1
|
Li X, Zhang L, Wei X, Datta T, Wei F, Xie Z. Polyploidization: A Biological Force That Enhances Stress Resistance. Int J Mol Sci 2024; 25:1957. [PMID: 38396636 PMCID: PMC10888447 DOI: 10.3390/ijms25041957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Organisms with three or more complete sets of chromosomes are designated as polyploids. Polyploidy serves as a crucial pathway in biological evolution and enriches species diversity, which is demonstrated to have significant advantages in coping with both biotic stressors (such as diseases and pests) and abiotic stressors (like extreme temperatures, drought, and salinity), particularly in the context of ongoing global climate deterioration, increased agrochemical use, and industrialization. Polyploid cultivars have been developed to achieve higher yields and improved product quality. Numerous studies have shown that polyploids exhibit substantial enhancements in cell size and structure, physiological and biochemical traits, gene expression, and epigenetic modifications compared to their diploid counterparts. However, some research also suggested that increased stress tolerance might not always be associated with polyploidy. Therefore, a more comprehensive and detailed investigation is essential to complete the underlying stress tolerance mechanisms of polyploids. Thus, this review summarizes the mechanism of polyploid formation, the polyploid biochemical tolerance mechanism of abiotic and biotic stressors, and molecular regulatory networks that confer polyploidy stress tolerance, which can shed light on the theoretical foundation for future research.
Collapse
Affiliation(s)
- Xiaoying Li
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T & R Base of Zhengzhou University, Zhengzhou 450002, China
| | - Luyue Zhang
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T & R Base of Zhengzhou University, Zhengzhou 450002, China
| | - Tanusree Datta
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Fang Wei
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhengqing Xie
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Wang J, Song J, Qi H, Zhang H, Wang L, Zhang H, Cui C, Ji G, Muhammad S, Sun G, Xu Z, Zhang H. Overexpression of 2-Cys Peroxiredoxin alleviates the NaHCO 3 stress-induced photoinhibition and reactive oxygen species damage of tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107876. [PMID: 37413942 DOI: 10.1016/j.plaphy.2023.107876] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Plant 2-cysteine peroxiredoxin (2-Cys Prx) is a mercaptan peroxidase localized in chloroplasts and has unique catalytic properties. To explore the salt stress tolerance mechanisms of 2-Cys Prx in plants, we analyzed the effects of overexpressing the 2-CysPrx gene on the physiological and biochemical metabolic processes of tobacco under NaHCO3 stress through joint physiological and transcriptomic analysis. These parameters included growth phenotype, chlorophyll, photosynthesis, and antioxidant system. After NaHCO3 stress treatment, a total of 5360 differentially expressed genes (DEGs) were identified in 2-Cysprx overexpressed (OE) plants, and the number of DEGs was significantly lower than 14558 in wild-type (WT) plants. KEGG enrichment analysis showed that DEGs were mainly enriched in photosynthetic pathways, photosynthetic antenna proteins, and porphyrin and chlorophyll metabolism. Overexpressing 2-CysPrx significantly reduced the growth inhibition of tobacco induced by NaHCO3 stress, alleviating the down-regulation of the DEGs related to chlorophyll synthesis, photosynthetic electron transport and the Calvin cycle and the up-regulation of those related to chlorophyll degradation. In addition, it also interacted with other redox systems such as thioredoxins (Trxs) and the NADPH-dependent Trx reductase C (NTRC), and mediated the positive regulation of the activities of antioxidant enzymes such as peroxidase (POD) and catalase (CAT) and the expression of related genes, thereby reducing the accumulation of superoxide anion (O2·-), hydrogen peroxide (H2O2) and malondialdehyde (MDA). In conclusion, 2-CysPrx overexpression could alleviate the NaHCO3 stress-induced photoinhibition and oxidative damage by regulating chlorophyll metabolism, promoting photosynthesis and participating in the regulation of antioxidant enzymes, and thus improve the ability of plants to resist salt stress damage.
Collapse
Affiliation(s)
- Jiechen Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jiaqi Song
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Hongling Qi
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, 157011, China
| | - Hongjiao Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Lu Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Hongbo Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Congcong Cui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Guangxin Ji
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Salman Muhammad
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Guangyu Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Zhiru Xu
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Huihui Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
3
|
Kaseb MO, Umer MJ, Lu X, He N, Anees M, El-Remaly E, Yousef AF, Salama EAA, Kalaji HM, Liu W. Comparative physiological and biochemical mechanisms in diploid, triploid, and tetraploid watermelon (Citrullus lanatus L.) grafted by branches. Sci Rep 2023; 13:4993. [PMID: 36973331 PMCID: PMC10043263 DOI: 10.1038/s41598-023-32225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Seed production for polyploid watermelons is costly, complex, and labor-intensive. Tetraploid and triploid plants produce fewer seeds/fruit, and triploid embryos have a harder seed coat and are generally weaker than diploid seeds. In this study, we propagated tetraploid and triploid watermelons by grafting cuttings onto gourd rootstock (C. maxima × C. mochata). We used three different scions: the apical meristem (AM), one-node (1N), and two-node (2N) branches of diploid, triploid, and tetraploid watermelon plants. We then evaluated the effects of grafting on plant survival, some biochemical traits, oxidants, antioxidants, and hormone levels at different time points. We found significant differences between the polyploid watermelons when the 1N was used as a scion. Tetraploid watermelons had the highest survival rates and the highest levels of hormones, carbohydrates, and antioxidant activity compared to diploid watermelons, which may explain the high compatibility of tetraploid watermelons and the deterioration of the graft zone in diploid watermelons. Our results show that hormone production and enzyme activity with high carbohydrate content, particularly in the 2-3 days after transplantation, contribute to a high survival rate. Sugar application resulted in increased carbohydrate accumulation in the grafted combination. This study also presents an alternative and cost-effective approach to producing more tetraploid and triploid watermelon plants for breeding and seed production by using branches as sprouts.
Collapse
Affiliation(s)
- Mohamed Omar Kaseb
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou, 450009, China.
- Cross Pollenated Plants Department, Horticulture Research Institute, Agriculture Research Center, Giza, 12611, Egypt.
| | - Muhammad Jawad Umer
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou, 450009, China
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, 455000, China
| | - Xuqiang Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou, 450009, China
| | - Nan He
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou, 450009, China
| | - Muhammad Anees
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou, 450009, China
| | - Eman El-Remaly
- Cross Pollenated Plants Department, Horticulture Research Institute, Agriculture Research Center, Giza, 12611, Egypt
| | - Ahmed Fathy Yousef
- Department of Horticulture, College of Agriculture, University of Al-Azhar (Branch Assiut), Assiut, 71524, Egypt
| | - Ehab A A Salama
- Agricultural Botany Department, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, 21531, Egypt
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, TNAU, Coimbatore, 641003, India
| | - Hazem M Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, Warsaw, Poland
- Institute of Technology and Life Sciences, National Research Institute, Falenty, Al. Hrabska 3, 05-090, Raszyn, Poland
| | - Wenge Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou, 450009, China.
| |
Collapse
|
4
|
Yan K, Cui J, Zhi Y, Su H, Yu S, Zhou S. Deciphering salt tolerance in tetraploid honeysuckle (Lonicera japonica Thunb.) from ion homeostasis, water balance and antioxidant defense. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:266-274. [PMID: 36652848 DOI: 10.1016/j.plaphy.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/31/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Polyploid plants are usually salt tolerant, but the underlying mechanisms remain fragmental. This study aimed to dissect salt resistance of tetraploid honeysuckle (Lonicera japonica Thunb.) from ion balance, osmotic adjustment and antioxidant defense by contrasting with its autodiploid through pot experiments. Less salt-induced reduction in leaf and root biomass confirmed higher tolerance in tetraploid honeysuckle, and moreover, its greater stability of photosynthetic apparatus was verified by mild influence on delayed chlorophyll fluorescence transients. Compared with the diploid, greater root Na+ exclusion helped alleviate salt-induced decrease in leaf K+/Na+ for maintaining ion balance in tetraploid honeysuckle, and relied on Na+/H+ antiporter activity, because their difference of root Na+ exclusion disappeared after applying a specific inhibitor of Na+/H+ antiporter. Lower reduction in leaf relative water content suggested higher tolerance to osmotic pressure in tetraploid honeysuckle under salt stress, which hardly resulted from osmotic adjustment given the similar decrease extent of leaf osmotic potential with that in the diploid. In contrast to significant elevated leaf lipid peroxidation and superoxide dismutase and ascorbate peroxidase activities in the diploid, no obvious changes in them suggested that tetraploid honeysuckle never suffered salt-induced oxidative stress. According to more accumulated leaf chlorogenic acid and phenolics and greater elevated leaf phenylalanine ammonia-lyase activity and transcription, leaf phenolic synthesis was enhanced greater in tetraploid honeysuckle upon salt stress, which might serve to prevent oxidative threat by consuming reducing power. In conclusion, polyploidy enhanced salt tolerance in honeysuckle by maintaining ion homeostasis and water balance and preventing oxidative stress.
Collapse
Affiliation(s)
- Kun Yan
- School of Agriculture, Ludong University, Yantai, 264025, China.
| | - Jinxin Cui
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yibo Zhi
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Hongyan Su
- School of Agriculture, Ludong University, Yantai, 264025, China; The Institute of Ecological Garden, Ludong University, Yantai, 264025, China.
| | - Shunyang Yu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Yantai, 264003, China
| | - Shiwei Zhou
- School of Agriculture, Ludong University, Yantai, 264025, China
| |
Collapse
|
5
|
Salt-Induced Changes in Cytosolic pH and Photosynthesis in Tobacco and Potato Leaves. Int J Mol Sci 2022; 24:ijms24010491. [PMID: 36613934 PMCID: PMC9820604 DOI: 10.3390/ijms24010491] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Salinity is one of the most common factors limiting the productivity of crops. The damaging effect of salt stress on many vital plant processes is mediated, on the one hand, by the osmotic stress caused by large concentrations of Na+ and Cl- outside the root and, on the other hand, by the toxic effect of these ions loaded in the cell. In our work, the influence of salinity on the changes in photosynthesis, transpiration, water content and cytosolic pH in the leaves of two important crops of the Solanaceae family-tobacco and potato-was investigated. Salinity caused a decrease in photosynthesis activity, which manifested as a decrease in the quantum yield of photosystem II and an increase in non-photochemical quenching. Along with photosynthesis limitation, there was a slight reduction in the relative water content in the leaves and a decrease in transpiration, determined by the crop water stress index. Furthermore, a decrease in cytosolic pH was detected in tobacco and potato plants transformed by the gene of pH-sensitive protein Pt-GFP. The potential mechanisms of the salinity influence on the activity of photosynthesis were analyzed with the comparison of the parameters' dynamics, as well as the salt content in the leaves.
Collapse
|
6
|
Alinia M, Kazemeini SA, Dadkhodaie A, Sepehri M, Mahjenabadi VAJ, Amjad SF, Poczai P, El-Ghareeb D, Bassouny MA, Abdelhafez AA. Co-application of ACC deaminase-producing rhizobial bacteria and melatonin improves salt tolerance in common bean (Phaseolus vulgaris L.) through ion homeostasis. Sci Rep 2022; 12:22105. [PMID: 36543813 PMCID: PMC9772384 DOI: 10.1038/s41598-022-26084-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
A comprehensive body of scientific evidence indicates that rhizobial bacteria and melatonin enhance salt tolerance of crop plants. The overall goal of this research was to evaluate the ability of Rhizobium leguminoserum bv phaseoli to suppress salinity stress impacts in common bean treated with melatonin. Treatments included bacterial inoculations (inoculated (RI) and non-inoculated (NI)), different salinity levels (non-saline (NS), 4 (S1) and 8 (S2) dS m-1 of NaCl) and priming (dry (PD), melatonin (PM100) and hydro (PH) priming) with six replications in growing media containing sterile sand and perlite (1:1). The results showed that the bacterial strain had the ability to produce indole acetic acid (IAA), ACC deaminase and siderophore. Plants exposed to salinity stress indicated a significant decline in growth, yield, yield components, nitrogen fixation and selective transport (ST), while showed a significant increase in sodium uptake. However, the combination of PM100 and RI treatments by improving growth, photosynthesis rate and nitrogen fixation positively influenced plant performance in saline conditions. The combined treatment declined the negative impacts of salinity by improving the potassium translocation, potassium to sodium ratio in the shoot and root and ST. In conclusion, the combination of melatonin and ACC deaminase producing rhizobium mitigated the negative effects of salinity. This result is attributed to the increased ST and decreased sodium uptake, which significantly reduced the accumulation of sodium ions in shoot.
Collapse
Affiliation(s)
- Mozhgan Alinia
- grid.412573.60000 0001 0745 1259Plant Production and Genetics Department, Shiraz University, Shiraz, Iran
| | - Seyed A. Kazemeini
- grid.412573.60000 0001 0745 1259Plant Production and Genetics Department, Shiraz University, Shiraz, Iran
| | - Ali Dadkhodaie
- grid.412573.60000 0001 0745 1259Plant Production and Genetics Department, Shiraz University, Shiraz, Iran
| | - Mozhgan Sepehri
- grid.412573.60000 0001 0745 1259Soil Science Department, Shiraz University, Shiraz, Iran
| | | | - Syeda F. Amjad
- grid.413016.10000 0004 0607 1563Department of Botany, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Peter Poczai
- grid.7737.40000 0004 0410 2071Botany Unit, Finnish Museum of Natural History, University of Helsinki, 00014 Helsinki, Finland
| | - Doaa El-Ghareeb
- grid.419725.c0000 0001 2151 8157Agriculture Genetic Engineering Research Institute (AGERI), Agriculture Research Centre, Giza, Egypt
| | - Mohamed A. Bassouny
- grid.411660.40000 0004 0621 2741Soils and Water Department, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Toukh, Qalyoubia Egypt
| | - Ahmed A. Abdelhafez
- grid.252487.e0000 0000 8632 679XDepartment of Soils and Water, Faculty of Agriculture, New Valley University, Kharga, Egypt ,grid.423564.20000 0001 2165 2866National Committee of Soil Sciences, Academy of Scientific Research and Technology, Cairo, Egypt
| |
Collapse
|
7
|
Mousavi SS, Karami A, Maggi F. Photosynthesis and chlorophyll fluorescence of Iranian licorice ( Glycyrrhiza glabra l.) accessions under salinity stress. FRONTIERS IN PLANT SCIENCE 2022; 13:984944. [PMID: 36275588 PMCID: PMC9585319 DOI: 10.3389/fpls.2022.984944] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
While salinity is increasingly becoming a prominent concern in arable farms around the globe, various treatments can be used for the mitigation of salt stress. Here, the effective presence of Azotobacter sp. inoculation (A1) and absence of inoculation (A0) was evaluated on Iranian licorice plants under NaCl stress (0 and 200 mM) (S0 and S1, respectively). In this regard, 16 Iranian licorice (Glycyrrhiza glabra L.) accessions were evaluated for the effects on photosynthesis and chlorophyll fluorescence. Leaf samples were measured for photosynthetic pigments (via a spectrophotometer), stomatal and trichome-related features (via SEM), along with several other morphological and biochemical features. The results revealed an increase in the amount of carotenoids that was caused by bacterial inoculation, which was 28.3% higher than the non-inoculated treatment. Maximum initial fluorescence intensity (F0) (86.7) was observed in the 'Bardsir' accession. Meanwhile, the highest variable fluorescence (Fv), maximal fluorescence intensity (Fm), and maximum quantum yield (Fv/Fm) (0.3, 0.4, and 0.8, respectively) were observed in the 'Eghlid' accession. Regarding anatomical observations of the leaf structure, salinity reduced stomatal density but increased trichome density. Under the effect of bacterial inoculation, salinity stress was mitigated. With the effect of bacterial inoculation under salinity stress, stomatal length and width increased, compared to the condition of no bacterial inoculation. Minimum malondialdehyde content was observed in 'Mahabad' accession (17.8 μmol/g FW). Principle component analysis (PCA) showed that 'Kashmar', 'Sepidan', 'Bajgah', 'Kermanshah', and 'Taft' accessions were categorized in the same group while being characterized by better performance in the aerial parts of plants. Taken together, the present results generally indicated that selecting the best genotypes, along with exogenous applications of Azotobacter, can improve the outcomes of licorice cultivation for industrial purposes under harsh environments.
Collapse
Affiliation(s)
- Seyyed Sasan Mousavi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Akbar Karami
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Camerino, Italy
| |
Collapse
|
8
|
Lu W, Wei G, Zhou B, Liu J, Zhang S, Guo J. A comparative analysis of photosynthetic function and reactive oxygen species metabolism responses in two hibiscus cultivars under saline conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 184:87-97. [PMID: 35636335 DOI: 10.1016/j.plaphy.2022.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/29/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Hibiscus (Hibiscus syriacus Linn.) is considered to be an important flowering shrub in Asia, and has high medicinal value. However, there are few studies on its cultivation and application in salinity soils. To understand the photosynthetic adaptive strategies employed by hibiscus to deal with saline conditions, the potential tolerant [H. syriacus 'Duede Brabaul' (DB)] and sensitive [H. syriacus 'Blueberry Smoothie' (BS)] cultivars were grown under 0-200 mM NaCl concentrations followed by a comprehensive assessment of their photosynthetic function and reactive oxygen species (ROS) metabolism. NaCl treatment significantly reduced the chlorophyll content of the two hibiscus cultivars, and the photosynthetic carbon assimilation capacity of the hibiscus leaves decreased, which was a result of stomatal and nonstomatal limiting factors. With the extension of NaCl stress days, nonphotochemical quenching (NPQ) can be significantly increased, which can effectively activate the nonradiant heat energy dissipation mechanism to release excess excitation energy to reduce the damage from the stressful environment and protect itself. Moreover, DB showed high antioxidant activities of reduced glutathione, and lower accumulation of ROS compared to BS. Taken together, this work suggests that the greater oxidative damage of the sensitive cultivar BS leaves is an important reason for its higher degree of photoinhibition to PSII than those of the tolerant cultivar DB leaves under NaCl stress.
Collapse
Affiliation(s)
- Wenjing Lu
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, China
| | - Guoqing Wei
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, China
| | - Bowen Zhou
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, China
| | - Jinying Liu
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, China
| | - Shuyong Zhang
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, China.
| | - Jing Guo
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
9
|
Yan K, Mei H, Dong X, Zhou S, Cui J, Sun Y. Dissecting photosynthetic electron transport and photosystems performance in Jerusalem artichoke ( Helianthus tuberosus L.) under salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:905100. [PMID: 35968142 PMCID: PMC9363833 DOI: 10.3389/fpls.2022.905100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Jerusalem artichoke (Helianthus tuberosus L.), a vegetable with medical applications, has a strong adaptability to marginal barren land, but the suitability as planting material in saline land remains to be evaluated. This study was envisaged to examine salt tolerance in Jerusalem artichoke from the angle of photosynthetic apparatus stability by dissecting the photosynthetic electron transport process. Potted plants were exposed to salt stress by watering with a nutrient solution supplemented with NaCl. Photosystem I (PSI) and photosystem II (PSII) photoinhibition appeared under salt stress, according to the significant decrease in the maximal photochemical efficiency of PSI (△MR/MR0) and PSII. Consistently, leaf hydrogen peroxide (H2O2) concentration and lipid peroxidation were remarkably elevated after 8 days of salt stress, confirming salt-induced oxidative stress. Besides photoinhibition of the PSII reaction center, the PSII donor side was also impaired under salt stress, as a K step emerged in the prompt chlorophyll transient, but the PSII acceptor side was more vulnerable, considering the decreased probability of an electron movement beyond the primary quinone (ETo/TRo) upon depressed upstream electron donation. The declined performance of entire PSII components inhibited electron inflow to PSI, but severe PSI photoinhibition was not averted. Notably, PSI photoinhibition elevated the excitation pressure of PSII (1-qP) by inhibiting the PSII acceptor side due to the negative and positive correlation of △MR/MR0 with 1-qP and ETo/TRo, respectively. Furthermore, excessive reduction of PSII acceptors side due to PSI photoinhibition was simulated by applying a specific inhibitor blocking electron transport beyond primary quinone, demonstrating that PSII photoinhibition was actually accelerated by PSI photoinhibition under salt stress. In conclusion, PSII and PSI vulnerabilities were proven in Jerusalem artichoke under salt stress, and PSII inactivation, which was a passive consequence of PSI photoinhibition, hardly helped protect PSI. As a salt-sensitive species, Jerusalem artichoke was recommended to be planted in non-saline marginal land or mild saline land with soil desalination measures.
Collapse
Affiliation(s)
- Kun Yan
- School of Agriculture, Ludong University, Yantai, China
| | - Huimin Mei
- School of Life Sciences, Liaoning University, Shenyang, China
| | - Xiaoyan Dong
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Yantai, China
| | - Shiwei Zhou
- School of Agriculture, Ludong University, Yantai, China
| | - Jinxin Cui
- School of Agriculture, Ludong University, Yantai, China
| | - Yanhong Sun
- School of Environmental and Material Engineering, Yantai University, Yantai, China
| |
Collapse
|
10
|
Wang N, Fan X, Lin Y, Li Z, Wang Y, Zhou Y, Meng W, Peng Z, Zhang C, Ma J. Alkaline Stress Induces Different Physiological, Hormonal and Gene Expression Responses in Diploid and Autotetraploid Rice. Int J Mol Sci 2022; 23:ijms23105561. [PMID: 35628377 PMCID: PMC9142035 DOI: 10.3390/ijms23105561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
Saline−alkaline stress is a critical abiotic stress that negatively affects plants’ growth and development. Considerably higher enhancements in plant tolerance to saline−alkaline stress have often been observed in polyploid plants compared to their diploid relatives, the underlying mechanism of which remains elusive. In this study, we explored the variations in morphological and physiological characteristics, phytohormones, and genome-wide gene expression between an autotetraploid rice and its diploid relative in response to alkaline stress. It was observed that the polyploidization in the autotetraploid rice imparted a higher level of alkaline tolerance than in its diploid relative. An eclectic array of physiological parameters commonly used for abiotic stress, such as proline, soluble sugars, and malondialdehyde, together with the activities of some selected antioxidant enzymes, was analyzed at five time points in the first 24 h following the alkaline stress treatment between the diploid and autotetraploid rice. Phytohormones, such as abscisic acid and indole-3-acetic acid were also comparatively evaluated between the two types of rice with different ploidy levels under alkaline stress. Transcriptomic analysis revealed that gene expression patterns were altered in accordance with the variations in the cellular levels of phytohormones between diploid and autotetraploid plants upon alkaline stress. In particular, the expression of genes related to peroxide and transcription factors was substantially upregulated in autotetraploid plants compared to diploid plants in response to the alkaline stress treatment. In essence, diploid and autotetraploid rice plants exhibited differential gene expression patterns in response to the alkaline stress, which may shed more light on the mechanism underpinning the ameliorated plant tolerance to alkaline stress following genome duplication.
Collapse
Affiliation(s)
- Ningning Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (Y.L.); (Z.L.); (Y.W.); (Y.Z.); (W.M.); (C.Z.)
| | - Xuhong Fan
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China;
| | - Yujie Lin
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (Y.L.); (Z.L.); (Y.W.); (Y.Z.); (W.M.); (C.Z.)
| | - Zhe Li
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (Y.L.); (Z.L.); (Y.W.); (Y.Z.); (W.M.); (C.Z.)
| | - Yingkai Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (Y.L.); (Z.L.); (Y.W.); (Y.Z.); (W.M.); (C.Z.)
| | - Yiming Zhou
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (Y.L.); (Z.L.); (Y.W.); (Y.Z.); (W.M.); (C.Z.)
| | - Weilong Meng
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (Y.L.); (Z.L.); (Y.W.); (Y.Z.); (W.M.); (C.Z.)
| | - Zhanwu Peng
- Information Center, Jilin Agricultural University, Changchun 130000, China;
| | - Chunying Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (Y.L.); (Z.L.); (Y.W.); (Y.Z.); (W.M.); (C.Z.)
| | - Jian Ma
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (Y.L.); (Z.L.); (Y.W.); (Y.Z.); (W.M.); (C.Z.)
- Correspondence: ; Tel.: +86-431-845332776
| |
Collapse
|
11
|
Phytochemical analysis reveals an antioxidant defense response in Lonicera japonica to cadmium-induced oxidative stress. Sci Rep 2022; 12:6840. [PMID: 35477983 PMCID: PMC9046209 DOI: 10.1038/s41598-022-10912-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/13/2022] [Indexed: 11/09/2022] Open
Abstract
Cadmium (Cd), though potentially beneficial at lower levels to some plant species, at higher levels is a toxic metal that is detrimental to plant growth and development. Cd is also a carcinogen to humans and other contaminated plant consumers, affecting the kidneys and reducing bone strength. In this study we investigated responses of growth, chlorophyll content, reactive oxygen species levels, and antioxidant responses to Cd in honeysuckle leaves (Lonicera japonica Thunb.), a potential Cd hyperaccumulator. Results indicated that plant height, dry weight, leaf area, and chlorophyll content increased when honeysuckle was exposed to 10 mg kg-1 or 30 mg kg-1 Cd (low concentration). However, in response to 150 mg kg-1 or 200 mg kg-1 Cd (high concentration) these growth parameters and chlorophyll content significantly decreased relative to untreated control plant groups. Higher levels of superoxide radical (O2·-) and hydrogen peroxide (H2O2) were observed in high concentration Cd groups. The activities of ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase were enhanced with exposure to increasing levels of Cd. Additionally, the Ascorbate-Glutathione (AsA-GSH) cycle was activated for the removal of H2O2 in honeysuckle in response to elevated Cd. The Pearson correlation analysis, a redundancy analysis, and a permutation test indicated that proline and APX were dominant antioxidants for removing O2·- and H2O2. The antioxidants GSH and non-protein thiols (NPTs) also increased as the concentration of Cd increased.
Collapse
|
12
|
Kaseb MO, Umer MJ, Anees M, Zhu H, Zhao S, Lu X, He N, El-Remaly E, El-Eslamboly A, Yousef AF, Salama EAA, Alrefaei AF, Kalaji HM, Liu W. Transcriptome Profiling to Dissect the Role of Genome Duplication on Graft Compatibility Mechanisms in Watermelon. BIOLOGY 2022; 11:575. [PMID: 35453774 PMCID: PMC9029962 DOI: 10.3390/biology11040575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Watermelon (Citrullus lanatus) is a popular crop worldwide. Compared to diploid seeded watermelon, triploid seedless watermelon cultivars are in great demand. Grafting in triploid and tetraploid watermelon produces few seedlings. To learn more about how genome duplication affects graft compatibility, we compared the transcriptomes of tetraploid and diploid watermelons grafted on squash rootstock using a splicing technique. WGCNA was used to compare the expression of differentially expressed genes (DEGs) between diploid and tetraploid watermelon grafted seedlings at 0, 3, and 15 days after grafting (DAG). Only four gene networks/modules correlated significantly with phenotypic characteristics. We found 11 genes implicated in hormone, AOX, and starch metabolism in these modules based on intramodular significance and RT-qPCR. Among these genes, two were linked with IAA (r2 = 0.81), one with ZR (r2 = 0.85) and one with POD (r2 = 0.74). In the MElightsteelblue1 module, Cla97C11G224830 gene was linked with CAT (r2 = 0.81). Two genes from the MEivory module, Cla97C07G139710 and Cla97C04G077300, were highly linked with SOD (r2 = 0.72). Cla97C01G023850 and Cla97C01G006680 from the MEdarkolivegreen module were associated with sugars and starch (r2 = 0.87). Tetraploid grafted seedlings had higher survival rates and hormone, AOX, sugar, and starch levels than diploids. We believe that compatibility is a complicated issue that requires further molecular research. We found that genome duplication dramatically altered gene expression in the grafted plants' IAA and ZR signal transduction pathways and AOX biosynthesis pathways, regulating hormone levels and improving plant survival.
Collapse
Affiliation(s)
- Mohamed Omar Kaseb
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou 450009, China; (M.O.K.); (M.J.U.); (M.A.); (H.Z.); (S.Z.); (X.L.); (N.H.)
- Cross Pollenated Plants Department, Horticulture Research Institute, Agriculture Research Center, Giza 12119, Egypt; (E.E.-R.); (A.E.-E.)
| | - Muhammad Jawad Umer
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou 450009, China; (M.O.K.); (M.J.U.); (M.A.); (H.Z.); (S.Z.); (X.L.); (N.H.)
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Muhammad Anees
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou 450009, China; (M.O.K.); (M.J.U.); (M.A.); (H.Z.); (S.Z.); (X.L.); (N.H.)
| | - Hongju Zhu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou 450009, China; (M.O.K.); (M.J.U.); (M.A.); (H.Z.); (S.Z.); (X.L.); (N.H.)
| | - Shengjie Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou 450009, China; (M.O.K.); (M.J.U.); (M.A.); (H.Z.); (S.Z.); (X.L.); (N.H.)
| | - Xuqiang Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou 450009, China; (M.O.K.); (M.J.U.); (M.A.); (H.Z.); (S.Z.); (X.L.); (N.H.)
| | - Nan He
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou 450009, China; (M.O.K.); (M.J.U.); (M.A.); (H.Z.); (S.Z.); (X.L.); (N.H.)
| | - Eman El-Remaly
- Cross Pollenated Plants Department, Horticulture Research Institute, Agriculture Research Center, Giza 12119, Egypt; (E.E.-R.); (A.E.-E.)
| | - Ahmed El-Eslamboly
- Cross Pollenated Plants Department, Horticulture Research Institute, Agriculture Research Center, Giza 12119, Egypt; (E.E.-R.); (A.E.-E.)
| | - Ahmed F. Yousef
- Department of Horticulture, College of Agriculture, Al-Azhar University (Branch Assiut), Assiut 71524, Egypt;
| | - Ehab A. A. Salama
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 1145, Saudi Arabia;
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, 02-787 Warsaw, Poland;
- Institute of Technology and Life Sciences–National Research Institute (ITP), 05-090 Raszyn, Poland
| | - Wenge Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Henan Joint International Research Laboratory of Fruits and Cucurbits Biological Science in South Asia, Zhengzhou 450009, China; (M.O.K.); (M.J.U.); (M.A.); (H.Z.); (S.Z.); (X.L.); (N.H.)
| |
Collapse
|
13
|
Silicon improves ion homeostasis and growth of liquorice under salt stress by reducing plant Na + uptake. Sci Rep 2022; 12:5089. [PMID: 35332196 PMCID: PMC8948228 DOI: 10.1038/s41598-022-09061-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
Silicon (Si) effectively alleviates the effects of salt stress in plants and can enhance salt tolerance in liquorice. However, the mechanisms by which Si improved salt tolerance in liquorice and the effects of foliar application of Si on different liquorice species under salt stress are not fully understood. We investigated the effects of foliar application of Si on the growth, physiological and biochemical characteristics, and ion balance of two liquorice species, Glycyrrhiza uralensis and G. inflata. High salt stress resulted in the accumulation of a large amount of Na+, decreased photosynthetic pigment concentrations, perturbed ion homeostasis, and eventually inhibited both liquorice species growth. These effects were more pronounced in G. uralensis, as G. inflata is more salt tolerant than G. uralensis. Foliar application of Si effectively reduced the decomposition of photosynthetic pigments and improved gas exchange parameters, thereby promoting photosynthesis. It also effectively inhibited lipid peroxidation and leaf electrolyte leakage and enhanced osmotic adjustment of the plants. Furthermore, Si application increased the K+ concentration and reduced Na+ absorption, transport, and accumulation in the plants. The protective effects of Si were more pronounced in G. uralensis than in G. inflata. In conclusion, Si reduces Na+ absorption, improves ion balance, and alleviates the negative effects of salt stress in the two liquorice species studied, but the effect is species dependent. These findings may help to develop novel strategies for protecting liquorice plants against salt stress and provide a theoretical basis for the evaluation of salt tolerance and the scientific cultivation of liquorice.
Collapse
|
14
|
Mishra M, Wungrampha S, Kumar G, Singla-Pareek SL, Pareek A. How do rice seedlings of landrace Pokkali survive in saline fields after transplantation? Physiology, biochemistry, and photosynthesis. PHOTOSYNTHESIS RESEARCH 2021; 150:117-135. [PMID: 32632535 DOI: 10.1007/s11120-020-00771-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Rice, one of the most important staple food crops in the world, is highly sensitive to soil salinity at the seedling stage. The ultimate yield of this crop is a function of the number of seedlings surviving after transplantation in saline water. Oryza sativa cv. IR64 is a high-yielding salinity-sensitive variety, while Pokkali is a landrace traditionally cultivated by the local farmers in the coastal regions in India. However, the machinery responsible for the seedling-stage tolerance in Pokkali is not understood. To bridge this gap, we subjected young seedlings of these contrasting genotypes to salinity and performed detailed investigations about their growth parameters, ion homeostasis, biochemical composition, and photosynthetic parameters after every 24 h of salinity for three days. Taken together, all the physiological and biochemical indicators, such as proline accumulation, K+/Na+ ratio, lipid peroxidation, and electrolyte leakage, clearly revealed significant differences between IR64 and Pokkali under salinity, establishing their contrasting nature at this stage. In response to salinity, the Fv/Fm ratio (maximum quantum efficiency of Photosystem II as inferred from Chl a fluorescence) and the energy conserved for the electron transport after the reduction of QA (the primary electron acceptor of PSII), to QA-, and reduction of the end electron acceptor molecules towards the PSI (Photosystem I) electron acceptor side was higher in Pokkali than IR64 plants. These observations reflect a direct contribution of photosynthesis towards seedling-stage salinity tolerance in rice. These findings will help to breed high-yielding crops for salinity prone agricultural lands.
Collapse
Affiliation(s)
- Manjari Mishra
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Silas Wungrampha
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Gautam Kumar
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
15
|
Shahzadi AK, Bano H, Ogbaga CC, Ayyaz A, Parveen R, Zafar ZU, Athar HUR, Ashraf M. Coordinated impact of ion exclusion, antioxidants and photosynthetic potential on salt tolerance of ridge gourd [Luffa acutangula (L.) Roxb.]. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:517-528. [PMID: 34425396 DOI: 10.1016/j.plaphy.2021.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/31/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
The contribution of one major or a combination of several physiological processes in salt tolerance was assessed in three local varieties (Blacklong, Advanta-1103, and Dilpasand) of ridge gourd [Luffa acutangula (L.) Roxb.] at varying salt levels (0, 75, and 150 mM NaCl). Based on growth attributes, var. Dilpasand as salt-tolerant and var. Blacklong as moderately salt-tolerant, while var. Advanta-1103 as salt-sensitive. Inter-varietal differences for photosynthetic pigments and relative water content (RWC) was not observed. The salt-sensitive variety Advanta 1103 had greater Na+ accumulation (73.72%) in the leaves than those in the moderately tolerant and tolerant varieties. Total soluble proteins were relatively lower (58.25%) in the salt-sensitive variety but maximal increase (69.34%) in total free amino acids was observed. However, accumulation of proline was maximal in the salt-tolerant variety (Dilpasand). Salt-tolerant variety exhibited minimal oxidative stress (relative low levels of H2O2) and membrane damage (low content of MDA and electrolytic leakage) and higher activities of antioxidant enzymes (catalase and peroxidase). Although all ridge gourd varieties down-regulated the electron transport through PSII by increasing the safe dissipation of heat Y(NPQ) to lower the ROS generation, this was maximal in the salt-tolerant variety Dilpasand. Relatively greater reduction in Y(ND) and enhancement in Y(NA) indicated PSI-photoinhibition in salt-sensitive variety. The greater salt tolerance in var. Dilpasand was due to the coordinated impact of ion exclusion, higher accumulation of proline, better capacity to manage electron transport from PSII to PSI with higher Y(NPQ) and antioxidant capacity.
Collapse
Affiliation(s)
| | - Hussan Bano
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan; Department of Botany, The Women University, Multan, Pakistan.
| | - Chukwuma C Ogbaga
- Department of Biological Sciences, Nile University of Nigeria, Airport Road, Abuja, Nigeria
| | - Ahsan Ayyaz
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Rabia Parveen
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Zafar Ullah Zafar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Habib-Ur-Rehman Athar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | | |
Collapse
|
16
|
Cai Z, Liu X, Chen H, Yang R, Chen J, Zou L, Wang C, Chen J, Tan M, Mei Y, Wei L. Variations in morphology, physiology, and multiple bioactive constituents of Lonicerae Japonicae Flos under salt stress. Sci Rep 2021; 11:3939. [PMID: 33594134 PMCID: PMC7887249 DOI: 10.1038/s41598-021-83566-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 02/04/2021] [Indexed: 01/31/2023] Open
Abstract
Lonicerae Japonicae Flos (LJF) is an important traditional Chinese medicine for the treatment of various ailments and plays a vital role in improving global human health. However, as unable to escape from adversity, the quality of sessile organisms is dramatically affected by salt stress. To systematically explore the quality formation of LJF in morphology, physiology, and bioactive constituents' response to multiple levels of salt stress, UFLC-QTRAP-MS/MS and multivariate statistical analysis were performed. Lonicera japonica Thunb. was planted in pots and placed in the field, then harvested after 35 days under salt stress. Indexes of growth, photosynthetic pigments, osmolytes, lipid peroxidation, and antioxidant enzymes were identified to evaluate the salt tolerance in LJF under different salt stresses (0, 100, 200, and 300 mM NaCl). Then, the total accumulation and dynamic variation of 47 bioactive constituents were quantitated. Finally, Partial least squares discrimination analysis and gray relational analysis were performed to systematically cluster, distinguish, and evaluate the samples, respectively. The results showed that 100 mM NaCl induced growth, photosynthetic, antioxidant activities, osmolytes, lipid peroxidation, and multiple bioactive constituents in LJF, which possessed the best quality. Additionally, a positive correlation was found between the accumulation of phenolic acids with antioxidant enzyme activity under salt stress, further confirming that phenolic acids could reduce oxidative damage. This study provides insight into the quality formation and valuable information to improve the LJF medicinal value under salt stress.
Collapse
Affiliation(s)
- Zhichen Cai
- grid.410745.30000 0004 1765 1045College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Xunhong Liu
- grid.410745.30000 0004 1765 1045College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China ,Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023 China ,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, 210023 China
| | - Huan Chen
- grid.410745.30000 0004 1765 1045College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Rong Yang
- grid.410745.30000 0004 1765 1045College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Jiajia Chen
- grid.410745.30000 0004 1765 1045College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Lisi Zou
- grid.410745.30000 0004 1765 1045College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Chengcheng Wang
- grid.410745.30000 0004 1765 1045College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Jiali Chen
- grid.410745.30000 0004 1765 1045College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Mengxia Tan
- grid.410745.30000 0004 1765 1045College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Yuqi Mei
- grid.410745.30000 0004 1765 1045College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Lifang Wei
- grid.410745.30000 0004 1765 1045College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| |
Collapse
|
17
|
Comparative analysis of two phytochrome mutants of tomato (Micro-Tom cv.) reveals specific physiological, biochemical, and molecular responses under chilling stress. J Genet Eng Biotechnol 2020; 18:77. [PMID: 33245438 PMCID: PMC7695757 DOI: 10.1186/s43141-020-00091-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023]
Abstract
Background Phytochromes are plant photoreceptors that have long been associated with photomorphogenesis in plants; however, more recently, their crucial role in the regulation of variety of abiotic stresses has been explored. Chilling stress is one of the abiotic factors that severely affect growth, development, and productivity of crops. In the present work, we have analyzed and compared physiological, biochemical, and molecular responses in two contrasting phytochrome mutants of tomato, namely aurea (aur) and high pigment1 (hp1), along with wild-type cultivar Micro-Tom (MT) under chilling stress. In tomato, aur is phytochrome-deficient mutant while hp1 is a phytochrome-sensitive mutant. The genotype-specific physiological, biochemical, and molecular responses under chilling stress in tomato mutants strongly validated phytochrome-mediated regulation of abiotic stress. Results Here, we demonstrate that phytochrome-sensitive mutant hp1 show improved performance compared to phytochrome-deficient mutant aur and wild-type MT plants under chilling stress. Interestingly, we noticed significant increase in several photosynthetic-related parameters in hp1 under chilling stress that include photosynthetic rate, stomatal conductance, stomatal aperture, transpiration rate, chlorophyll a and carotenoids. Whereas most parameters were negatively affected in aur and MT except a slight increase in carotenoids in MT plants under chilling stress. Further, we found that PSII quantum efficiency (Fv/Fm), PSII operating efficiency (Fq′/Fm′), and non-photochemical quenching (NPQ) were all positively regulated in hp1, which demonstrate enhanced photosynthetic performance of hp1 under stress. On the other hand, Fv/Fm and Fq′/Fm′ were decreased significantly in aur and wild-type plants. In addition, NPQ was not affected in MT but declined in aur mutant after chilling stress. Noticeably, the transcript analysis show that PHY genes which were previously reported to act as molecular switches in response to several abiotic stresses were mainly induced in hp1 and repressed in aur and MT in response to stress. As expected, we also found reduced levels of malondialdehyde (MDA), enhanced activities of antioxidant enzymes, and higher accumulation of protecting osmolytes (soluble sugars, proline, glycine betaine) which further elaborate the underlying tolerance mechanism of hp1 genotype under chilling stress. Conclusion Our findings clearly demonstrate that phytochrome-sensitive and phytochrome-deficient tomato mutants respond differently under chilling stress thereby regulating physiological, biochemical, and molecular responses and thus establish a strong link between phytochromes and their role in stress tolerance. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-020-00091-1.
Collapse
|
18
|
Yan K, He W, Bian L, Zhang Z, Tang X, An M, Li L, Han G. Salt adaptability in a halophytic soybean (Glycine soja) involves photosystems coordination. BMC PLANT BIOLOGY 2020; 20:155. [PMID: 32276592 PMCID: PMC7149873 DOI: 10.1186/s12870-020-02371-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/30/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND Glycine soja is a halophytic soybean native to saline soil in Yellow River Delta, China. Photosystem I (PSI) performance and the interaction between photosystem II (PSII) and PSI remain unclear in Glycine soja under salt stress. This study aimed to explore salt adaptability in Glycine soja in terms of photosystems coordination. RESULTS Potted Glycine soja was exposed to 300 mM NaCl for 9 days with a cultivated soybean, Glycine max, as control. Under salt stress, the maximal photochemical efficiency of PSII (Fv/Fm) and PSI (△MR/MR0) were significantly decreased with the loss of PSI and PSII reaction center proteins in Glycine max, and greater PSI vulnerability was suggested by earlier decrease in △MR/MR0 than Fv/Fm and depressed PSI oxidation in modulated 820 nm reflection transients. Inversely, PSI stability was defined in Glycine soja, as △MR/MR0 and PSI reaction center protein abundance were not affected by salt stress. Consistently, chloroplast ultrastructure and leaf lipid peroxidation were not affected in Glycine soja under salt stress. Inhibition on electron flow at PSII acceptor side helped protect PSI by restricting electron flow to PSI and seemed as a positive response in Glycine soja due to its rapid recovery after salt stress. Reciprocally, PSI stability aided in preventing PSII photoinhibition, as the simulated feedback inhibition by PSI inactivation induced great decrease in Fv/Fm under salt stress. In contrast, PSI inactivation elevated PSII excitation pressure through inhibition on PSII acceptor side and accelerated PSII photoinhibition in Glycine max, according to the positive and negative correlation of △MR/MR0 with efficiency that an electron moves beyond primary quinone and PSII excitation pressure respectively. CONCLUSION Therefore, photosystems coordination depending on PSI stability and rapid response of PSII acceptor side contributed to defending salt-induced oxidative stress on photosynthetic apparatus in Glycine soja. Photosystems interaction should be considered as one of the salt adaptable mechanisms in this halophytic soybean.
Collapse
Affiliation(s)
- Kun Yan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, P. R. China.
| | - Wenjun He
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, P. R. China
| | - Lanxing Bian
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, P. R. China
- College of Life Sciences, Yantai University, Yantai, 264005, P. R. China
| | - Zishan Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Xiaoli Tang
- School of Agriculture, Ludong University, Yantai, 264025, P. R. China
| | - Mengxin An
- School of Agriculture, Ludong University, Yantai, 264025, P. R. China
| | - Lixia Li
- College of Life Sciences, Yantai University, Yantai, 264005, P. R. China
| | - Guangxuan Han
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, P. R. China.
| |
Collapse
|
19
|
Xiang ZX, Tang XL, Liu WH, Song CN. A comparative morphological and transcriptomic study on autotetraploid Stevia rebaudiana (bertoni) and its diploid. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 143:154-164. [PMID: 31505448 DOI: 10.1016/j.plaphy.2019.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 05/14/2023]
Abstract
Stevia rebaudiana is an important medical plant for producing steviol glycosides (SGs) or stevioside. Autotetraploids (4x = 44) show an increasing level of morphology, physiology and tolerances comparing to diploids (2x = 22). However, little information regarded on the comparative transcriptome analysis between diploid and autotetraploid S. rebaudiana was found. In this study, synthetic autotetraploid was induced and morphological features were confirmed. A comprehensive transcriptome of stevia leaf, stem and root from the diploids and autotetraploids was constructed based on RNA-seq, yielded 1,000,892,422 raw reads and subsequently assembled into 251,455 transcripts, corresponded to 146,130 genes. Pairwise comparisons of the six leaf libraries between the diploids and autotetraploids revealed 4114 differentially expression genes (DEGs), in which 2105 (51.17%) were up-regulated in autotetraploids and associated with SGs biosynthesis, plant growth and secondary metabolism. Moreover, weighted gene co-expression network analysis showed co-expressed genes of fifteen genes of SG biosynthesis pathway were enriched in photosynthesis, flavonoid and secondary metabolic process, plant growth and morphogenesis. A hundred of DEGs related to plant resistance were identified by interviewing PlantPReS database. This study has highlighted molecular changes related to SGs metabolism of polyploidy, and advanced our understanding in plant resistance responsible for phenotypic change of autotetraploids.
Collapse
Affiliation(s)
- Zeng-Xu Xiang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.
| | - Xing-Li Tang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.
| | - Wei-Hu Liu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.
| | - Chang-Nian Song
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.
| |
Collapse
|
20
|
Wu X, Shu S, Wang Y, Yuan R, Guo S. Exogenous putrescine alleviates photoinhibition caused by salt stress through cooperation with cyclic electron flow in cucumber. PHOTOSYNTHESIS RESEARCH 2019; 141:303-314. [PMID: 31004254 DOI: 10.1007/s11120-019-00631-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 02/22/2019] [Indexed: 05/24/2023]
Abstract
When plants suffer from abiotic stresses, cyclic electron flow (CEF) is induced for photo-protection. Putrescine (Put), a primary polyamine in chloroplasts, plays a critical role in stress tolerance. However, the relationship between CEF and Put in chloroplasts for photo-protection is unknown. In this study, we investigated the role of Put-induced CEF for salt tolerance in cucumber plants (Cucumis sativus L). Treatment with 90 mM NaCl and/or Put did not influence the maximum photochemical efficiency of PSII (Fv/Fm), but the photoactivity of PSI was severely inhibited by NaCl. Salt stress induced a high level of CEF; moreover, plants treated with both NaCl and Put exhibited much higher CEF activity and ATP accumulation than those exhibited by single-salt-treated plants to provide an adequate ATP/NADPH ratio for plant growth. Furthermore, Put decreased the trans-membrane proton gradient (ΔpH), which was accompanied by reduced pH-dependent non-photochemical quenching (NPQ) and an increased the effective quantum yield of PSII (Y(II)). The ratio of NADP+/NADPH increased significantly with Put in salt-stressed leaves compared with the ratio in leaves treated with NaCl, indicating that Put relieved over-reduction pressure at the PSI acceptor side caused by salt stress. Collectively, our results suggest that exogenous Put creates an excellent condition for CEF promotion: a large amount of pmf is predominantly stored as Δψ, resulting in moderate lumen pH and low NPQ, while maintaining high rates of ATP synthesis (high pmf).
Collapse
Affiliation(s)
- Xinyi Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sheng Shu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian, 223800, Jiangsu, China
| | - Yu Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruonan Yuan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shirong Guo
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian, 223800, Jiangsu, China.
| |
Collapse
|
21
|
Oustric J, Quilichini Y, Morillon R, Herbette S, Luro F, Giannettini J, Berti L, Santini J. Tetraploid citrus seedlings subjected to long-term nutrient deficiency are less affected at the ultrastructural, physiological and biochemical levels than diploid ones. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:372-384. [PMID: 30616112 DOI: 10.1016/j.plaphy.2018.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 05/22/2023]
Abstract
Nutrient deficiency has economic and ecological repercussions for citrus fruit crops worldwide. Citrus crops rely on fertilization to maintain good fruit output and quality, whereas new crop management policy aims to reduce fertilizers input. New rootstocks are needed to meet to this constraint, and the use of new tetraploid rootstocks better adapted to lower nutrient intake could offer a promising way forward. Here we compared physiological, biochemical and anatomic traits of leaves in diploid (2x) and doubled-diploid (4x) Citrumelo 4475 (Citrus paradisi L. Macf. × Poncirus trifoliata L. Raf.) and Volkamer lemon (Citrus limonia Osb.) seedlings over 7 months of nutrient deficiency. Photosynthetic parameters (Pnet, Gs and Fv/Fm) decreased, but to a lesser extent in 4x genotypes than 2x. Degradation of the ultrastructural organelles (chloroplasts and mitochondria) and compound cells (thylakoids and starches) was also lower in 4x genotypes, suggesting that tetraploidy may enhance tolerance to nutrient deficiency. However, leaf surface (stomata, stomatal density and epithelial cells) showed no nutrient deficiency-induced change. In 4x Citrumelo 4475, the higher tolerance to nutrient deficiency was associated with a lower MDA and H2O2 accumulation than in the 2x, suggesting a more efficient antioxidant system in the 4x genotype. However, few differences in antioxidant system and oxidative status were observed between 2x and 4x Volkamer lemons.
Collapse
Affiliation(s)
- Julie Oustric
- Laboratoire Biochimie et Biologie Moléculaire du Végétal, CNRS, UMR 6134 SPE, Université de Corse, Corte, France.
| | - Yann Quilichini
- Laboratoire Parasites et Ecosystèmes Méditerranéens", CNRS, UMR 6134 SPE, Université de Corse, Corte, France
| | - Raphaël Morillon
- Equipe "Amélioration des Plantes à Multiplication Végétative", UMR AGAP, Département BIOS, CIRAD, Station de Roujol, Petit-Bourg, Guadeloupe.
| | | | - François Luro
- UMR AGAP Corse, station INRA/CIRAD, San Giuliano, France.
| | - Jean Giannettini
- Laboratoire Biochimie et Biologie Moléculaire du Végétal, CNRS, UMR 6134 SPE, Université de Corse, Corte, France.
| | - Liliane Berti
- Laboratoire Biochimie et Biologie Moléculaire du Végétal, CNRS, UMR 6134 SPE, Université de Corse, Corte, France.
| | - Jérémie Santini
- Laboratoire Biochimie et Biologie Moléculaire du Végétal, CNRS, UMR 6134 SPE, Université de Corse, Corte, France.
| |
Collapse
|
22
|
Yan K, Bian T, He W, Han G, Lv M, Guo M, Lu M. Root Abscisic Acid Contributes to Defending Photoinibition in Jerusalem Artichoke ( Helianthus tuberosus L.) under Salt Stress. Int J Mol Sci 2018; 19:E3934. [PMID: 30544576 PMCID: PMC6321411 DOI: 10.3390/ijms19123934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 11/24/2022] Open
Abstract
The aim of the study was to examine the role of root abscisic acid (ABA) in protecting photosystems and photosynthesis in Jerusalem artichoke against salt stress. Potted plants were pretreated by a specific ABA synthesis inhibitor sodium tungstate and then subjected to salt stress (150 mM NaCl). Tungstate did not directly affect root ABA content and photosynthetic parameters, whereas it inhibited root ABA accumulation and induced a greater decrease in photosynthetic rate under salt stress. The maximal photochemical efficiency of PSII (Fv/Fm) significantly declined in tungstate-pretreated plants under salt stress, suggesting photosystem II (PSII) photoinhibition appeared. PSII photoinhibition did not prevent PSI photoinhibition by restricting electron donation, as the maximal photochemical efficiency of PSI (ΔMR/MR₀) was lowered. In line with photoinhibition, elevated H₂O₂ concentration and lipid peroxidation corroborated salt-induced oxidative stress in tungstate-pretreated plants. Less decrease in ΔMR/MR₀ and Fv/Fm indicated that PSII and PSI in non-pretreated plants could maintain better performance than tungstate-pretreated plants under salt stress. Consistently, greater reduction in PSII and PSI reaction center protein abundance confirmed the elevated vulnerability of photosystems to salt stress in tungstate-pretreated plants. Overall, the root ABA signal participated in defending the photosystem's photoinhibition and protecting photosynthesis in Jerusalem artichoke under salt stress.
Collapse
Affiliation(s)
- Kun Yan
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Tiantian Bian
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Wenjun He
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Guangxuan Han
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Mengxue Lv
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Mingzhu Guo
- College of Life Sciences, Yantai University, Yantai 264005, China.
| | - Ming Lu
- College of Life Sciences, Yantai University, Yantai 264005, China.
| |
Collapse
|
23
|
Zhu H, Zhao S, Lu X, He N, Gao L, Dou J, Bie Z, Liu W. Genome duplication improves the resistance of watermelon root to salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 133:11-21. [PMID: 30384081 DOI: 10.1016/j.plaphy.2018.10.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/26/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Salinity is a major abiotic stress factor that affects crop productivity. Roots play an important role in salt stress in plants. Watermelon is a salt-sensitive crop; however, tetraploid watermelon seedlings are more tolerant to salt stress than their homogenotype diploid ancestors. To obtain insights into the reasons underlying the differences in salt tolerance with respect to the ploidy of plants, self-grafted and cross-grafted diploid and tetraploid watermelon seedlings were exposed to 300 mM NaCl for 8 days. After the treatment, the tetraploid rootstock-grafted watermelon plants showed higher salt stress tolerance than the diploid plants. There were no significant differences in the physiological effects between the rootstocks with the same ploidy. The tetraploid rootstock-grafted watermelon plants exhibited higher net photosynthetic rate, leaf stomatal conductance and transpiration rate than the diploid rootstock-grafted watermelon plants throughout the salt treatment process. The activities of antioxidant enzymes and contents of osmoregulatory compounds in the roots were higher in the tetraploid rootstock-grafted watermelon plants than in the diploid plants during the entire salt response process. Higher Na+/K+ ratio was found in all parts of diploid rootstock-grafted watermelon, especially in the roots, K+ and Na+ were preferentially accumulated in the aerial parts (leaves and stem) than in the roots, which might be driven by the Na+/H+ antiporter, as evidenced by the higher transcript levels for SOS, PMA1, HKT1 and NHX1 in the roots. Taken together, our results suggest that genome duplication improves the resistance of watermelon root to salt stress.
Collapse
Affiliation(s)
- Hongju Zhu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, PR China; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Shengjie Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, PR China.
| | - Xuqiang Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, PR China.
| | - Nan He
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, PR China.
| | - Lei Gao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, PR China.
| | - Junling Dou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, PR China.
| | - Zhilong Bie
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Wenge Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, PR China.
| |
Collapse
|
24
|
Yan K, Zhao S, Cui M, Han G, Wen P. Vulnerability of photosynthesis and photosystem I in Jerusalem artichoke (Helianthus tuberosus L.) exposed to waterlogging. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 125:239-246. [PMID: 29477087 DOI: 10.1016/j.plaphy.2018.02.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 05/25/2023]
Abstract
Jerusalem artichoke (Helianthus tuberosus L.) is an important energy crop for utilizing coastal marginal land. This study was to investigate waterlogging tolerance of Jerusalem artichoke through photosynthetic diagnose with emphasis on photosystem II (PSII) and photosystem I (PSI) performance. Potted plants were subjected to severe (liquid level 5 cm above vermiculite surface) and moderate (liquid level 5 cm below vermiculite surface) waterlogging for 9 days. Large decreased photosynthetic rate suggested photosynthesis vulnerability upon waterlogging. After 7 days of severe waterlogging, PSII and PSI photoinhibition arose, indicated by significant decrease in the maximal photochemical efficiency of PSII (Fv/Fm) and PSI (△MR/MR0), and PSI seemed more vulnerable because of greater decrease in △MR/MR0 than Fv/Fm. In line with decreased △MR/MR0 and unchanged Fv/Fm after 9 days of moderate waterlogging, the amount of PSI reaction center protein rather than PSII reaction center protein was lowered, confirming greater PSI vulnerability. According to positive correlation between △MR/MR0 and efficiency that an electron moves beyond primary quinone and negative correlation between △MR/MR0 and PSII excitation pressure, PSI inactivation elevated PSII excitation pressure by depressing electron transport at PSII acceptor side. Thus, PSI vulnerability induced PSII photoinhibition and endangered the stability of whole photosynthetic apparatus under waterlogging. In agreement with photosystems photoinhibition, elevated H2O2 concentration and lipid peroxidation in the leaves corroborated waterlogging-induced oxidative stress. In conclusion, Jerusalem artichoke is a waterlogging sensitive species in terms of photosynthesis and PSI vulnerability. Consistently, tuber yield was tremendously reduced by waterlogging, confirming waterlogging sensitivity of Jerusalem artichoke.
Collapse
Affiliation(s)
- Kun Yan
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.
| | - Shijie Zhao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Mingxing Cui
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Guangxuan Han
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.
| | - Pei Wen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| |
Collapse
|
25
|
Yan K, Han G, Ren C, Zhao S, Wu X, Bian T. Fusarium solani Infection Depressed Photosystem Performance by Inducing Foliage Wilting in Apple Seedlings. FRONTIERS IN PLANT SCIENCE 2018; 9:479. [PMID: 29868040 PMCID: PMC5949536 DOI: 10.3389/fpls.2018.00479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/28/2018] [Indexed: 05/18/2023]
Abstract
Fusarium fungi are soil-borne pathogens, and the pathological effects on plant photosystems remain unclear. This study aimed to deeply reveal pathological characterization in apple seedlings infected with Fusarium solani by investigating photosystems performance and interaction. Roots were immersed in conidial suspension for inoculation. Thereafter, prompt and delayed chlorophyll a fluorescence and modulated 820 nm reflection were simultaneously detected. After 30 days of infection, leaf relative water content and dry weight were remarkably decreased by 55.7 and 47.1%, suggesting that the infected seedlings were subjected to Fusarium-induced water deficit stress. PSI reaction center was more susceptible than PSII reaction center in infected seedlings due to greater decrease in the maximal photochemical efficiency of PSI than that of PSII, but PSI reaction center injury was aggravated slowly, as PSII injury could partly protect PSI by restricting electron donation. PSII donor and acceptor sides were also damaged after 20 days of infection, and the restricted electron donation induced PSII and PSI disconnection by blocking PSI re-reduction. In accordance with greater damage of PSI reaction center, PSI oxidation was also suppressed. Notably, significantly increased efficiency of electron transport from plastoquinone (PQ) to PSI acceptors (REo/ETo) after 20 days of infection suggested greater inhibition on PQ reduction than re-oxidation, and the protection for PSI acceptors might alleviate the reduction of electron transport efficiency beyond PQ upon damaged PSI reaction center. Lowered delayed fluorescence in microsecond domain verified PSII damage in infected seedlings, and elevated delayed fluorescence in sub-millisecond domain during PQ reduction process conformed to increased REo/ETo. In conclusion, F. solani infection depressed PSII and PSI performance and destroyed their coordination by inducing pathological wilting in apple seedlings. It may be a pathogenic mechanism of Fusarium to induce plant photosystems damage.
Collapse
Affiliation(s)
- Kun Yan
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- *Correspondence: Kun Yan, Shijie Zhao,
| | - Guangxuan Han
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Chenggang Ren
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Shijie Zhao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- *Correspondence: Kun Yan, Shijie Zhao,
| | - Xiaoqing Wu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Shandong Academy of Sciences, Jinan, China
| | - Tiantian Bian
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- School of Life Sciences, Ludong University, Yantai, China
| |
Collapse
|
26
|
Yan K, Zhao S, Bian L, Chen X. Saline stress enhanced accumulation of leaf phenolics in honeysuckle (Lonicera japonica Thunb.) without induction of oxidative stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 112:326-334. [PMID: 28131061 DOI: 10.1016/j.plaphy.2017.01.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/28/2016] [Accepted: 01/21/2017] [Indexed: 05/02/2023]
Abstract
Honeysuckle (Lonicera japonica Thunb.) is a traditional medicinal plant in Chinese, and chlorogenic acid and luteolosid are its specific bioactive phenolic compounds. This study was to investigate leaf antioxidant responses in honeysuckle to saline stress with emphasis on phenolics through hydroponic experiments and field trials. NaCl stress did not stimulate antioxidant system including superoxide dismutase, ascorbate peroxidase, catalase and ascorbate, and had no significant effect on lipid peroxidation in the leaves. Consistently, no inhibition on photochemical capacity of photosystems suggested that reactive oxygen species (ROS) was maintained at a normal level under NaCl stress. However, leaf phenolic synthesis was activated by NaCl stress, indicated by elevated genes transcription and activity of phenylalanine ammonia-lyase and increased phenolics concentration. Specifically, leaf chlorogenic acid concentration was increased by 67.43% and 48.86% after 15 days of 150 and 300 mM NaCl stress, and the increase of luteolosid concentration was 54.26% and 39.74%. The accumulated phenolics hardly helped detoxify ROS in vivo in absence of oxidative stress, but the elevated phenolic synthesis might restrict ROS generation by consuming reduction equivalents. As with NaCl stress, soil salinity also increased concentrations of leaf phenolics including chlorogenic acid and luteolosid without exacerbated lipid peroxidation. In conclusion, leaf phenolics accumulation is a mechanism for the acclimation to saline stress probably by preventing oxidative stress in honeysuckle; leaf medicinal quality of honeysuckle can be improved by saline stress due to the accumulation of bioactive phenolic compounds.
Collapse
Affiliation(s)
- Kun Yan
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.
| | - Shijie Zhao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Lanxing Bian
- College of Life Sciences, Yantai University, Yantai, China
| | - Xiaobing Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| |
Collapse
|
27
|
Yan K, Cui M, Zhao S, Chen X, Tang X. Salinity Stress Is Beneficial to the Accumulation of Chlorogenic Acids in Honeysuckle ( Lonicera japonica Thunb.). FRONTIERS IN PLANT SCIENCE 2016; 7:1563. [PMID: 27803710 PMCID: PMC5067412 DOI: 10.3389/fpls.2016.01563] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/04/2016] [Indexed: 05/31/2023]
Abstract
Honeysuckle (Lonicera japonica Thunb.) is a traditional medicinal plant in China that is particularly rich in chlorogenic acids, which are phenolic compounds with various medicinal properties. This study aimed to examine the effects of salinity stress on accumulation of chlorogenic acids in honeysuckle, through hydroponic experiments and field trials, and to examine the mechanisms underlying the effects. NaCl stress stimulated the transcription of genes encoding key enzymes in the synthesis of chlorogenic acids in leaves; accordingly, the concentrations of chlorogenic acids in leaves were significantly increased under NaCl stress, as was antioxidant activity. Specifically, the total concentration of leaf chlorogenic acids was increased by 145.74 and 50.34% after 30 days of 150 and 300 mM NaCl stress, respectively. Similarly, the concentrations of chlorogenic acids were higher in the leaves of plants in saline, compared with non-saline, plots, with increases in total concentrations of chlorogenic acids of 56.05 and 105.29% in October 2014 and 2015, respectively. Despite leaf biomass reduction, absolute amounts of chlorogenic acids per plant and phenylalanine ammonia-lyase (PAL) activity were significantly increased by soil salinity, confirming that the accumulation of chlorogenic acids in leaves was a result of stimulation of their synthesis under salinity stress. Soil salinity also led to elevated chlorogenic acid concentrations in honeysuckle flower buds, with significant increases in total chlorogenic acids concentration of 22.42 and 25.14% in May 2014 and 2015, respectively. Consistent with biomass reduction, the absolute amounts of chlorogenic acid per plant declined in flower buds of plants exposed to elevated soil salinity, with no significant change in PAL activity. Thus, salinity-induced chlorogenic acid accumulation in flower buds depended on an amplification effect of growth reduction. In conclusion, salinity stress improved the medicinal quality of honeysuckle by promoting accumulation of chlorogenic acids, however, the mechanisms underlying this process were not consistent in flower buds and leaves. Honeysuckle appears to be a promising plant for cultivation in saline land. Our study deepens knowledge of medicinal plant ecology and may provide a guide for developing saline agriculture.
Collapse
Affiliation(s)
- Kun Yan
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
| | - Mingxing Cui
- Northeast Institute of Geography and Agroecology, Chinese Academy of SciencesChangchun, China
| | - Shijie Zhao
- State Key Laboratory of Crop Biology, Shandong Agricultural UniversityTai’an, China
| | - Xiaobing Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
| | - Xiaoli Tang
- School of Agriculture, Ludong UniversityYantai, China
| |
Collapse
|
28
|
Powell AF, Doyle JJ. Enhanced rhizobial symbiotic capacity in an allopolyploid species of Glycine (Leguminosae). AMERICAN JOURNAL OF BOTANY 2016; 103:1771-1782. [PMID: 27562208 DOI: 10.3732/ajb.1600060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/15/2016] [Indexed: 06/06/2023]
Abstract
PREMISE OF THE STUDY Previous studies have shown that polyploidy can alter biotic interactions, and it has been suggested that these effects may contribute to the increased ability for colonization of new habitats shown by many allopolyploids. Little is known, however, about the effects of allopolyploidy, which combines hybridity and genome doubling, on symbiotic interactions with rhizobial bacteria. METHODS We examined interactions of the allopolyploid Glycine dolichocarpa (designated T2) with novel rhizobial partners, such as might occur in a context of colonization, and compared these with the responses of its diploid progenitors, G. tomentella (D3) and G. syndetika (D4). We assessed root hair response, nodule formation, nodule mass, nodule number, and plant biomass. KEY RESULTS The allopolyploid (T2) showed a greater root hair deformation response when exposed to rhizobia, compared with either diploid. T2 had a greater probability of forming nodules with NGR234 compared with diploid D4, and greater total nodule mass per nodulated plant compared with diploid D3. T2 also had greater plant biomass responses to nitrogen and when exposed to NGR234. CONCLUSIONS The allopolyploid is characterized by transgressive responses to rhizobia for some variables, while also combining certain parental diploid responses such that its capacity for interactions with rhizobia appears to be greater than for either diploid progenitor. This overall enhanced nodulation capacity and the ability to make greater gains from exposure to both rhizobia and additional nitrogen indicate a greater potential of the allopolyploid to benefit from these factors both generally and in a context of colonization.
Collapse
Affiliation(s)
- Adrian F Powell
- Cornell University, Section of Plant Biology, 412 Mann Library, Cornell University, Ithaca, New York 14853 USA
| | - Jeff J Doyle
- Cornell University, Section of Plant Biology, 412 Mann Library, Cornell University, Ithaca, New York 14853 USA
- Cornell University, Section of Plant Breeding and Genetics, 240 Emerson Hall, Cornell University, Ithaca, New York 14853 USA
| |
Collapse
|