1
|
Kenfaoui J, Dutilloy E, Benchlih S, Lahlali R, Ait-Barka E, Esmaeel Q. Bacillus velezensis: a versatile ally in the battle against phytopathogens-insights and prospects. Appl Microbiol Biotechnol 2024; 108:439. [PMID: 39145847 PMCID: PMC11327198 DOI: 10.1007/s00253-024-13255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
The escalating interest in Bacillus velezensis as a biocontrol agent arises from its demonstrated efficacy in inhibiting both phytopathogenic fungi and bacteria, positioning it as a promising candidate for biotechnological applications. This mini review aims to offer a comprehensive exploration of the multifaceted properties of B. velezensis, with particular focus on its beneficial interactions with plants and its potential for controlling phytopathogenic fungi. The molecular dialogues involving B. velezensis, plants, and phytopathogens are scrutinized to underscore the intricate mechanisms orchestrating these interactions. Additionally, the review elucidates the mode of action of B. velezensis, particularly through cyclic lipopeptides, highlighting their importance in biocontrol and promoting plant growth. The agricultural applications of B. velezensis are detailed, showcasing its role in enhancing crop health and productivity while reducing reliance on chemical pesticides. Furthermore, the review extends its purview in the industrial and environmental arenas, highlighting its versatility across various sectors. By addressing challenges such as formulation optimization and regulatory frameworks, the review aims to chart a course for the effective utilization of B. velezensis. KEY POINTS: • B. velezensis fights phytopathogens, boosting biotech potential • B. velezensis shapes agri-biotech future, offers sustainable solutions • Explores plant-B. velezensis dialogue, lipopeptide potential showcased.
Collapse
Affiliation(s)
- Jihane Kenfaoui
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
| | - Emma Dutilloy
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Salma Benchlih
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
| | - Rachid Lahlali
- Department of Plant Protection, Phytopathology Unit, Ecole Nationale d'Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, 50001, Meknes, Morocco
| | - Essaid Ait-Barka
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
| | - Qassim Esmaeel
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France.
| |
Collapse
|
2
|
Yousfi S, Krier F, Deracinois B, Steels S, Coutte F, Frikha-Gargouri O. Characterization of Bacillus velezensis 32a metabolites and their synergistic bioactivity against crown gall disease. Microbiol Res 2024; 280:127569. [PMID: 38103466 DOI: 10.1016/j.micres.2023.127569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
Crown gall disease caused by Agrobacterium tumefaciens is considered to be the main bacterial threat of stone fruit plants in Mediterranean countries. In a previous study, Bacillus velezensis strain 32a was isolated from Tunisian rhizosphere soil and revealed high antagonistic potential against A. tumefaciens strains. In order to better characterize the antagonistic activity of this strain against this important plant pathogen, the production of secondary metabolites was analyzed using liquid chromatography coupled with mass spectrometry. The results revealed the production of different compounds identified as surfactins, fengycins, iturins and bacillibactin belonging to the lipopeptide group, three polyketides (macrolactins, oxydifficidin and bacillaenes), bacilysin and its chlorinated derivative; chlorotetaine. The involvement of lipopeptides in this antagonistic activity was ruled out by performing agar and broth dilution tests with pure molecules. Thus, the construction of B. velezensis 32a mutants defective in polyketides and bacilysin biosynthesis and their antagonistic activity was performed and compared to a set of derivative mutants of a comparable strain, B. velezensis GA1. The defective difficidin mutants (△dfnA and △dfnD) were unable to inhibit the growth of A. tumefaciens, indicating the high-level contribution of difficidin in the antagonism process. While the macrolactin deficient mutant (∆mlnA) slightly decreased the activity, suggesting a synergetic effect with difficidin. Remarkably, the mutant △dhbC only deficient in bacillibactin production showed significant reduction in its capacity to inhibit the growth of Agrobacterium.Taken collectively, our results showed the strong synergetic effect of difficidin and macrolactins and the significant implication of siderophore to manage crown gall disease.
Collapse
Affiliation(s)
- Sarra Yousfi
- Laboratory of Biopesticides, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia; Université de Lille, UMRt BioEcoAgro 1158-INRAE, Equipe Métabolites Secondaires d'Origine Microbienne, Institut Charles Viollette, F-59000 Lille, France
| | - François Krier
- Université de Lille, UMRt BioEcoAgro 1158-INRAE, Equipe Métabolites Secondaires d'Origine Microbienne, Institut Charles Viollette, F-59000 Lille, France
| | - Barbara Deracinois
- Université de Lille, UMRt BioEcoAgro 1158-INRAE, Equipe Métabolites Secondaires d'Origine Microbienne, Institut Charles Viollette, F-59000 Lille, France
| | - Sébastien Steels
- Université de Liège, UMRt BioEcoAgro 1158-INRAE, équipe Métabolites Secondaires d'Origine Microbienne, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, B-5030 Gembloux, Belgium
| | - François Coutte
- Université de Lille, UMRt BioEcoAgro 1158-INRAE, Equipe Métabolites Secondaires d'Origine Microbienne, Institut Charles Viollette, F-59000 Lille, France.
| | - Olfa Frikha-Gargouri
- Laboratory of Biopesticides, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
3
|
Luo Z, Yan Y, Du S, Zhu Y, Pan F, Wang R, Xu Z, Xu X, Li S, Xu H. Recent advances and prospects of Bacillus amyloliquefaciens as microbial cell factories: from rational design to industrial applications. Crit Rev Biotechnol 2023; 43:1073-1091. [PMID: 35997331 DOI: 10.1080/07388551.2022.2095499] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/02/2022] [Indexed: 11/03/2022]
Abstract
Bacillus amyloliquefaciens is one of the most characterized Gram-positive bacteria. This species has unique characteristics that are beneficial for industrial applications, including its utilization of: cheap carbon as a substrate, a transparent genetic background, and large-scale robustness in fermentation. Indeed, the productivity characteristics of B. amyloliquefaciens have been thoroughly analyzed and further optimized through systems biology and synthetic biology techniques. Following the analysis of multiple engineering design strategies, B. amyloliquefaciens is now considered an efficient cell factory capable of producing large quantities of multiple products from various raw materials. In this review, we discuss the significant potential advantages offered by B. amyloliquefaciens as a platform for metabolic engineering and industrial applications. In addition, we systematically summarize the recent laboratory research and industrial application of B. amyloliquefaciens, including: relevant advances in systems and synthetic biology, various strategies adopted to improve the cellular performances of synthetic chemicals, as well as the latest progress in the synthesis of certain important products by B. amyloliquefaciens. Finally, we propose the current challenges and essential strategies to usher in an era of broader B. amyloliquefaciens use as microbial cell factories.
Collapse
Affiliation(s)
- Zhengshan Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Yifan Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Shanshan Du
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Yifan Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Fei Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Zheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Xiaoqi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
4
|
Harish BN, Nagesha SN, Ramesh BN, Shyamalamma S, Nagaraj MS, Girish HC, Pradeep C, Shiva Kumar KS, Tharun Kumar KS, Pavan SN, Kavan Kumar V. Molecular characterization and antifungal activity of lipopeptides produced from Bacillus subtilis against plant fungal pathogen Alternaria alternata. BMC Microbiol 2023; 23:179. [PMID: 37420194 PMCID: PMC10327374 DOI: 10.1186/s12866-023-02922-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023] Open
Abstract
Over 380 host plant species have been known to develop leaf spots as a result of the fungus Alternaria alternata. It is an aspiring pathogen that affects a variety of hosts and causes rots, blights, and leaf spots on different plant sections. In this investigation, the lipopeptides from the B. subtilis strains T3, T4, T5, and T6 were evaluated for their antifungal activities. In the genomic DNA, iturin, surfactin, and fengycin genes were found recovered from B. subtilis bacterium by PCR amplification. From different B. subtilis strains, antifungal Lipopeptides were extracted, identified by HPLC, and quantified with values for T3 (24 g/ml), T4 (32 g/ml), T5 (28 g/ml), and T6 (18 g/ml). To test the antifungal activity, the isolated lipopeptides from the B. subtilis T3, T4, T5, and T6 strains were applied to Alternaria alternata at a concentration of 10 g/ml. Lipopeptides were found to suppress Alternaria alternata at rates of T3 (75.14%), T4 (75.93%), T5 (80.40%), and T6 (85.88%). The T6 strain outperformed the other three by having the highest antifungal activity against Alternaria alternata (85.88%).
Collapse
Affiliation(s)
- B N Harish
- University of Agricultural Sciences, Bangalore, 560065, India
| | - S N Nagesha
- University of Agricultural Sciences, Bangalore, 560065, India.
| | - B N Ramesh
- ICAR-AICRP on Post Harvest Technology, UAS, GKVK, Bengaluru, 560065, India
| | - S Shyamalamma
- University of Agricultural Sciences, Bangalore, 560065, India
| | - M S Nagaraj
- University of Agricultural Sciences, Bangalore, 560065, India
| | - H C Girish
- University of Agricultural Sciences, Bangalore, 560065, India
| | - C Pradeep
- University of Agricultural Sciences, Bangalore, 560065, India
| | | | | | - S N Pavan
- University of Agricultural Sciences, Bangalore, 560065, India
| | - V Kavan Kumar
- College of Technology and Engineering, MPUAT, Udaipur, Rajasthan, 313001, India
| |
Collapse
|
5
|
Kwon HT, Lee Y, Kim J, Balaraju K, Kim HT, Jeon Y. Identification and Characterization of Bacillus tequilensis GYUN-300: An Antagonistic Bacterium Against Red Pepper Anthracnose Caused by Colletotrichum acutatum in Korea. Front Microbiol 2022; 13:826827. [PMID: 35308370 PMCID: PMC8924438 DOI: 10.3389/fmicb.2022.826827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Anthracnose is a fungal disease caused by Colletotrichum species and has detrimental effects on many crops, including red pepper. This study used Bacillus tequilensis GYUN-300 (GYUN-300), which exhibit antagonistic activity against the fungal pathogen, Colletotrichum acutatum. This pathogen causes anthracnose that manifests primarily as a fruit rot in red pepper. There have been little efforts to identify antagonistic bacteria from mushrooms; this strain of bacteria was identified as B. tequilensis using BIOLOG and 16S rDNA sequencing analysis. The genetic mechanism underpinning the biocontrol traits of GYUN-300 was characterized using the complete genome sequence of GYUN-300, which was closely compared to related strains. GYUN-300 inhibited mycelial growth and spore germination of C. acutatum under in vitro conditions. Important antagonistic traits, such as siderophore production, solubilization of insoluble phosphate, and production of lytic enzymes (cellulase, protease, and amylase), were observed in GYUN-300, These trains promoted growth in terms of seed germination and vigorous seedling growth compared to the non-treated control. When red pepper fruits were treated with GYUN-300, the preventive and curative effects were 66.6 and 38.3% effective, respectively, in wounded red pepper fruits; there was no difference between the preventive and curative effects in non-wounded red pepper fruits. Furthermore, GYUN-300 was resistant to several commercial fungicides, indicating that GYUN-300 bacterial cells may also be used synergistically with chemical fungicides to increase biocontrol efficiency. Based on in vitro results, GYUN-300 played a role to control anthracnose disease effectively in field conditions when compared to other treatments and non-treated controls. The results from this study provide a better understanding of the GYUN-300 strain as an effective biocontrol agent against red pepper anthracnose; this form of biocontrol provides an environment-friendly alternative to chemical fungicides.
Collapse
Affiliation(s)
- Hyeok-Tae Kwon
- Department of Plant Medicals, Andong National University, Andong, South Korea
| | - Younmi Lee
- Department of Plant Medicals, Andong National University, Andong, South Korea
- Agricultural Science and Technology Research Institute, Andong National University, Andong, South Korea
| | - Jungyeon Kim
- Department of Plant Medicals, Andong National University, Andong, South Korea
| | - Kotnala Balaraju
- Department of Plant Medicals, Andong National University, Andong, South Korea
- Agricultural Science and Technology Research Institute, Andong National University, Andong, South Korea
| | - Heung Tae Kim
- Department of Plant Medicine, Chungbuk National University, Cheongju, South Korea
| | - Yongho Jeon
- Department of Plant Medicals, Andong National University, Andong, South Korea
| |
Collapse
|
6
|
Cruz-Magalhães V, Guimarães RA, da Silva JC, de Faria AF, Pedroso MP, Campos VP, Marbach PA, de Medeiros FH, De Souza JT. The combination of two Bacillus strains suppresses Meloidogyne incognita and fungal pathogens, but does not enhance plant growth. PEST MANAGEMENT SCIENCE 2022; 78:722-732. [PMID: 34689397 DOI: 10.1002/ps.6685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/18/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The combination of biocontrol agents is a desirable strategy to improve control efficacy against the root-knot nematode (RKN) Meloidogyne incognita under field conditions. However, strains compatibility is generally tested in vitro and incompatible combinations are normally not further examined in experiments in planta. Therefore, there is virtually no information on the performance of incompatible strains. In this study, we evaluated two Bacillus strains previously described as incompatible in vitro for effects on plant growth and suppression of M. incognita, pathogenic fungi and nematophagous fungi. RESULTS Strains BMH and INV were shown to be closely related to Bacillus velezensis. These strains, when applied individually, reduced the number of galls and eggs of M. incognita by more than 90% in tomato roots. When BMH and INV were combined (BMH + INV), RKN suppression and tomato shoot weight were lower compared to single-strain applications. Additionally, metabolites in cell-free supernatants and volatile organic compounds (VOCs) from strains BMH and INV had strong effects against the plant pathogens M. incognita, Fusarium oxysporum, Rhizoctonia solani and Sclerotium rolfsiii, but not against three species of nematophagous fungi. Although strain INV and the combination BMH + INV emitted fewer VOCs than strain BMH, they were still capable of killing second-stage juveniles of M. incognita. CONCLUSIONS Bacillus strains BMH and INV inhibited M. incognita and fungal pathogens, and promoted tomato growth. However, strain INV emitted fewer VOCs and the combination BMH + INV did not enhance the activity of the biocontrol strains against the RKN or their capacity to promote plant growth. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Rafaela A Guimarães
- Department of Phytopathology, Universidade Federal de Lavras, Lavras, Brazil
| | - Julio Cp da Silva
- Department of Phytosanitary Defense, CCR, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Amanda F de Faria
- Department of Phytopathology, Universidade Federal de Lavras, Lavras, Brazil
| | - Márcio P Pedroso
- Department of Chemistry, Universidade Federal de Lavras, Lavras, Brazil
| | - Vicente P Campos
- Department of Phytopathology, Universidade Federal de Lavras, Lavras, Brazil
| | - Phellippe As Marbach
- Center for Agricultural, Biological and Environmental Sciences, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, Brazil
| | | | - Jorge T De Souza
- Department of Phytopathology, Universidade Federal de Lavras, Lavras, Brazil
| |
Collapse
|
7
|
Surfactin Stimulated by Pectin Molecular Patterns and Root Exudates Acts as a Key Driver of the Bacillus-Plant Mutualistic Interaction. mBio 2021; 12:e0177421. [PMID: 34724831 PMCID: PMC8561381 DOI: 10.1128/mbio.01774-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Bacillus velezensis is considered as a model species belonging to the so-called Bacillus subtilis complex that evolved typically to dwell in the soil rhizosphere niche and establish an intimate association with plant roots. This bacterium provides protection to its natural host against diseases and represents one of the most promising biocontrol agents. However, the molecular basis of the cross talk that this bacterium establishes with its natural host has been poorly investigated. We show here that these plant-associated bacteria have evolved a polymer-sensing system to perceive their host and that, in response, they increase the production of the surfactin-type lipopeptide. Furthermore, we demonstrate that surfactin synthesis is favored upon growth on root exudates and that this lipopeptide is a key component used by the bacterium to optimize biofilm formation, motility, and early root colonization. In this specific nutritional context, the bacterium also modulates qualitatively the pattern of surfactin homologues coproduced in planta and forms mainly variants that are the most active at triggering plant immunity. Surfactin represents a shared good as it reinforces the defensive capacity of the host. IMPORTANCE Within the plant-associated microbiome, some bacterial species are of particular interest due to the disease protective effect they provide via direct pathogen suppression and/or stimulation of host immunity. While these biocontrol mechanisms are quite well characterized, we still poorly understand the molecular basis of the cross talk these beneficial bacteria initiate with their host. Here, we show that the model species Bacillus velezensis stimulates the production of the surfactin lipopeptide upon sensing pectin as a cell surface molecular pattern and upon feeding on root exudates. Surfactin favors bacterial rhizosphere fitness on one hand and primes the plant immune system on the other hand. Our data therefore illustrate how both partners use this multifunctional compound as a unique shared good to sustain a mutualistic interaction.
Collapse
|
8
|
Afroj S, Brannen AD, Nasrin S, Al Mouslem A, Hathcock T, Maxwell H, Rasmussen-Ivey CR, Sandage MJ, Davis EW, Panizzi P, Wang C, Liles MR. Bacillus velezensis AP183 Inhibits Staphylococcus aureus Biofilm Formation and Proliferation in Murine and Bovine Disease Models. Front Microbiol 2021; 12:746410. [PMID: 34690995 PMCID: PMC8533455 DOI: 10.3389/fmicb.2021.746410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
The increasing frequency of S. aureus antimicrobial resistance has spurred interest in identifying alternative therapeutants. We investigated the S. aureus-inhibitory capacity of B. velezensis strains in mouse and bovine models. Among multiple B. velezensis strains that inhibited S. aureus growth in vitro, B. velezensis AP183 provided the most potent inhibition of S. aureus proliferation and bioluminescence in a mouse cutaneous wound (P = 0.02). Histology revealed abundant Gram-positive cocci in control wounds that were reduced in B. velezensis AP183-treated tissues. Experiments were then conducted to evaluate the ability of B. velezensis AP183 to prevent S. aureus biofilm formation on a tracheostomy tube substrate. B. velezensis AP183 could form a biofilm on a tracheostomy tube inner cannula substrate, and that this biofilm was antagonistic to S. aureus colonization. B. velezensis AP183 was also observed to inhibit the growth of S. aureus isolates originated from bovine mastitis cases. To evaluate the inflammatory response of mammary tissue to intramammary inoculation with B. velezensis AP183, we used high dose and low dose inocula in dairy cows. At the high dose, a significant increase in somatic cell count (SCC) and clinical mastitis was observed at all post-inoculation time points (P < 0.01), which resolved quickly compared to S. aureus-induced mastitis; in contrast, the lower dose of B. velezensis AP183 resulted in a slight increase of SCC and no clinical mastitis. In a subsequent experiment, all mammary quarters in four cows were induced to have grade 1 clinical mastitis by intramammary inoculation of a S. aureus mastitis isolate; following mastitis induction, eight quarters were treated with B. velezensis AP183 and milk samples were collected from pretreatment and post-treatment samples for 9 days. In groups treated with B. velezensis AP183, SCC and abundance of S. aureus decreased with significant reductions in S. aureus after 3 days post-inoculation with AP183 (P = 0.04). A milk microbiome analysis revealed significant reductions in S. aureus relative abundance in the AP183-treated group by 8 days post-inoculation (P = 0.02). These data indicate that B. velezensis AP183 can inhibit S. aureus biofilm formation and its proliferation in murine and bovine disease models.
Collapse
Affiliation(s)
- Sayma Afroj
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Andrew D Brannen
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, United States
| | - Shamima Nasrin
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Abdulaziz Al Mouslem
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, United States
| | - Terri Hathcock
- Department of Pathobiology, Auburn University, Auburn, AL, United States
| | - Herris Maxwell
- Department of Clinical Sciences, Auburn University, Auburn, AL, United States
| | | | - Mary J Sandage
- Department of Speech, Language, and Hearing Sciences, Auburn University, Auburn, AL, United States
| | - Edward W Davis
- Department of Mechanical Engineering, Auburn University, Auburn, AL, United States
| | - Peter Panizzi
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, United States
| | - Chengming Wang
- Department of Pathobiology, Auburn University, Auburn, AL, United States
| | - Mark R Liles
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| |
Collapse
|
9
|
Chen Z, Zhao L, Dong Y, Chen W, Li C, Gao X, Chen R, Li L, Xu Z. The antagonistic mechanism of Bacillus velezensis ZW10 against rice blast disease: Evaluation of ZW10 as a potential biopesticide. PLoS One 2021; 16:e0256807. [PMID: 34449822 PMCID: PMC8396770 DOI: 10.1371/journal.pone.0256807] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/17/2021] [Indexed: 11/20/2022] Open
Abstract
Rice blast, caused by the fungus Magnaporthe oryzae, is one of the three major diseases affecting rice production and quality; it reduces rice grain yield by nearly 30%. In the early stage of this study, a strain of Bacillus velezensis with strong inhibition of M. oryzae was isolated and named ZW10. In vitro assays indicated prolonged germination time of conidia of M. oryzae treated with the antifungal substances of ZW10, 78% of the conidia could not form appressorium, and the conidial tubes expanded to form vacuolar structure and then shrank. The results of FDA-PI composite dyes showed that the antifungal substances of ZW10 inhibited the normal activity of M. oryzae hyphae that were rarely able to infect the epidermal cells of rice leaf sheath in vivo tests. In addition, rice treated with the antifungal substances of ZW10 showed a variety of defense responses, including activation of defense-related enzymes, increased expression of the salicylic acid pathway genes, and accumulation of hydrogen peroxide (H2O2), which might function directly or indirectly in resistance to pathogen attack. The field experiment with rice blast infection in different periods showed that the antifungal substances of ZW10 had the same control effect as carbendazim. The significant biological control activity of ZW10 and its capacity to stimulate host defenses suggest that this B. velezensis strain has the potential to be developed into a biopesticide for the biocontrol of rice blast.
Collapse
Affiliation(s)
- Zuo Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Lu Zhao
- Department of Bioengineering, Microbiology Laboratory of Sichuan Water Conservancy Vocational College, Dujiangyan, China
| | - Yilun Dong
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Wenqian Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chunliu Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiaoling Gao
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Rongjun Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Lihua Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhengjun Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
10
|
Mullins AJ, Li Y, Qin L, Hu X, Xie L, Gu C, Mahenthiralingam E, Liao X, Webster G. Reclassification of the biocontrol agents Bacillus subtilis BY-2 and Tu-100 as Bacillus velezensis and insights into the genomic and specialized metabolite diversity of the species. MICROBIOLOGY-SGM 2021; 166:1121-1128. [PMID: 33205747 PMCID: PMC7819358 DOI: 10.1099/mic.0.000986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The genomes of two historical Bacillus species strains isolated from the roots of oilseed rape and used routinely in PR China as biocontrol agents to suppress Sclerotinia disease were sequenced. Average nucleotide identity (ANI) and digital DNA–DNA hybridization analyses demonstrated that they were originally misclassified as Bacillus subtilis and now belong to the bacterial species Bacillus velezensis. A broader ANI analysis of available Bacillus genomes identified 292 B. velezensis genomes that were then subjected to core gene analysis and phylogenomics. Prediction and dereplication of specialized metabolite biosynthetic gene clusters (BGCs) defined the prevalence of multiple antimicrobial-associated BGCs and highlighted the natural product potential of B. velezensis. By defining the core and accessory antimicrobial biosynthetic capacity of the species, we offer an in-depth understanding of B. velezensis natural product capacity to facilitate the selection and testing of B. velezensis strains for use as biological control agents.
Collapse
Affiliation(s)
- Alex J Mullins
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Yinshui Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Lu Qin
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Xiaojia Hu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Lihua Xie
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Chiming Gu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Eshwar Mahenthiralingam
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Xing Liao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Gordon Webster
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| |
Collapse
|
11
|
Hassan MK, Lawrence KS, Sikora EJ, Liles MR, Kloepper JW. Enhanced biological control of root-knot nematode, Meloidogyne incognita, by combined inoculation of cotton or soybean seeds with a plant growth-promoting rhizobacterium and pectin-rich orange peel. J Nematol 2021; 53:e2021-58. [PMID: 34250503 PMCID: PMC8220515 DOI: 10.21307/jofnem-2021-058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 11/17/2022] Open
Abstract
LC-MS analysis of plant growth-promoting rhizobacterium (PGPR) Bacillus velezensis AP203 supernatants indicated the presence of nematode-inhibiting compounds that increased in abundance when B. velezensis AP203 was grown on orange peel. Meloidogyne incognita J2 were incubated with B. velezensis AP203 spores and orange peel, spores alone, orange peel alone, or with a non-inoculated control, and the combination of B. velezensis AP203 with orange peel resulted in 94% mortality of M. incognita juveniles (p ≤ 0.05). The J2 mortality rate for B. velezensis alone was 53%, compared to 59% mortality with orange peel, and the non-inoculated control exhibited 7% mortality. When tested on soybeans raised in a greenhouse, it was observed that when grown in the presence of orange peel, B. velezensis AP203 culture broth, cell suspension or supernatant reduced the numbers of M. incognita eggs per g of root at 45 days after planting (DAP) compared to inoculated controls in soybean and cotton (p ≤ 0.05). Likewise, soybean root length and fresh root weight significantly increased after inoculation with B. velezensis AP203 amended with orange peel. In cotton, shoot and root length significantly increased after inoculation with cell pellets of B. velezensis AP203 amended with orange peel compared to the M. incognita inoculated control. These data indicate that B. velezensis AP203 responds to growth on pectin-rich orange peel by production of biologically active secondary metabolites that can promote plant growth and inhibit root-knot nematode viability.
Collapse
Affiliation(s)
- Mohammad K Hassan
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849
| | - Kathy S Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849
| | - Edward J Sikora
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849
| | - Mark R Liles
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849
| | - Joseph W Kloepper
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849
| |
Collapse
|
12
|
Ibekwe AM, Ors S, Ferreira JFS, Liu X, Suarez DL. Influence of seasonal changes and salinity on spinach phyllosphere bacterial functional assemblage. PLoS One 2021; 16:e0252242. [PMID: 34061881 PMCID: PMC8168849 DOI: 10.1371/journal.pone.0252242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/11/2021] [Indexed: 11/18/2022] Open
Abstract
The phyllosphere is the aerial part of plants that is exposed to different environmental conditions and is also known to harbor a wide variety of bacteria including both plant and human pathogens. However, studies on phyllosphere bacterial communities have focused on bacterial composition at different stages of plant growth without correlating their functional capabilities to bacterial communities. In this study, we examined the seasonal effects and temporal variabilities driving bacterial community composition and function in spinach phyllosphere due to increasing salinity and season and estimated the functional capacity of bacterial community16S V4 rRNA gene profiles by indirectly inferring the abundance of functional genes based on metagenomics inference tool Piphillin. The experimental design involved three sets of spinach (Spinacia oleracea L., cv. Racoon) grown with saline water during different seasons. Total bacteria DNA from leaf surfaces were sequenced using MiSeq® Illumina platform. About 66.35% of bacteria detected in the phyllosphere were dominated by four phyla- Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria. Permutational analysis of variance (PERMANOVA) showed that phyllosphere microbiomes were significantly (P < 0.003) affected by season, but not salinity (P = 0.501). The most abundant inferred functional pathways in leaf samples were the amino acids biosynthesis, ABC transporters, ribosome, aminoacyl-tRNA biosynthesis, two-component system, carbon metabolism, purine metabolism, and pyrimidine metabolism. The photosynthesis antenna proteins pathway was significantly enriched in June leaf samples, when compared to March and May. Several genes related to toxin co-regulated pilus biosynthesis proteins were also significantly enriched in June leaf samples, when compared to March and May leaf samples. Therefore, planting and harvesting times must be considered during leafy green production due to the influence of seasons in growth and proliferation of phyllosphere microbial communities.
Collapse
Affiliation(s)
| | - Selda Ors
- Ataturk University, Department of Agricultural Structures and Irrigation, Erzurum, Turkey
| | | | - Xuan Liu
- US Salinity Laboratory, USDA-ARS, Riverside, CA, United States of America
| | - Donald L. Suarez
- US Salinity Laboratory, USDA-ARS, Riverside, CA, United States of America
| |
Collapse
|
13
|
Chen L, Wang X, Liu Y. Contribution of macrolactin in Bacillus velezensis CLA178 to the antagonistic activities against Agrobacterium tumefaciens C58. Arch Microbiol 2021; 203:1743-1752. [PMID: 33471134 DOI: 10.1007/s00203-020-02141-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 11/02/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
Beneficial rhizobacteria can inhibit soilborne pathogens by secreting an array of polyketides, lipopeptides and dipeptides, but the effect of polyketides on crown gall disease caused by Agrobacterium tumefaciens C58 is unclear. In this study, the antagonistic compounds of the plant growth-promoting rhizobacterium Bacillus velezensis CLA178 was sorted with different organic phases, purified by high-pressure liquid chromatography, and detected by a liquid chromatography ionization-mass spectrometry system. Macrolactins were found to be the compounds with antagonistic activity against A. tumefaciens C58. When the macrolactin synthesis pathway was disrupted, the mutant △mlnA only showed slight antagonistic activity against A. tumefaciens C58. Transmission electron microscopy showed that the inhibition of C58 cell division by cell-free culture from the mutant △mlnA was weaker than that by cell-free culture from CLA178. The mutant deficient in production of macrolactin showed a weaker transcription of genes involved in attachment of C58 to plant and lower biocontrol of crown gall disease in rose than the wild-type strain CLA178. The effect of macrolactins on pathogen C58 has been also confirmed by the purified macrolactins. These results reveal that macrolactins contribute to the biocontrol activity of C58 by inhibiting cell division and downregulating the transcription of chvB and chvE.
Collapse
Affiliation(s)
- Lin Chen
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 102300, People's Republic of China.,National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain, Beijing, 102300, People's Republic of China
| | - Xinghong Wang
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 102300, People's Republic of China.,National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain, Beijing, 102300, People's Republic of China
| | - Yunpeng Liu
- Key Laboratory of Agricultural Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
14
|
The Effects of Biofertilizers on Growth, Soil Fertility, and Nutrients Uptake of Oil Palm (Elaeis Guineensis) under Greenhouse Conditions. Processes (Basel) 2020. [DOI: 10.3390/pr8121681] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The full dependency on chemical fertilizers in oil palm plantation poses an enormous threat to the ecosystem through the degradation of soil and water quality through leaching to the groundwater and contaminating the river. A greenhouse study was conducted to test the effect of combinations of biofertilizers with chemical fertilizer focusing on the soil fertility, nutrient uptake, and the growth performance of oil palms seedlings. Soils used were histosol, spodosol, oxisol, and ultisol. The three treatments were T1: 100% chemical fertilizer (NPK 12:12:17), T2: 70% chemical fertilizer + 30% biofertilizer A (CF + BFA), and T3: 70% + 30% biofertilizer B (CF + BFB). T2 and T3, respectively increased the growth of oil palm seedlings and soil nutrient status but seedlings in oxisol and ultisol under T3 had the highest in almost all parameters due to the abundance of more efficient PGPR. The height of seedlings in ultisol under T3 was 22% and 17% more than T2 and T1 respectively, with enhanced girth size, chlorophyll content, with improved nutrient uptake by the seedlings. Histosol across all treatments has a high macronutrient content suggesting that the rate of chemical fertilizer application should be revised when planting using the particular soil. With the reduction of chemical fertilizer by 25%, the combined treatment with biofertilizers could enhance the growth of the oil palm seedlings and soil nutrient properties regardless of the soil orders.
Collapse
|
15
|
Abdallah DB, Krier F, Jacques P, Tounsi S, Frikha-Gargouri O. Agrobacterium tumefaciens C58 presence affects Bacillus velezensis 32a ecological fitness in the tomato rhizosphere. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28429-28437. [PMID: 32415456 DOI: 10.1007/s11356-020-09124-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
The persistence of pathogenic Agrobacterium strains as soil-associated saprophytes may cause an inconsistency in the efficacy of the biocontrol inoculants under field condition. The study of the interaction occurring in the rhizosphere between the beneficial and the pathogenic microbes is thus interesting for the development of effective biopesticides for the management of crown gall disease. However, very little is still known about the influence of these complex interactions on the biocontrol determinants of beneficial bacteria, especially Bacillus strains. This study aimed to evaluate the effect of the soil borne pathogen Agrobacterium tumefaciens C58 on root colonization and lipopeptide production by Bacillus velezensis strain 32a during interaction with tomato plants. Results show that the presence of A. tumefaciens C58 positively impacted the root colonization level of the Bacillus strain. However, negative impact on surfactin production was observed in Agrobacterium-treated seedling, compared with control. Further investigation suggests that these modulations are due to a modified tomato root exudate composition during the tripartite interaction. Thus, this work contributes to enhance the knowledge on the impact of interspecies interaction on the ecological fitness of Bacillus cells living in the rhizosphere.
Collapse
Affiliation(s)
- Dorra Ben Abdallah
- Biopesticides Laboratory, Centre of Biotechnology of Sfax, Sfax University, P.O. Box 1177, 3018, Sfax, Tunisia
| | - François Krier
- Université de Lille, INRA, Université d'Artois, Université du Littoral-Côte d'Opale, EA 7394 - ICV-Institut Charles Viollette, F-59000, Lille, France
| | - Philippe Jacques
- Microbial Processes and Interactions (MiPI), TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech University of Liege, B-5030, Gembloux, Belgium
| | - Slim Tounsi
- Biopesticides Laboratory, Centre of Biotechnology of Sfax, Sfax University, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Olfa Frikha-Gargouri
- Biopesticides Laboratory, Centre of Biotechnology of Sfax, Sfax University, P.O. Box 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
16
|
Kumbar B, Kandagalla S, Bharath BR, Sharath BS, Mahmood R. Protein-protein Interaction and Molecular Dynamics of Iturin A Gene on Effector Proteins of Phytophthora infestans. Comb Chem High Throughput Screen 2020; 24:259-268. [PMID: 32691704 DOI: 10.2174/1386207323666200720012054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/07/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022]
Abstract
AIM AND OBJECTIVES Phytophthora infestans (Mont.) de Bary, the fungal pathogen causes late blight, which results in devastating economic loss among the Solanaceae. The bacillus lipopeptides show the antagonistic activity against the many plant pathogens, among bacillus lipopeptides reported as the antifungal gene. Hence, to understand the in silico antifungal activity, we have selected gene iturin A (AXN89987) produced by Bacillus spp to check the molecular dynamics study with the effector proteins of the P. infestanse. In this concern, known effector proteins of P. infestans were subjected to the protein-protein interaction followed by simulation. MATERIALS AND METHODS Iturin A gene was amplified using the soil bacterium Bacillus subtilis with gene-specific primers, cloned into pTZ 57R/T vector and confirmed by sequencing. To get better insights, the protein model was developed for Iturin A using Modeller 9.17, using PDB structure of ID 4MRT (Phosphopantetheine transferase Sfp) and 1QR0 (4'-phosphopantetheinyl moiety of coenzyme A) as a template, it shared the identity 72% and expected P-value: 3e-121, respectively. The model quality was assessed using ProSA and PROCHECK programs. RESULTS The potency of modelled protein against effector proteins of P. infestans were evaluated in silico using the HADDOCK server and the results showed the high affinity of towards the effector protein Host ATG8 (PDB-5L83). Finally, the simulation was performed to the docked conformation of with Host ATG8 to further understand the stability of the complex using the Desmond program. CONCLUSION Altogether, the protein-protein interaction and simulation study propose a new methodology and to uncover possible antifungal activity of iturin A against effector proteins of P. infestans.
Collapse
Affiliation(s)
- Bhimanagoud Kumbar
- Department of Biotechnology, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka 577451, India
| | - Shivananda Kandagalla
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, 4540008, Chaikovskogo 20A, Russian Federation
| | | | | | - Riaz Mahmood
- Department of Biotechnology, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka 577451, India
| |
Collapse
|
17
|
Xie S, Yu H, Wang Q, Cheng Y, Ding T. Two rapid and sensitive methods based on TaqMan qPCR and droplet digital PCR assay for quantitative detection of Bacillus subtilis in rhizosphere. J Appl Microbiol 2019; 128:518-527. [PMID: 31602754 DOI: 10.1111/jam.14481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/22/2019] [Accepted: 10/04/2019] [Indexed: 01/03/2023]
Abstract
AIMS Bacillus subtilis, a typical plant growth-promoting rhizobacteria, can benefit plant through promoting growth and reducing disease. The colonization intensity of B. subtilis in rhizosphere is a key factor for improving their effectiveness of field application. In this study, we developed a rapid and sensitive method for detecting B. subtilis in rhizosphere via TaqMan qPCR and droplet digital PCR (ddPCR) methods. METHODS AND RESULTS The primers/probe set targeting gyrB gene could successfully distinguish B. subtilis from its close-related species. Both the TaqMan qPCR and ddPCR methods exhibited a good linear relationship in the sensitivity assay, suggesting the developed method was specific, effective and reliable. Finally, the two methods were used to detect the colonization dynamic of B. subtilis within Arabidopsis rhizosphere. Both of them showed a consistent trend compared with the traditional cultivation-based and microscopy-based methods. CONCLUSIONS The TaqMan qPCR and droplet digital PCR (ddPCR) methods we developed could be used to rapidly detect B. subtilis in rhizosphere. SIGNIFICANCE AND IMPACT OF THE STUDY The TaqMan qPCR and ddPCR methods developed in this study can be applied to rapid quantitative detection of B. subtilis populations, and will be helpful to evaluate their effectiveness of field application.
Collapse
Affiliation(s)
- Shanshan Xie
- The National Key Engineering Lab of Crop Stress Resistance Breeding, College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Hengguo Yu
- The National Key Engineering Lab of Crop Stress Resistance Breeding, College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Qi Wang
- College of Plant protection, Anhui Agricultural University, Hefei, China
| | - Yifeng Cheng
- The National Key Engineering Lab of Crop Stress Resistance Breeding, College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Ting Ding
- College of Plant protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
18
|
Kumbar B, Mahmood R, Nagesha S, Nagaraja M, Prashant D, Kerima OZ, Karosiya A, Chavan M. Field application of Bacillus subtilis isolates for controlling late blight disease of potato caused by Phytophthora infestans. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
The role of iturin A from B. amyloliquefaciens BUZ-14 in the inhibition of the most common postharvest fruit rots. Food Microbiol 2019; 82:62-69. [DOI: 10.1016/j.fm.2019.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 12/23/2018] [Accepted: 01/19/2019] [Indexed: 10/27/2022]
|
20
|
Pectin-Rich Amendment Enhances Soybean Growth Promotion and Nodulation Mediated by Bacillus Velezensis Strains. PLANTS 2019; 8:plants8050120. [PMID: 31075893 PMCID: PMC6571900 DOI: 10.3390/plants8050120] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/26/2019] [Accepted: 05/07/2019] [Indexed: 11/16/2022]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are increasingly used in crops worldwide. While selected PGPR strains can reproducibly promote plant growth under controlled greenhouse conditions, their efficacy in the field is often more variable. Our overall aim was to determine if pectin or orange peel (OP) amendments to Bacillus velezensis (Bv) PGPR strains could increase soybean growth and nodulation by Bradyrhizobium japonicum in greenhouse and field experiments to reduce variability. The treatments included untreated soybean seeds planted in field soil that contained Bv PGPR strains and non-inoculated controls with and without 0.1% (w/v) pectin or (1 or 10 mg/200 μL) orange peel (OP) amendment. In greenhouse and field tests, 35 and 55 days after planting (DAP), the plants were removed from pots, washed, and analyzed for treatment effects. In greenhouse trials, the rhizobial inoculant was not added with Bv strains and pectin or OP amendment, but in the field trial, a commercial B. japonicum inoculant was used with Bv strains and pectin amendment. In the greenhouse tests, soybean seeds inoculated with Bv AP193 and pectin had significantly increased soybean shoot length, dry weight, and nodulation by indigenous Bradyrhizobium compared to AP193 without pectin. In the field trial, pectin with Bv AP193 significantly increased the shoot length, dry weight, and nodulation of a commercial Bradyrhizobium japonicum compared to Bv AP193 without pectin. In greenhouse tests, OP amendment with AP193 at 10 mg significantly increased the dry weight of shoots and roots compared to AP193 without OP amendment. The results demonstrate that pectin-rich amendments can enhance Bv-mediated soybean growth promotion and nodulation by indigenous and inoculated B. japonicum.
Collapse
|
21
|
Kim YH, Choi Y, Oh YY, Ha NC, Song J. Plant growth-promoting activity of beta-propeller protein YxaL secreted from Bacillus velezensis strain GH1-13. PLoS One 2019; 14:e0207968. [PMID: 31022189 PMCID: PMC6483160 DOI: 10.1371/journal.pone.0207968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/09/2019] [Indexed: 01/23/2023] Open
Abstract
YxaL is conserved within the Bacillus subtilis species complex associated with plants and soil. The mature YxaL protein contains a repeated beta-propeller domain, but the subcellular location and function of YxaL has not been determined. The gene encoding the mature YxaL protein was PCR amplified from genomic DNA of B. velezensis strain GH1-13 and used for recombinant protein production. A rabbit polyclonal antibody against the purified YxaL was generated and used for western blotting to determine the constitutive expression and secretion of YxaL. During normal culture growth of strain GH1-13, levels of the constitutively secreted YxaL were slowly rising to 100 μg L-1, and degraded with a half-life of 1.6 h in the culture medium. When the effects of YxaL on plant seed germination and seedling growth were examined, it was shown that seed treatment of Arabidopsis thaliana and rice (Oryza sativa L.) with purified YxaL at the optimal concentration of 1 mg L-1 was effective at improving the root growth of plants. Seedlings from the treated Arabidopsis seeds markedly increased transcription of a 1-aminocyclopropane-1-carboxylate synthetase marker gene (ACS11) but reduced expression of auxin- and abscisic acid-responsive marker genes (IAA1, GH3.3, and ABF4), especially when provided with exogenous auxin. Horticulture experiments showed that pepper (Capsicum annuum) seeds treated with 1 mg L-1 YxaL in a soaking solution increased shoot growth and improved tolerance to drought stress. We hypothesize that YxaL secreted from plant growth-promoting Bacillus cells has a significant impact on plant roots, with the potential to improve plant growth and stress tolerance.
Collapse
Affiliation(s)
- Yong-Hak Kim
- Department of Microbiology, Daegu Catholic University School of Medicine, Daegu, Republic of Korea
- * E-mail: (YHK); (JS)
| | - Yunhee Choi
- Department of Microbiology, Daegu Catholic University School of Medicine, Daegu, Republic of Korea
| | - Yu Yeong Oh
- Department of Microbiology, Daegu Catholic University School of Medicine, Daegu, Republic of Korea
| | - Nam-Chul Ha
- Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Jaekyeong Song
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
- * E-mail: (YHK); (JS)
| |
Collapse
|
22
|
Shahzad R, Khan AL, Waqas M, Ullah I, Bilal S, Kim YH, Asaf S, Kang SM, Lee IJ. Metabolic and proteomic alteration in phytohormone-producing endophytic Bacillus amyloliquefaciens RWL-1 during methanol utilization. Metabolomics 2019; 15:16. [PMID: 30830445 DOI: 10.1007/s11306-018-1467-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Methanol utilization by bacteria is important for various industrial processes. Methylotrophic bacteria are taxonomically diverse and some species promote plant growth and induce stress tolerance. However, methylotrophic potential of bacterial endophytes is poorly understood. OBJECTIVE The current study aimed to evaluate the metabolomic and proteomic changes in endophytic Bacillus amyloliquefaciens RWL-1 caused by its methanol utilization and the resultant influence on its phytohormone production. METHODS B. amyloliquefaciens RWL-1 was grown in LB medium with different concentrations [0 (control), 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4%) of methanol to examine its methylotrophic potential. SDS-PAGE analysis was carried out for bacterial protein confirmation. Moreover, the phytohormones (indole 3 acetic acid (IAA), gibberellins (GAs), abscisic acid (ABA)) produced by RWL-1 in methanol supplemented medium were quantified by GC-MS/SIM (6890N Network GC system, and 5973 Network Mass Selective Detector; Agilent Technologies, Santa Clara, CA, USA), while the antioxidants were estimated spectrophotometrically (T60 UV-VIS spectrophotometer, Leicester, UK). The amino acid quantification was carried out by amino acid analyzer (HITACHI L-8900, Japan). Furthermore, Nano-liquid chromatography (LC)-MS/MS analysis was performed with an Agilent system (Wilmington, DE, USA) for proteomic analysis while mascot algorithm (Matrix science, USA) was used to identify peptide sequences present in the protein sequence database. RESULTS RWL-1 showed significant growth in media supplemented with 2 and 3.5% methanol, when compared with other concentrations. Mass spectroscopy analysis revealed that RWL-1 utilizes methanol efficiently as a carbon source. In the presence of methanol, RWL-1 produced significantly higher levels of IAA but lower levels of ABA, when compared with the control. Further, enzymatic antioxidants and functional amino acids were significantly up-regulated, with predominant expression of glutamic acid and alanine. Nano-liquid chromatography, quadrupole time-of-flight analysis, and quantitative analysis of methanol-treated bacterial cells showed expression of eight different types of proteins, including detoxification proteins, unrecognized and unclassified enzymes with antioxidant properties, proteases, metabolism enzymes, ribosomal proteins, antioxidant proteins, chaperones, and heat shock proteins. CONCLUSION Results demonstrate that RWL-1 can significantly enhance its growth by utilizing methanol, and could produce phytohormones when growing in methanol-supplemented media, with increased expression of specific proteins and different biochemicals. These results will be useful in devising strategies for utilizing methylotrophic bacterial endophytes as alternative promoters of plant growth. Understanding RWL-1 ability to utilize methanol. The survival and phytohormones production by Bacillus amyloliquefaciens RWL-1 in methanol supplemented media whistle inducing metabolic and proteomic changes.
Collapse
Affiliation(s)
- Raheem Shahzad
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Abdul Latif Khan
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Muhammad Waqas
- Department of Agriculture Extension, Buner, Khyber Pakhtunkhwa, Pakistan
| | - Ihsan Ullah
- Department of Biological Sciences, Faculty of science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saqib Bilal
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yoon-Ha Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Sang-Mo Kang
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
23
|
Levy A, Conway JM, Dangl JL, Woyke T. Elucidating Bacterial Gene Functions in the Plant Microbiome. Cell Host Microbe 2018; 24:475-485. [DOI: 10.1016/j.chom.2018.09.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Draft Genome Sequence of Bacillus velezensis GF610, a Producer of Potent Anti- Listeria Agents. GENOME ANNOUNCEMENTS 2017; 5:5/41/e01046-17. [PMID: 29025938 PMCID: PMC5637498 DOI: 10.1128/genomea.01046-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacillus velezensis GF610 was isolated from soil in Illinois, USA, and found to produce amyloliquecidin GF610, a potent two-component antimicrobial peptide. We report here the GF610 strain draft genome sequence, which contains 4.29 Mb and an overall GC content of 45.91%.
Collapse
|
25
|
Liu K, Newman M, McInroy JA, Hu CH, Kloepper JW. Selection and Assessment of Plant Growth-Promoting Rhizobacteria for Biological Control of Multiple Plant Diseases. PHYTOPATHOLOGY 2017; 107:928-936. [PMID: 28440700 DOI: 10.1094/phyto-02-17-0051-r] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A study was designed to screen individual strains of plant growth-promoting rhizobacteria (PGPR) for broad-spectrum disease suppression in vitro and in planta. In a preliminary screen, 28 of 196 strains inhibited eight different tested pathogens in vitro. In a secondary screen, these 28 strains showed broad spectrum antagonistic activity to six different genera of pathogens, and 24 of the 28 strains produced five traits reported to be related to plant growth promotion, including nitrogen fixation, phosphate solubilization, indole-3-acetic acid production, siderophore production, and biofilm formation. In advanced screens, the 28 PGPR strains selected in vitro were tested in planta for biological control of multiple plant diseases including bacterial spot of tomato caused by Xanthomonas axonopodis pv. vesicatoria, bacterial speck of tomato caused by Pseudomonas syringae pv. tomato, damping-off of pepper caused by Rhizoctonia solani, and damping-off of cucumber caused by Pythium ultimum. In all, 5 of the 28 tested strains significantly reduced three of the four tested diseases, and another 19 strains showed biological control to two tested diseases. To understand the observed broad-spectrum biocontrol capacity, antiSMASH was used to predict secondary metabolite clusters of selected strains. Multiple gene clusters encoding for secondary metabolites, e.g., bacillibactin, bacilysin, and microcin, were detected in each strain. In conclusion, selected individual PGPR strains showed broad-spectrum biocontrol activity to multiple plant diseases.
Collapse
Affiliation(s)
- Ke Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Molli Newman
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - John A McInroy
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Chia-Hui Hu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Joseph W Kloepper
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| |
Collapse
|
26
|
Carro L, Nouioui I. Taxonomy and systematics of plant probiotic bacteria in the genomic era. AIMS Microbiol 2017; 3:383-412. [PMID: 31294168 PMCID: PMC6604993 DOI: 10.3934/microbiol.2017.3.383] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/22/2017] [Indexed: 12/20/2022] Open
Abstract
Recent decades have predicted significant changes within our concept of plant endophytes, from only a small number specific microorganisms being able to colonize plant tissues, to whole communities that live and interact with their hosts and each other. Many of these microorganisms are responsible for health status of the plant, and have become known in recent years as plant probiotics. Contrary to human probiotics, they belong to many different phyla and have usually had each genus analysed independently, which has resulted in lack of a complete taxonomic analysis as a group. This review scrutinizes the plant probiotic concept, and the taxonomic status of plant probiotic bacteria, based on both traditional and more recent approaches. Phylogenomic studies and genes with implications in plant-beneficial effects are discussed. This report covers some representative probiotic bacteria of the phylum Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes, but also includes minor representatives and less studied groups within these phyla which have been identified as plant probiotics.
Collapse
Affiliation(s)
- Lorena Carro
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| | - Imen Nouioui
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
27
|
Fan B, Blom J, Klenk HP, Borriss R. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis Form an "Operational Group B. amyloliquefaciens" within the B. subtilis Species Complex. Front Microbiol 2017; 8:22. [PMID: 28163698 PMCID: PMC5247444 DOI: 10.3389/fmicb.2017.00022] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/04/2017] [Indexed: 11/13/2022] Open
Abstract
The plant growth promoting model bacterium FZB42T was proposed as the type strain of Bacillus amyloliquefaciens subsp. plantarum (Borriss et al., 2011), but has been recently recognized as being synonymous to Bacillus velezensis due to phylogenomic analysis (Dunlap C. et al., 2016). However, until now, majority of publications consider plant-associated close relatives of FZB42 still as "B. amyloliquefaciens." Here, we reinvestigated the taxonomic status of FZB42 and related strains in its context to the free-living soil bacterium DSM7T, the type strain of B. amyloliquefaciens. We identified 66 bacterial genomes from the NCBI data bank with high similarity to DSM7T. Dendrograms based on complete rpoB nucleotide sequences and on core genome sequences, respectively, clustered into a clade consisting of three tightly linked branches: (1) B. amyloliquefaciens, (2) Bacillus siamensis, and (3) a conspecific group containing the type strains of B. velezensis, Bacillus methylotrophicus, and B. amyloliquefaciens subsp. plantarum. The three monophyletic clades shared a common mutation rate of 0.01 substitutions per nucleotide position, but were distantly related to Bacillus subtilis (0.1 substitutions per nucleotide position). The tight relatedness of the three clusters was corroborated by TETRA, dDDH, ANI, and AAI analysis of the core genomes, but dDDH and ANI values were found slightly below species level thresholds when B. amyloliquefaciens DSM7T genome sequence was used as query sequence. Due to these results, we propose that the B. amyloliquefaciens clade should be considered as a taxonomic unit above of species level, designated here as "operational group B. amyloliquefaciens" consisting of the soil borne B. amyloliquefaciens, and plant associated B. siamensis and B. velezensis, whose members are closely related and allow identifying changes on the genomic level due to developing the plant-associated life-style.
Collapse
Affiliation(s)
- Ben Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University Nanjing, China
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-Universität Giessen Giessen, Germany
| | | | - Rainer Borriss
- Fachgebiet Phytomedizin, Institut für Agrar- und Gartenbauwissenschaften, Humboldt Universität zu BerlinBerlin, Germany; Nord Reet UGGreifswald, Germany
| |
Collapse
|
28
|
Mardanova AM, Fanisovna Hadieva G, Tafkilevich Lutfullin M, Valer’evna Khilyas I, Farvazovna Minnullina L, Gadelevna Gilyazeva A, Mikhailovna Bogomolnaya L, Rashidovna Sharipova M. <i>Bacillus subtilis Strains</i> with Antifungal Activity against the Phytopathogenic Fungi. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/as.2017.81001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Zhang S, Jiang W, Li J, Meng L, Cao X, Hu J, Liu Y, Chen J, Sha C. Whole genome shotgun sequence of Bacillus amyloliquefaciens TF28, a biocontrol entophytic bacterium. Stand Genomic Sci 2016; 11:73. [PMID: 27688836 PMCID: PMC5031281 DOI: 10.1186/s40793-016-0182-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/22/2016] [Indexed: 12/03/2022] Open
Abstract
Bacillus amyloliquefaciens TF28 is a biocontrol endophytic bacterium that is capable of inhibition of a broad range of plant pathogenic fungi. The strain has the potential to be developed into a biocontrol agent for use in agriculture. Here we report the whole-genome shotgun sequence of the strain. The genome size of B. amyloliquefaciens TF28 is 3,987,635 bp which consists of 3754 protein-coding genes, 65 tandem repeat sequences, 47 minisatellite DNA, 2 microsatellite DNA, 63 tRNA, 7rRNA, 6 sRNA, 3 prophage and CRISPR domains.
Collapse
Affiliation(s)
- Shumei Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010 China
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020 China
| | - Wei Jiang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010 China
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020 China
| | - Jing Li
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010 China
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020 China
| | - Liqiang Meng
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010 China
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020 China
| | - Xu Cao
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010 China
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020 China
| | - Jihua Hu
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020 China
| | - Yushuai Liu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010 China
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020 China
| | - Jingyu Chen
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020 China
| | - Changqing Sha
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, 150020 China
- Heilongjiang Academy of Sciences, Harbin, 150001 China
| |
Collapse
|
30
|
Qi X, Liu B, Song Q, Zou B, Bu Y, Wu H, Ding L, Zhou G. Assessing Fungal Population in Soil Planted with Cry1Ac and CPTI Transgenic Cotton and Its Conventional Parental Line Using 18S and ITS rDNA Sequences over Four Seasons. FRONTIERS IN PLANT SCIENCE 2016; 7:1023. [PMID: 27462344 PMCID: PMC4940383 DOI: 10.3389/fpls.2016.01023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/28/2016] [Indexed: 05/26/2023]
Abstract
Long-term growth of genetically modified plants (GMPs) has raised concerns regarding their ecological effects. Here, FLX-pyrosequencing of region I (18S) and region II (ITS1, 5.8S, and ITS2) rDNA was used to characterize fungal communities in soil samples after 10-year monoculture of one representative transgenic cotton line (TC-10) and 15-year plantation of various transgenic cotton cultivars (TC-15mix) over four seasons. Soil fungal communities in the rhizosphere of non-transgenic control (CC) were also compared. No notable differences were observed in soil fertility variables among CC, TC-10, and TC-15mix. Within seasons, the different estimations were statistically indistinguishable. There were 411 and 2 067 fungal operational taxonomic units in the two regions, respectively. More than 75% of fungal taxa were stable in both CC and TC except for individual taxa with significantly different abundance between TC and CC. Statistical analysis revealed no significant differences between CC and TC-10, while discrimination of separating TC-15mix from CC and TC-10 with 37.86% explained variance in PCoA and a significant difference of Shannon indexes between TC-10 and TC-15mix were observed in region II. As TC-15mix planted with a mixture of transgenic cottons (Zhongmian-29, 30, and 33B) for over 5 years, different genetic modifications may introduce variations in fungal diversity. Further clarification is necessary by detecting the fungal dynamic changes in sites planted in monoculture of various transgenic cottons. Overall, we conclude that monoculture of one representative transgenic cotton cultivar may have no effect on fungal diversity compared with conventional cotton. Furthermore, the choice of amplified region and methodology has potential to affect the outcome of the comparison between GM-crop and its parental line.
Collapse
Affiliation(s)
- Xiemin Qi
- Department of Pharmacology, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, School of Medicine, Nanjing UniversityNanjing, China
- Department of Pharmaceutical Analysis, China Pharmaceutical UniversityNanjing, China
| | - Biao Liu
- Key Laboratory of Biosafety, Ministry of Environmental Protection of China, Nanjing Institute of Environmental SciencesNanjing, China
| | - Qinxin Song
- Department of Pharmacology, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, School of Medicine, Nanjing UniversityNanjing, China
- Department of Pharmaceutical Analysis, China Pharmaceutical UniversityNanjing, China
| | - Bingjie Zou
- Department of Pharmacology, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, School of Medicine, Nanjing UniversityNanjing, China
| | - Ying Bu
- Huadong Research Institute for Medicine and BiotechnicsNanjing, China
| | - Haiping Wu
- Huadong Research Institute for Medicine and BiotechnicsNanjing, China
| | - Li Ding
- Department of Pharmaceutical Analysis, China Pharmaceutical UniversityNanjing, China
| | - Guohua Zhou
- Department of Pharmacology, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, School of Medicine, Nanjing UniversityNanjing, China
| |
Collapse
|
31
|
Wu L, Wu HJ, Qiao J, Gao X, Borriss R. Novel Routes for Improving Biocontrol Activity of Bacillus Based Bioinoculants. Front Microbiol 2015; 6:1395. [PMID: 26696998 PMCID: PMC4674565 DOI: 10.3389/fmicb.2015.01395] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/23/2015] [Indexed: 11/14/2022] Open
Abstract
Biocontrol (BC) formulations prepared from plant-growth-promoting bacteria are increasingly applied in sustainable agriculture. Especially inoculants prepared from endospore-forming Bacillus strains have been proven as efficient and environmental-friendly alternative to chemical pesticides due to their long shelf life, which is comparable with that of agrochemicals. However, these formulations of the first generation are sometimes hampered in their action and do not fulfill in each case the expectations of the appliers. In this review we use the well-known plant-associated Bacillus amyloliquefaciens type strain FZB42 as example for the successful application of different techniques offered today by comparative, evolutionary and functional genomics, site-directed mutagenesis and strain construction including marker removal, for paving the way for preparing a novel generation of BC agents.
Collapse
Affiliation(s)
- Liming Wu
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Agriculture Nanjing, China
| | - Hui-Jun Wu
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Agriculture Nanjing, China
| | - Junqing Qiao
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Agriculture Nanjing, China ; Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences Nanjing, China
| | - Xuewen Gao
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Agriculture Nanjing, China
| | - Rainer Borriss
- Fachgebiet Phytomedizin, Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin Berlin, Germany ; Nord Reet UG Greifswald, Germany
| |
Collapse
|
32
|
Genome Sequence of Antibiotic-Producing Bacillus amyloliquefaciens Strain KCTC 13012. GENOME ANNOUNCEMENTS 2015; 3:3/5/e01121-15. [PMID: 26430040 PMCID: PMC4591312 DOI: 10.1128/genomea.01121-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the 4.0-Mb draft genome sequence of Bacillus amyloliquefaciens (syn. Bacillus velezensis) KCTC 13012, which exhibits a broad spectrum of antagonistic activity against bacteria and fungi and promotes plant growth as well. The genome contains an array of biosynthetic gene clusters for secondary metabolites that are comparable to those in Bacillus amyloliquefaciens subsp. plantarum FZB42(T).
Collapse
|