as MADS-box, NAC and TCP showed their role in this process. RT-qPCR assays confirmed that the expression levels were consistent with RNA-Seq results. This study provides an alternative to be considered for further studies and understanding of pistil abortion processes in Japanese apricot, and it provides a reference related to this issue for other deciduous fruit crops.
Collapse
|
6
|
Genome-wide analysis of spatiotemporal gene expression patterns during floral organ development in Brassica rapa. Mol Genet Genomics 2019; 294:1403-1420. [PMID: 31222475 DOI: 10.1007/s00438-019-01585-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
Abstract
Flowering is a key agronomic trait that directly influences crop yield and quality and serves as a model system for elucidating the molecular basis that controls successful reproduction, adaptation, and diversification of flowering plants. Adequate knowledge of continuous series of expression data from the floral transition to maturation is lacking in Brassica rapa. To unravel the genome expression associated with the development of early small floral buds (< 2 mm; FB2), early large floral buds (2-4 mm; FB4), stamens (STs) and carpels (CPs), transcriptome profiling was carried out with a Br300K oligo microarray. The results showed that at least 6848 known nonredundant genes (30% of the genes of the Br300K) were differentially expressed during the floral transition from vegetative tissues to maturation. Functional annotation of the differentially expressed genes (DEGs) (fold change ≥ 5) by comparison with a close relative, Arabidopsis thaliana, revealed 6552 unigenes (4579 upregulated; 1973 downregulated), including 131 Brassica-specific and 116 functionally known floral Arabidopsis homologs. Additionally, 1723, 236 and 232 DEGs were preferentially expressed in the tissues of STs, FB2, and CPs. These DEGs also included 43 transcription factors, mainly AP2/ERF-ERF, NAC, MADS-MIKC, C2H2, bHLH, and WRKY members. The differential gene expression during flower development induced dramatic changes in activities related to metabolic processes (23.7%), cellular (22.7%) processes, responses to the stimuli (7.5%) and reproduction (1%). A relatively large number of DEGs were observed in STs and were overrepresented by photosynthesis-related activities. Subsequent analysis via semiquantitative RT-PCR, histological analysis performed with in situ hybridization of BrLTP1 and transgenic reporter lines (BrLTP promoter::GUS) of B. rapa ssp. pekinensis supported the spatiotemporal expression patterns. Together, these results suggest that a temporally and spatially regulated process of the selective expression of distinct fractions of the same genome leads to the development of floral organs. Interestingly, most of the differentially expressed floral transcripts were located on chromosomes 3 and 9. This study generated a genome expression atlas of the early floral transition to maturation that represented the flowering regulatory elements of Brassica rapa.
Collapse
|
7
|
Dong W, Vannozzi A, Chen F, Hu Y, Chen Z, Zhang L. MORC Domain Definition and Evolutionary Analysis of the MORC Gene Family in Green Plants. Genome Biol Evol 2018; 10:1730-1744. [PMID: 29982569 PMCID: PMC6048995 DOI: 10.1093/gbe/evy136] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2018] [Indexed: 01/04/2023] Open
Abstract
Microrchidia (MORC) proteins have been described as epigenetic regulators and plant immune mediators in Arabidopsis. Typically, plant and animal MORC proteins contain a hallmark GHKL-type (Gyrase, Hsp90, Histidine kinase, MutL) ATPase domain in their N-terminus. Here, 356 and 83 MORC orthologues were identified in 60 plant and 27 animal genomes. Large-scale MORC sequence analyses revealed the presence of a highly conserved motif composition that defined as the MORC domain. The MORC domain was present in both plants and animals, indicating that it originated in the common ancestor before the divergence of plants and animals. Phylogenetic analyses showed that MORC genes in both plant and animal lineages were clearly classified into two major groups, named Plants-Group I, Plants-Group II and Animals-Group I, Animals-Group II, respectively. Further analyses of MORC genes in green plants uncovered that Group I can be subdivided into Group I-1 and Group I-2. Group I-1 only contains seed plant genes, suggesting that Group I-1 and I-2 divergence occurred at least before the emergence of spermatophytes. Group I-2 and Group II have undergone several gene duplications, resulting in the expansion of MORC gene family in angiosperms. Additionally, MORC gene expression analyses in Arabidopsis, soybean, and rice revealed a higher expression level in reproductive tissues compared with other organs, and showed divergent expression patterns for several paralogous gene pairs. Our studies offered new insights into the origins, phylogenetic relationships, and expressional patterns of MORC family members in green plants, which would help to further reveal their functions as plant epigenetic regulators.
Collapse
Affiliation(s)
- Wei Dong
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Italy
| | - Fei Chen
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yue Hu
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zihua Chen
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liangsheng Zhang
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
8
|
Almeida AMR, Piñeyro-Nelson A, Yockteng RB, Specht CD. Comparative analysis of whole flower transcriptomes in the Zingiberales. PeerJ 2018; 6:e5490. [PMID: 30155368 PMCID: PMC6110254 DOI: 10.7717/peerj.5490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/30/2018] [Indexed: 01/14/2023] Open
Abstract
The advancement of next generation sequencing technologies (NGS) has revolutionized our ability to generate large quantities of data at a genomic scale. Despite great challenges, these new sequencing technologies have empowered scientists to explore various relevant biological questions on non-model organisms, even in the absence of a complete sequenced reference genome. Here, we analyzed whole flower transcriptome libraries from exemplar species across the monocot order Zingiberales, using a comparative approach in order to gain insight into the evolution of the molecular mechanisms underlying flower development in the group. We identified 4,153 coding genes shared by all floral transcriptomes analyzed, and 1,748 genes that are only retrieved in the Zingiberales. We also identified 666 genes that are unique to the ginger lineage, and 2,001 that are only found in the banana group, while in the outgroup species Dichorisandra thyrsiflora J.C. Mikan (Commelinaceae) we retrieved 2,686 unique genes. It is possible that some of these genes underlie lineage-specific molecular mechanisms of floral diversification. We further discuss the nature of these lineage-specific datasets, emphasizing conserved and unique molecular processes with special emphasis in the Zingiberales. We also briefly discuss the strengths and shortcomings of de novo assembly for the study of developmental processes across divergent taxa from a particular order. Although this comparison is based exclusively on coding genes, with particular emphasis in transcription factors, we believe that the careful study of other regulatory mechanisms, such as non-coding RNAs, might reveal new levels of complexity, which were not explored in this work.
Collapse
Affiliation(s)
- Ana Maria R Almeida
- Department of Biological Sciences, California State University, Hayward, Hayward, CA, United States of America
| | - Alma Piñeyro-Nelson
- Department of Food and Animal Production, Autonomous Metropolitan University, Xochimilco, Mexico City, DF, Mexico
| | - Roxana B Yockteng
- Centro de Investigaciones Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Tibaitatá, Colombia.,Institut de Systématique, Evolution, Biodiversité-UMR-CNRS, National Museum of Natural History, Paris, France
| | - Chelsea D Specht
- School of Integrative Plant Sciences, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
9
|
Yongfeng W, Aiquan Z, Fengli S, Mao L, Kaijie X, Chao Z, Shudong L, Yajun X. Using Transcriptome Analysis to Identify Genes Involved in Switchgrass Flower Reversion. FRONTIERS IN PLANT SCIENCE 2018; 9:1805. [PMID: 30564266 PMCID: PMC6288819 DOI: 10.3389/fpls.2018.01805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/20/2018] [Indexed: 05/06/2023]
Abstract
Floral reversion is a process in which differentiated floral organs revert back to vegetative organs. Although this phenomenon has been described for decades, the underlying molecular mechanisms remain unclear. In this study, we found that immature switchgrass (Panicum virgatum) inflorescences can revert to neonatal shoots when incubated on a basal medium with benzylaminopurine. We used anatomical and histological methods to verify that these shoots were formed from floret primordia through flower reversion. To further explore the gene regulation of floral reversion in switchgrass, the transcriptome of reversed, unreversed, and uncultured immature inflorescences were analyzed and 517 genes were identified as participating in flower reversion. Annotation using non-redundant databases revealed that these genes are involved in plant hormone biosynthesis and signal transduction, starch and sucrose metabolism, DNA replication and modification, and other processes crucial for switchgrass flower reversion. When four of the genes were overexpressed in Arabidopsis thaliana, vegetative growth was facilitated and reproductive growth was inhibited in transgenic plants. This study provides a basic understanding of genes regulating the floral transition in switchgrass and will promote the research of floral reversion and flower maintenance.
Collapse
Affiliation(s)
- Wang Yongfeng
- College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Zheng Aiquan
- College of Agronomy, Northwest A&F University, Yangling, China
- Yangling Vocational & Technical College, Yangling, China
| | - Sun Fengli
- College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Li Mao
- College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Xu Kaijie
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhang Chao
- College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Liu Shudong
- College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Xi Yajun
- College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- *Correspondence: Xi Yajun,
| |
Collapse
|
10
|
Sun ZC, Zhang LS, Wang ZJ. Genome-wide analysis of miRNAs in Carya cathayensis. BMC PLANT BIOLOGY 2017; 17:228. [PMID: 29187147 PMCID: PMC5708078 DOI: 10.1186/s12870-017-1180-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/20/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND MicroRNA (miRNA) plays an important role in plant development regulation. Hickory is an economically important plant in which the amount of flowering determines its production. RESULTS Here, 51 conserved miRNAs, which belong to 16 families and 195 novel miRNAs were identified in hickory genome. For each conserved miRNA family, we used sequences from hickory and other plants to construct a phylogenetic tree, which shows that each family has members in hickory. Some of the conserved miRNA families (i.e., miR167 and miR397) have more members in hickory than in other plants because of gene expansion. MiR166 exhibited tandem duplication with three copies being observed. Many members of these conserved miRNA families were detected in hickory flowers, and the expression patterns of target genes were opposite to those of the related miRNAs, indicating that miRNAs may have important functions in floral regulation of hickory. CONCLUSIONS Taken together, a comprehensive analysis was conducted to identify miRNAs produced in hickory flower organs, demonstrating functional conservation and diversity of miRNA families among hickory, Arabidopsis, grape, and poplar.
Collapse
Affiliation(s)
- Zhi-Chao Sun
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Liang-Sheng Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
- Center for Genomics and Biotechnology; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Ministry of Education Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zheng-Jia Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
- School of Forestry and Biotechnology, Zhejiang A and F University, Dong Hu Campus, 88 Northern Circle Road, Linan, 311300, China.
| |
Collapse
|
11
|
Zhang SS, Yang H, Ding L, Song ZT, Ma H, Chang F, Liu JX. Tissue-Specific Transcriptomics Reveals an Important Role of the Unfolded Protein Response in Maintaining Fertility upon Heat Stress in Arabidopsis. THE PLANT CELL 2017; 29:1007-1023. [PMID: 28442596 PMCID: PMC5466030 DOI: 10.1105/tpc.16.00916] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/23/2017] [Accepted: 04/24/2017] [Indexed: 05/18/2023]
Abstract
High temperatures have a great impact on plant reproductive development and subsequent fruit and seed set, but the underlying molecular mechanisms are not well understood. We used transcriptome profiling to investigate the effect of heat stress on reproductive development of Arabidopsis thaliana plants and observed distinct response patterns in vegetative versus reproductive tissues. Exposure to heat stress affected reproductive developmental programs, including early phases of anther/ovule development and meiosis. Also, genes participating in the unfolded protein response (UPR) were enriched in the reproductive tissue-specific genes that were upregulated by heat. Moreover, we found that the UPR-deficient bzip28 bzip60 double mutant was sensitive to heat stresses and had reduced silique length and fertility. Comparison of heat-responsive wild type versus bzip28 bzip60 plants identified 521 genes that were regulated by bZIP28 and bZIP60 upon heat stress during reproductive stages, most of which were noncanonical UPR genes. Chromatin immunoprecipitation coupled with high-throughput sequencing analyses revealed 133 likely direct targets of bZIP28 in Arabidopsis seedlings subjected to heat stress, including 27 genes that were also upregulated by heat during reproductive development. Our results provide important insights into heat responsiveness in Arabidopsis reproductive tissues and demonstrate the protective roles of the UPR for maintaining fertility upon heat stress.
Collapse
Affiliation(s)
- Shuang-Shuang Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Hongxing Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Lan Ding
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Ze-Ting Song
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Fang Chang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jian-Xiang Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
12
|
Resentini F, Cyprys P, Steffen JG, Alter S, Morandini P, Mizzotti C, Lloyd A, Drews GN, Dresselhaus T, Colombo L, Sprunck S, Masiero S. SUPPRESSOR OF FRIGIDA (SUF4) Supports Gamete Fusion via Regulating Arabidopsis EC1 Gene Expression. PLANT PHYSIOLOGY 2017; 173:155-166. [PMID: 27920160 PMCID: PMC5210714 DOI: 10.1104/pp.16.01024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 12/05/2016] [Indexed: 05/03/2023]
Abstract
The EGG CELL1 (EC1) gene family of Arabidopsis (Arabidopsis thaliana) comprises five members that are specifically expressed in the egg cell and redundantly control gamete fusion during double fertilization. We investigated the activity of all five EC1 promoters in promoter-deletion studies and identified SUF4 (SUPPRESSOR OF FRIGIDA4), a C2H2 transcription factor, as a direct regulator of the EC1 gene expression. In particular, we demonstrated that SUF4 binds to all five Arabidopsis EC1 promoters, thus regulating their expression. The down-regulation of SUF4 in homozygous suf4-1 ovules results in reduced EC1 expression and delayed sperm fusion, which can be rescued by expressing SUF4-β-glucuronidase under the control of the SUF4 promoter. To identify more gene products able to regulate EC1 expression together with SUF4, we performed coexpression studies that led to the identification of MOM1 (MORPHEUS' MOLECULE1), a component of a silencing mechanism that is independent of DNA methylation marks. In mom1-3 ovules, both SUF4 and EC1 genes are down-regulated, and EC1 genes show higher levels of histone 3 lysine-9 acetylation, suggesting that MOM1 contributes to the regulation of SUF4 and EC1 gene expression.
Collapse
Affiliation(s)
- Francesca Resentini
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy (F.R., P.M., C.M., L.C., S.M.)
- Lehrstuhl Zellbiologie und Pflanzenbiochemie, Biochemie-Zentrum Regensburg, Universität Regensburg, D-93053 Regensburg, Germany (P.C., S.A., T.D., S.S.)
- Department of Biology, University of Utah, Salt Lake City, Utah 84112 (J.G.S., A.L., G.N.D.); and
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Università di Milano, 20133 Milan, Italy (P.M., L.C.)
| | - Philipp Cyprys
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy (F.R., P.M., C.M., L.C., S.M.)
- Lehrstuhl Zellbiologie und Pflanzenbiochemie, Biochemie-Zentrum Regensburg, Universität Regensburg, D-93053 Regensburg, Germany (P.C., S.A., T.D., S.S.)
- Department of Biology, University of Utah, Salt Lake City, Utah 84112 (J.G.S., A.L., G.N.D.); and
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Università di Milano, 20133 Milan, Italy (P.M., L.C.)
| | - Joshua G Steffen
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy (F.R., P.M., C.M., L.C., S.M.)
- Lehrstuhl Zellbiologie und Pflanzenbiochemie, Biochemie-Zentrum Regensburg, Universität Regensburg, D-93053 Regensburg, Germany (P.C., S.A., T.D., S.S.)
- Department of Biology, University of Utah, Salt Lake City, Utah 84112 (J.G.S., A.L., G.N.D.); and
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Università di Milano, 20133 Milan, Italy (P.M., L.C.)
| | - Svenja Alter
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy (F.R., P.M., C.M., L.C., S.M.)
- Lehrstuhl Zellbiologie und Pflanzenbiochemie, Biochemie-Zentrum Regensburg, Universität Regensburg, D-93053 Regensburg, Germany (P.C., S.A., T.D., S.S.)
- Department of Biology, University of Utah, Salt Lake City, Utah 84112 (J.G.S., A.L., G.N.D.); and
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Università di Milano, 20133 Milan, Italy (P.M., L.C.)
| | - Piero Morandini
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy (F.R., P.M., C.M., L.C., S.M.)
- Lehrstuhl Zellbiologie und Pflanzenbiochemie, Biochemie-Zentrum Regensburg, Universität Regensburg, D-93053 Regensburg, Germany (P.C., S.A., T.D., S.S.)
- Department of Biology, University of Utah, Salt Lake City, Utah 84112 (J.G.S., A.L., G.N.D.); and
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Università di Milano, 20133 Milan, Italy (P.M., L.C.)
| | - Chiara Mizzotti
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy (F.R., P.M., C.M., L.C., S.M.)
- Lehrstuhl Zellbiologie und Pflanzenbiochemie, Biochemie-Zentrum Regensburg, Universität Regensburg, D-93053 Regensburg, Germany (P.C., S.A., T.D., S.S.)
- Department of Biology, University of Utah, Salt Lake City, Utah 84112 (J.G.S., A.L., G.N.D.); and
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Università di Milano, 20133 Milan, Italy (P.M., L.C.)
| | - Alan Lloyd
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy (F.R., P.M., C.M., L.C., S.M.)
- Lehrstuhl Zellbiologie und Pflanzenbiochemie, Biochemie-Zentrum Regensburg, Universität Regensburg, D-93053 Regensburg, Germany (P.C., S.A., T.D., S.S.)
- Department of Biology, University of Utah, Salt Lake City, Utah 84112 (J.G.S., A.L., G.N.D.); and
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Università di Milano, 20133 Milan, Italy (P.M., L.C.)
| | - Gary N Drews
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy (F.R., P.M., C.M., L.C., S.M.)
- Lehrstuhl Zellbiologie und Pflanzenbiochemie, Biochemie-Zentrum Regensburg, Universität Regensburg, D-93053 Regensburg, Germany (P.C., S.A., T.D., S.S.)
- Department of Biology, University of Utah, Salt Lake City, Utah 84112 (J.G.S., A.L., G.N.D.); and
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Università di Milano, 20133 Milan, Italy (P.M., L.C.)
| | - Thomas Dresselhaus
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy (F.R., P.M., C.M., L.C., S.M.)
- Lehrstuhl Zellbiologie und Pflanzenbiochemie, Biochemie-Zentrum Regensburg, Universität Regensburg, D-93053 Regensburg, Germany (P.C., S.A., T.D., S.S.)
- Department of Biology, University of Utah, Salt Lake City, Utah 84112 (J.G.S., A.L., G.N.D.); and
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Università di Milano, 20133 Milan, Italy (P.M., L.C.)
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy (F.R., P.M., C.M., L.C., S.M.)
- Lehrstuhl Zellbiologie und Pflanzenbiochemie, Biochemie-Zentrum Regensburg, Universität Regensburg, D-93053 Regensburg, Germany (P.C., S.A., T.D., S.S.)
- Department of Biology, University of Utah, Salt Lake City, Utah 84112 (J.G.S., A.L., G.N.D.); and
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Università di Milano, 20133 Milan, Italy (P.M., L.C.)
| | - Stefanie Sprunck
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy (F.R., P.M., C.M., L.C., S.M.);
- Lehrstuhl Zellbiologie und Pflanzenbiochemie, Biochemie-Zentrum Regensburg, Universität Regensburg, D-93053 Regensburg, Germany (P.C., S.A., T.D., S.S.);
- Department of Biology, University of Utah, Salt Lake City, Utah 84112 (J.G.S., A.L., G.N.D.); and
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Università di Milano, 20133 Milan, Italy (P.M., L.C.)
| | - Simona Masiero
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy (F.R., P.M., C.M., L.C., S.M.);
- Lehrstuhl Zellbiologie und Pflanzenbiochemie, Biochemie-Zentrum Regensburg, Universität Regensburg, D-93053 Regensburg, Germany (P.C., S.A., T.D., S.S.);
- Department of Biology, University of Utah, Salt Lake City, Utah 84112 (J.G.S., A.L., G.N.D.); and
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Università di Milano, 20133 Milan, Italy (P.M., L.C.)
| |
Collapse
|
13
|
Lu Z, Xu J, Li W, Zhang L, Cui J, He Q, Wang L, Jin B. Transcriptomic Analysis Reveals Mechanisms of Sterile and Fertile Flower Differentiation and Development in Viburnum macrocephalum f. keteleeri. FRONTIERS IN PLANT SCIENCE 2017; 8:261. [PMID: 28298915 PMCID: PMC5331048 DOI: 10.3389/fpls.2017.00261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/13/2017] [Indexed: 05/19/2023]
Abstract
Sterile and fertile flowers are an important evolutionary developmental (evo-devo) phenotype in angiosperm flowers, playing important roles in pollinator attraction and sexual reproductive success. However, the gene regulatory mechanisms underlying fertile and sterile flower differentiation and development remain largely unknown. Viburnum macrocephalum f. keteleeri, which possesses fertile and sterile flowers in a single inflorescence, is a useful candidate species for investigating the regulatory networks in differentiation and development. We developed a de novo-assembled flower reference transcriptome. Using RNA sequencing (RNA-seq), we compared the expression patterns of fertile and sterile flowers isolated from the same inflorescence over its rapid developmental stages. The flower reference transcriptome consisted of 105,683 non-redundant transcripts, of which 5,675 transcripts showed significant differential expression between fertile and sterile flowers. Combined with morphological and cytological changes between fertile and sterile flowers, we identified expression changes of many genes potentially involved in reproductive processes, phytohormone signaling, and cell proliferation and expansion using RNA-seq and qRT-PCR. In particular, many transcription factors (TFs), including MADS-box family members and ABCDE-class genes, were identified, and expression changes in TFs involved in multiple functions were analyzed and highlighted to determine their roles in regulating fertile and sterile flower differentiation and development. Our large-scale transcriptional analysis of fertile and sterile flowers revealed the dynamics of transcriptional networks and potentially key components in regulating differentiation and development of fertile and sterile flowers in Viburnum macrocephalum f. keteleeri. Our data provide a useful resource for Viburnum transcriptional research and offer insights into gene regulation of differentiation of diverse evo-devo processes in flowers.
Collapse
|
14
|
Luo Z, Hu J, Zhao Z, Zhang D. Transcriptomic analysis of heteromorphic stamens in Cassia biscapsularis L. Sci Rep 2016; 6:31600. [PMID: 27527392 PMCID: PMC4985808 DOI: 10.1038/srep31600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 07/25/2016] [Indexed: 11/17/2022] Open
Abstract
Hermaphroditic flowers have evolved primarily under the selection on male function. Evolutionary modification often leads to stamen differentiation within flowers, or “heteranthery”, a phenomenon intrigued scientists since the 18th century until recently. However, the genetic basis and molecular regulation mechanism has barely been touched. Here we conducted comparative transcriptome profiling in Cassia biscapsularis L., a heterantherous species with representative patterns of stamen differentiation. Numerous differentially expressed genes (DEGs) were detected between the staminodes (the degenerated stamens) and fertile stamens, while much fewer genes differentially expressed among the three sets of fertile stamens. GO term enrichment and KEGG pathway analysis characterized functional properties of DEGs in different stamen types. Transcripts showing close correlation between expression pattern and stamen types were identified. Transcription factors from the bHLH family were suggested to have taken crucial part in the formation of staminodes. This first global transcriptomic analysis focusing on stamen differentiation opens the door toward a more comprehensive understanding on the molecular regulation of floral organ evolution. Especially, the generated unigene resource would be valuable for developing male sterile lines in agronomy.
Collapse
Affiliation(s)
- Zhonglai Luo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jin Hu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou 510650, China.,Shenzhen Park Service, Shenzhen 51800, China
| | - Zhongtao Zhao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou 510650, China
| | - Dianxiang Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
15
|
Hussain A, Mun BG, Imran QM, Lee SU, Adamu TA, Shahid M, Kim KM, Yun BW. Nitric Oxide Mediated Transcriptome Profiling Reveals Activation of Multiple Regulatory Pathways in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:975. [PMID: 27446194 PMCID: PMC4926318 DOI: 10.3389/fpls.2016.00975] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/20/2016] [Indexed: 05/18/2023]
Abstract
Imbalance between the accumulation and removal of nitric oxide and its derivatives is a challenge faced by all plants at the cellular level, and is especially important under stress conditions. Exposure of plants to various biotic and abiotic stresses causes rapid changes in cellular redox tone potentiated by the rise in reactive nitrogen species that serve as signaling molecules in mediating defensive responses. To understand mechanisms mediated by these signaling molecules, we performed a large-scale analysis of the Arabidopsis transcriptome induced by nitrosative stress. We generated an average of 84 and 91 million reads from three replicates each of control and 1 mM S-nitrosocysteine (CysNO)-infiltrated Arabidopsis leaf samples, respectively. After alignment, more than 95% of all reads successfully mapped to the reference and 32,535 genes and 55,682 transcripts were obtained. CysNO infiltration caused differential expression of 6436 genes (3448 up-regulated and 2988 down-regulated) and 6214 transcripts (3335 up-regulated and 2879 down-regulated) 6 h post-infiltration. These differentially expressed genes were found to be involved in key physiological processes, including plant defense against various biotic and abiotic stresses, hormone signaling, and other developmental processes. After quantile normalization of the FPKM values followed by student's T-test (P < 0.05) we identified 1165 DEGs (463 up-regulated and 702 down-regulated) with at least 2-folds change in expression after CysNO treatment. Expression patterns of selected genes involved in various biological pathways were verified using quantitative real-time PCR. This study provides comprehensive information about plant responses to nitrosative stress at transcript level and would prove helpful in understanding and incorporating mechanisms associated with nitrosative stress responses in plants.
Collapse
Affiliation(s)
- Adil Hussain
- Department of Agriculture, Abdul Wali Khan University MardanMardan, Pakistan
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Bong-Gyu Mun
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Qari M. Imran
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Sang-Uk Lee
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Teferi A. Adamu
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Muhammad Shahid
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Kyung-Min Kim
- Laboratory of Plant Molecular Breeding, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Byung-Wook Yun
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| |
Collapse
|
16
|
Qian S, Wang Y, Ma H, Zhang L. Expansion and Functional Divergence of Jumonji C-Containing Histone Demethylases: Significance of Duplications in Ancestral Angiosperms and Vertebrates. PLANT PHYSIOLOGY 2015; 168:1321-37. [PMID: 26059336 PMCID: PMC4528752 DOI: 10.1104/pp.15.00520] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/04/2015] [Indexed: 05/23/2023]
Abstract
Histone modifications, such as methylation and demethylation, are crucial mechanisms altering chromatin structure and gene expression. Recent biochemical and molecular studies have uncovered a group of histone demethylases called Jumonji C (JmjC) domain proteins. However, their evolutionary history and patterns have not been examined systematically. Here, we report extensive analyses of eukaryotic JmjC genes and define 14 subfamilies, including the Lysine-Specific Demethylase3 (KDM3), KDM5, JMJD6, Putative-Lysine-Specific Demethylase11 (PKDM11), and PKDM13 subfamilies, shared by plants, animals, and fungi. Other subfamilies are detected in plants and animals but not in fungi (PKDM12) or in animals and fungi but not in plants (KDM2 and KDM4). PKDM7, PKDM8, and PKDM9 are plant-specific groups, whereas Jumonji, AT-Rich Interactive Domain2, KDM6, and PKDM10 are animal specific. In addition to known domains, most subfamilies have characteristic conserved amino acid motifs. Whole-genome duplication (WGD) was likely an important mechanism for JmjC duplications, with four pairs from an angiosperm-wide WGD and others from subsequent WGDs. Vertebrates also experienced JmjC duplications associated with the vertebrate ancestral WGDs, with additional mammalian paralogs from tandem duplication and possible transposition. The sequences of paralogs have diverged in both known functional domains and other regions, showing evidence of selection pressure. The increases of JmjC copy number and the divergences in sequence and expression might have contributed to the divergent functions of JmjC genes, allowing the angiosperms and vertebrates to adapt to a great number of ecological niches and contributing to their evolutionary successes.
Collapse
Affiliation(s)
- Shengzhan Qian
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China (S.Q., Y.W., H.M.);Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China (H.M.); andDepartment of Bioinformatics, School of Life Sciences and Technology, and Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, China (L.Z.)
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China (S.Q., Y.W., H.M.);Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China (H.M.); andDepartment of Bioinformatics, School of Life Sciences and Technology, and Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, China (L.Z.)
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China (S.Q., Y.W., H.M.);Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China (H.M.); andDepartment of Bioinformatics, School of Life Sciences and Technology, and Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, China (L.Z.)
| | - Liangsheng Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China (S.Q., Y.W., H.M.);Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China (H.M.); andDepartment of Bioinformatics, School of Life Sciences and Technology, and Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, China (L.Z.)
| |
Collapse
|