1
|
Nguyen TNH, Leclerc L, Manzanares-Dauleux MJ, Gravot A, Vicré M, Morvan-Bertrand A, Prud'homme MP. Fructan exohydrolases (FEHs) are upregulated by salicylic acid together with defense-related genes in non-fructan accumulating plants. PHYSIOLOGIA PLANTARUM 2023; 175:e13975. [PMID: 37616010 DOI: 10.1111/ppl.13975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/05/2023] [Accepted: 07/04/2023] [Indexed: 08/25/2023]
Abstract
The identification of several fructan exohydrolases (FEHs, EC 3.2.1.80) in non-fructan accumulating plants raised the question of their roles. FEHs may be defense-related proteins involved in the interactions with fructan-accumulating microorganisms. Since known defense-related proteins are upregulated by defense-related phytohormones, we tested the hypothesis that FEHs of non-fructan accumulating plants are upregulated by salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) using the model plant Arabidopsis thaliana and the agronomically relevant and genetically related species Brassica napus. By sequence homologies with the two known FEH genes of A. thaliana, At6-FEH, and At6&1-FEH, the genes coding for the putative B. napus FEHs, Bn6-FEH and Bn6&1-FEH, were identified. Plants were treated at root level with SA, methyl jasmonate (MeJA) or 1-aminocyclopropane-1-carboxylic acid (ACC). The transcript levels of defense-related and FEH genes were measured after treatments. MeJA and ACC did not upregulate FEHs, while HEL (HEVEIN-LIKE PREPROTEIN) expression was enhanced by both phytohormones. In both species, the expression of AOS, encoding a JA biosynthesis enzyme, was enhanced by MeJA and that of the defensine PDF1.2 and the ET signaling transcription factor ERF1/2 by ACC. In contrast, SA not only increased the expression of genes encoding antimicrobial proteins (PR1 and HEL) and the defense-related transcription factor WRKY70 but also that of FEH genes, in particular 6&1-FEH genes. This result supports the putative role of FEHs as defense-related proteins. Genotypic variability of SA-mediated FEH regulation (transcript level and activities) was observed among five varieties of B. napus, suggesting different susceptibilities toward fructan-accumulating pathogens.
Collapse
Affiliation(s)
- Thi Ngoc Hanh Nguyen
- Normandie Université, UNICAEN, UMR 950 INRAE, EVA Ecophysiologie Végétale Agronomie et Nutritions N.C.S, SFR Normandie Végétale FED4277, Caen, France
- Normandie Université, Univ Rouen Normandie, Laboratoire Glyco-MEV EA 4358, SFR Normandie Végétale FED4277, Rouen, France
| | - Laëtitia Leclerc
- Normandie Université, UNICAEN, UMR 950 INRAE, EVA Ecophysiologie Végétale Agronomie et Nutritions N.C.S, SFR Normandie Végétale FED4277, Caen, France
| | | | - Antoine Gravot
- Institut Agro, Université Rennes, INRAE, IGEPP, Le Rheu, France
| | - Maïté Vicré
- Normandie Université, Univ Rouen Normandie, Laboratoire Glyco-MEV EA 4358, SFR Normandie Végétale FED4277, Rouen, France
| | - Annette Morvan-Bertrand
- Normandie Université, UNICAEN, UMR 950 INRAE, EVA Ecophysiologie Végétale Agronomie et Nutritions N.C.S, SFR Normandie Végétale FED4277, Caen, France
| | - Marie-Pascale Prud'homme
- Normandie Université, UNICAEN, UMR 950 INRAE, EVA Ecophysiologie Végétale Agronomie et Nutritions N.C.S, SFR Normandie Végétale FED4277, Caen, France
| |
Collapse
|
2
|
Bilgrami S, Darzi Ramandi H, Farokhzadeh S, Rousseau-Gueutin M, Sobhani Najafabadi A, Ghaderian M, Huang P, Liu L. Meta-analysis of seed weight QTLome using a consensus and highly dense genetic map in Brassica napus L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:161. [PMID: 37354229 DOI: 10.1007/s00122-023-04401-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/02/2023] [Indexed: 06/26/2023]
Abstract
KEY MESSAGE We report here the discovery of high-confidence MQTL regions and of putative candidate genes associated with seed weight in B. napus using a highly dense consensus genetic map and by comparing various large-scale multiomics datasets. Seed weight (SW) is a direct determinant of seed yield in Brassica napus and is controlled by many loci. To unravel the main genomic regions associated with this complex trait, we used 13 available genetic maps to construct a consensus and highly dense map, comprising 40,401 polymorphic markers and 9191 genetic bins, harboring a cumulative length of 3047.8 cM. Then, we performed a meta-analysis using 639 projected SW quantitative trait loci (QTLs) obtained from studies conducted since 1999, enabling the identification of 57 meta-QTLS (MQTLs). The confidence intervals of our MQTLs were 9.8 and 4.3 times lower than the average CIs of the original QTLs for the A and C subgenomes, respectively, resulting in the detection of some key genes and several putative novel candidate genes associated with SW. By comparing the genes identified in MQTL intervals with multiomics datasets and coexpression analyses of common genes, we defined a more reliable and shorter list of putative candidate genes potentially involved in the regulation of seed maturation and SW. As an example, we provide a list of promising genes with high expression levels in seeds and embryos (e.g., BnaA03g04230D, BnaC03g08840D, BnaA10g29580D and BnaA03g27410D) that can be more finely studied through functional genetics experiments or that may be useful for MQTL-assisted breeding for SW. The high-density genetic consensus map and the single nucleotide polymorphism (SNP) physical map generated from the latest B. napus cv. Darmor-bzh v10 assembly will be a valuable resource for further mapping and map-based cloning of other important traits.
Collapse
Affiliation(s)
- Sayedehsaba Bilgrami
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
| | - Hadi Darzi Ramandi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Sara Farokhzadeh
- Department of Plant Production, College of Agriculture and Natural Resources of Darab, Shiraz University, Darab, Iran
| | | | - Ahmad Sobhani Najafabadi
- Department of Biotechnology, Agricultural Biotechnology Research Institute of Iran - Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
| | - Mostafa Ghaderian
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
| | - Pu Huang
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
| | - Liezhao Liu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
3
|
Jiquel A, Gay EJ, Mas J, George P, Wagner A, Fior A, Faure S, Balesdent M, Rouxel T. "Late" effectors from Leptosphaeria maculans as tools for identifying novel sources of resistance in Brassica napus. PLANT DIRECT 2022; 6:e435. [PMID: 35949954 PMCID: PMC9356234 DOI: 10.1002/pld3.435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The Dothideomycete Leptosphaeria maculans, causing stem canker (blackleg) of Brassica napus, secretes different cocktails of effectors at specific infection stages. Some effectors ("Late" effectors) are specifically produced during the long asymptomatic phase of stem colonization. By manipulating their expression so that they are overexpressed during cotyledon infection (OEC transformants of the fungus), we previously postulated that resistance genes operating in the stem may be involved in gene-for-gene relationship and thus contribute to quantitative disease resistance (QDR). Here, we selected 10 relevant new effector genes, and we generated OEC transformants to screen a collection of 130 B. napus genotypes, representative of the available diversity in the species. Five B. napus accessions showed a typical hypersensitive response when challenged with effectors LmSTEE98 or LmSTEE6826 at the cotyledon stage, and all belong to the semi-winter type of the diversity panel. In addition, five winter-type genotypes displayed an intermediate response to another late effector, LmSTEE7919. These new interactions now have to be genetically validated to check that they also correspond to gene-for-gene interactions. In all cases, they potentially provide novel resources, easy to breed for, and accounting for part of the quantitative resistance in a species for which we are currently facing limited resistance sources.
Collapse
Affiliation(s)
- Audren Jiquel
- INRAE, AgroParisTech, UR BIOGERUniversité Paris‐SaclayThiverval‐GrignonFrance
- Lidea SemencesMondonvilleFrance
| | - Elise J. Gay
- INRAE, AgroParisTech, UR BIOGERUniversité Paris‐SaclayThiverval‐GrignonFrance
| | | | | | | | | | | | | | - Thierry Rouxel
- INRAE, AgroParisTech, UR BIOGERUniversité Paris‐SaclayThiverval‐GrignonFrance
| |
Collapse
|
4
|
Amas J, Anderson R, Edwards D, Cowling W, Batley J. Status and advances in mining for blackleg (Leptosphaeria maculans) quantitative resistance (QR) in oilseed rape (Brassica napus). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3123-3145. [PMID: 34104999 PMCID: PMC8440254 DOI: 10.1007/s00122-021-03877-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/29/2021] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE Quantitative resistance (QR) loci discovered through genetic and genomic analyses are abundant in the Brassica napus genome, providing an opportunity for their utilization in enhancing blackleg resistance. Quantitative resistance (QR) has long been utilized to manage blackleg in Brassica napus (canola, oilseed rape), even before major resistance genes (R-genes) were extensively explored in breeding programmes. In contrast to R-gene-mediated qualitative resistance, QR reduces blackleg symptoms rather than completely eliminating the disease. As a polygenic trait, QR is controlled by numerous genes with modest effects, which exerts less pressure on the pathogen to evolve; hence, its effectiveness is more durable compared to R-gene-mediated resistance. Furthermore, combining QR with major R-genes has been shown to enhance resistance against diseases in important crops, including oilseed rape. For these reasons, there has been a renewed interest among breeders in utilizing QR in crop improvement. However, the mechanisms governing QR are largely unknown, limiting its deployment. Advances in genomics are facilitating the dissection of the genetic and molecular underpinnings of QR, resulting in the discovery of several loci and genes that can be potentially deployed to enhance blackleg resistance. Here, we summarize the efforts undertaken to identify blackleg QR loci in oilseed rape using linkage and association analysis. We update the knowledge on the possible mechanisms governing QR and the advances in searching for the underlying genes. Lastly, we lay out strategies to accelerate the genetic improvement of blackleg QR in oilseed rape using improved phenotyping approaches and genomic prediction tools.
Collapse
Affiliation(s)
- Junrey Amas
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001 Australia
| | - Robyn Anderson
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001 Australia
| | - David Edwards
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001 Australia
| | - Wallace Cowling
- School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009 Australia
| | - Jacqueline Batley
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001 Australia
| |
Collapse
|
5
|
Jiquel A, Gervais J, Geistodt‐Kiener A, Delourme R, Gay EJ, Ollivier B, Fudal I, Faure S, Balesdent M, Rouxel T. A gene-for-gene interaction involving a 'late' effector contributes to quantitative resistance to the stem canker disease in Brassica napus. THE NEW PHYTOLOGIST 2021; 231:1510-1524. [PMID: 33621369 PMCID: PMC8360019 DOI: 10.1111/nph.17292] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/15/2021] [Indexed: 05/19/2023]
Abstract
The control of stem canker disease of Brassica napus (rapeseed), caused by the fungus Leptosphaeria maculans is based largely on plant genetic resistance: single-gene specific resistance (Rlm genes) or quantitative, polygenic, adult-stage resistance. Our working hypothesis was that quantitative resistance partly obeys the gene-for-gene model, with resistance genes 'recognizing' fungal effectors expressed during late systemic colonization. Five LmSTEE (stem-expressed effector) genes were selected and placed under the control of the AvrLm4-7 promoter, an effector gene highly expressed at the cotyledon stage of infection, for miniaturized cotyledon inoculation test screening of a gene pool of 204 rapeseed genotypes. We identified a rapeseed genotype, 'Yudal', expressing hypersensitive response to LmSTEE98. The LmSTEE98-RlmSTEE98 interaction was further validated by inactivation of the LmSTEE98 gene with a CRISPR-Cas9 approach. Isolates with mutated versions of LmSTEE98 induced more severe stem symptoms than the wild-type isolate in 'Yudal'. This single-gene resistance was mapped in a 0.6 cM interval of the 'Darmor_bzh' × 'Yudal' genetic map. One typical gene-for-gene interaction contributes partly to quantitative resistance when L. maculans colonizes the stems of rapeseed. With numerous other effectors specific to stem colonization, our study provides a new route for resistance gene discovery, elucidation of quantitative resistance mechanisms and selection for durable resistance.
Collapse
Affiliation(s)
- Audren Jiquel
- INRAEAgroParisTechUMR BIOGERUniversité Paris‐SaclayAvenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
- Euralis Semences6 Chemin des PanedautesMondonville31700France
| | - Julie Gervais
- INRAEAgroParisTechUMR BIOGERUniversité Paris‐SaclayAvenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Aude Geistodt‐Kiener
- INRAEAgroParisTechUMR BIOGERUniversité Paris‐SaclayAvenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
- Université Paris‐SaclayRoute de l'Orme aux MerisiersSaint‐Aubin91190France
| | | | - Elise J. Gay
- INRAEAgroParisTechUMR BIOGERUniversité Paris‐SaclayAvenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
- Université Paris‐SaclayRoute de l'Orme aux MerisiersSaint‐Aubin91190France
| | - Bénédicte Ollivier
- INRAEAgroParisTechUMR BIOGERUniversité Paris‐SaclayAvenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Isabelle Fudal
- INRAEAgroParisTechUMR BIOGERUniversité Paris‐SaclayAvenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | | | - Marie‐Hélène Balesdent
- INRAEAgroParisTechUMR BIOGERUniversité Paris‐SaclayAvenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Thierry Rouxel
- INRAEAgroParisTechUMR BIOGERUniversité Paris‐SaclayAvenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| |
Collapse
|
6
|
Besides stem canker severity, oilseed rape host genotype matters for the production of Leptosphaeria maculans fruit bodies. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2021.101076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
7
|
Raman H, Raman R, Qiu Y, Zhang Y, Batley J, Liu S. The Rlm13 Gene, a New Player of Brassica napus- Leptosphaeria maculans Interaction Maps on Chromosome C03 in Canola. FRONTIERS IN PLANT SCIENCE 2021; 12:654604. [PMID: 34054900 PMCID: PMC8150007 DOI: 10.3389/fpls.2021.654604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/25/2021] [Indexed: 05/24/2023]
Abstract
Canola exhibits an extensive genetic variation for resistance to blackleg disease, caused by the fungal pathogen Leptosphaeria maculans. Despite the identification of several Avr effectors and R (race-specific) genes, specific interactions between Avr-R genes are not yet fully understood in the Brassica napus-L. maculans pathosystem. In this study, we investigated the genetic basis of resistance in an F2 : 3 population derived from Australian canola varieties CB-Telfer (Rlm4)/ATR-Cobbler (Rlm4) using a single-spore isolate of L. maculans, PHW1223. A genetic linkage map of the CB-Telfer/ATR-Cobbler population was constructed using 7,932 genotyping-by-sequencing-based DArTseq markers and subsequently utilized for linkage and haplotype analyses. Genetic linkage between DArTseq markers and resistance to PHW1223 isolate was also validated using the B. napus 60K Illumina Infinium array. Our results revealed that a major locus for resistance, designated as Rlm13, maps on chromosome C03. To date, no R gene for resistance to blackleg has been reported on the C subgenome in B. napus. Twenty-four candidate R genes were predicted to reside within the quantitative trait locus (QTL) region. We further resequenced both the parental lines of the mapping population (CB-Telfer and ATR-Cobbler, > 80 × coverage) and identified several structural sequence variants in the form of single-nucleotide polymorphisms (SNPs), insertions/deletions (InDels), and presence/absence variations (PAVs) near Rlm13. Comparative mapping revealed that Rlm13 is located within the homoeologous A03/C03 region in ancestral karyotype block "R" of Brassicaceae. Our results provide a "target" for further understanding the Avr-Rlm13 gene interaction as well as a valuable tool for increasing resistance to blackleg in canola germplasm.
Collapse
Affiliation(s)
- Harsh Raman
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Rosy Raman
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Yu Qiu
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Yuanyuan Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Shengyi Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
8
|
Dakouri A, Lamara M, Karim MM, Wang J, Chen Q, Gossen BD, Strelkov SE, Hwang SF, Peng G, Yu F. Identification of resistance loci against new pathotypes of Plasmodiophora brassicae in Brassica napus based on genome-wide association mapping. Sci Rep 2021; 11:6599. [PMID: 33758222 PMCID: PMC7987998 DOI: 10.1038/s41598-021-85836-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/05/2021] [Indexed: 11/11/2022] Open
Abstract
Genetic resistance is a successful strategy for management of clubroot (Plasmodiophora brassicae) of brassica crops, but resistance can break down quickly. Identification of novel sources of resistance is especially important when new pathotypes arise. In the current study, the reaction of 177 accessions of Brassica napus to four new, virulent pathotypes of P. brassicae was assessed. Each accession was genotyped using genotyping by sequencing to identify and map novel sources of clubroot resistance using mixed linear model (MLM) analysis. The majority of accessions were highly susceptible (70–100 DSI), but a few accessions exhibited strong resistance (0–20 DSI) to pathotypes 5X (21 accessions), 3A (8), 2B (7), and 3D (15), based on the Canadian Clubroot Differential system. In total, 301,753 SNPs were mapped to 19 chromosomes. Population structure analysis indicated that the 177 accessions belong to seven major populations. SNPs were associated with resistance to each pathotype using MLM. In total, 13 important SNP loci were identified, with 9 SNPs mapped to the A-genome and 4 to the C-genome. The SNPs were associated with resistance to pathotypes 5X (2 SNPs), 3A (4), 2B (5) and 3D (6). A Blast search of 1.6 Mb upstream and downstream from each SNP identified 13 disease-resistance genes or domains. The distance between a SNP locus and the nearest resistance gene ranged from 0.04 to 0.74 Mb. The resistant lines and SNP markers identified in this study can be used to breed for resistance to the most prevalent new pathotypes of P. brassicae in Canada.
Collapse
Affiliation(s)
- Abdulsalam Dakouri
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Canada
| | - Mebarek Lamara
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Canada.,Institut de Recherche Sur Les Forêts (IRF), Université du Québec en Abitibi-Témiscamingue, 445 boul. de l'Université, Rouyn-Noranda, QC, J9X 5E4, Canada
| | - Md Masud Karim
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Canada
| | - Jinghe Wang
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Canada
| | - Qilin Chen
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Canada
| | - Bruce D Gossen
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Canada
| | - Stephen E Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Alberta, Canada
| | - Sheau-Fang Hwang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Alberta, Canada
| | - Gary Peng
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Canada
| | - Fengqun Yu
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Canada.
| |
Collapse
|
9
|
Raman H, McVittie B, Pirathiban R, Raman R, Zhang Y, Barbulescu DM, Qiu Y, Liu S, Cullis B. Genome-Wide Association Mapping Identifies Novel Loci for Quantitative Resistance to Blackleg Disease in Canola. FRONTIERS IN PLANT SCIENCE 2020; 11:1184. [PMID: 32849733 PMCID: PMC7432127 DOI: 10.3389/fpls.2020.01184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/21/2020] [Indexed: 05/03/2023]
Abstract
Blackleg disease, caused by the fungal pathogen Leptosphaeria maculans, continues to be a major concern for sustainable production of canola (Brassica napus L.) in many parts of the world. The deployment of effective quantitative resistance (QR) is recognized as a durable strategy in providing natural defense to pathogens. Herein, we uncover loci for resistance to blackleg in a genetically diverse panel of canola accessions by exploiting historic recombination events which occurred during domestication and selective breeding by genome-wide association analysis (GWAS). We found extensive variation in resistance to blackleg at the adult plant stage, including for upper canopy infection. Using the linkage disequilibrium and genetic relationship estimates from 12,414 high quality SNPs, GWAS identified 59 statistically significant and "suggestive" SNPs on 17 chromosomes of B. napus genome that underlie variation in resistance to blackleg, evaluated under field and shade-house conditions. Each of the SNP association accounted for up to 25.1% of additive genetic variance in resistance among diverse panel of accessions. To understand the homology of QR genomic regions with Arabidopsis thaliana genome, we searched the synteny between QR regions with 22 ancestral blocks of Brassicaceae. Comparative analyses revealed that 25 SNP associations for QR were localized in nine ancestral blocks, as a result of genomic rearrangements. We further showed that phenological traits such as flowering time, plant height, and maturity confound the genetic variation in resistance. Altogether, these findings provided new insights on the complex genetic control of the blackleg resistance and further expanded our understanding of its genetic architecture.
Collapse
Affiliation(s)
- Harsh Raman
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Brett McVittie
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Ramethaa Pirathiban
- Centre for Bioinformatics and Biometrics, National Institute for Applied Statistics Research Australia, University of Wollongong, Wollongong, NSW, Australia
| | - Rosy Raman
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Yuanyuan Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Denise M. Barbulescu
- Department of Jobs, Precincts and Regions, Agriculture Victoria, Horsham, VIC, Australia
| | - Yu Qiu
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Shengyi Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Brian Cullis
- Centre for Bioinformatics and Biometrics, National Institute for Applied Statistics Research Australia, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
10
|
Huang YJ, Paillard S, Kumar V, King GJ, Fitt BDL, Delourme R. Oilseed rape (Brassica napus) resistance to growth of Leptosphaeria maculans in leaves of young plants contributes to quantitative resistance in stems of adult plants. PLoS One 2019; 14:e0222540. [PMID: 31513677 PMCID: PMC6742359 DOI: 10.1371/journal.pone.0222540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/30/2019] [Indexed: 11/18/2022] Open
Abstract
Key message: One QTL for resistance against Leptosphaeria maculans growth in leaves of young plants in controlled environments overlapped with one QTL detected in adult plants in field experiments. The fungal pathogen Leptosphaeria maculans initially infects leaves of oilseed rape (Brassica napus) in autumn in Europe and then grows systemically from leaf lesions along the leaf petiole to the stem, where it causes damaging phoma stem canker (blackleg) in summer before harvest. Due to the difficulties of investigating resistance to L. maculans growth in leaves and petioles under field conditions, identification of quantitative resistance typically relies on end of season stem canker assessment on adult plants. To investigate whether quantitative resistance can be detected in young plants, we first selected nine representative DH (doubled haploid) lines from an oilseed rape DY ('Darmor-bzh' × 'Yudal') mapping population segregating for quantitative resistance against L. maculans for controlled environment experiment (CE). We observed a significant correlation between distance grown by L. maculans along the leaf petiole towards the stem (r = 0.91) in CE experiments and the severity of phoma stem canker in field experiments. To further investigate quantitative trait loci (QTL) related to resistance against growth of L. maculans in leaves of young plants in CE experiments, we selected 190 DH lines and compared the QTL detected in CE experiments with QTL related to stem canker severity in stems of adult plants in field experiments. Five QTL for resistance to L. maculans growth along the leaf petiole were detected; collectively they explained 35% of the variance. Two of these were also detected in leaf lesion area assessments and each explained 10-12% of the variance. One QTL on A02 co-localized with a QTL detected in stems of adult plants in field experiments. This suggests that resistance to the growth of L. maculans from leaves along the petioles towards the stems contributes to the quantitative resistance assessed in stems of adult plants in field experiments at the end of the growing season.
Collapse
Affiliation(s)
- Yong-Ju Huang
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, England, United Kingdom
- * E-mail:
| | | | - Vinod Kumar
- IGEPP, INRA, Agrocampus Ouest, Univ Rennes, BP, France
| | | | - Bruce D. L. Fitt
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, England, United Kingdom
| | | |
Collapse
|
11
|
Malmberg MM, Barbulescu DM, Drayton MC, Shinozuka M, Thakur P, Ogaji YO, Spangenberg GC, Daetwyler HD, Cogan NOI. Evaluation and Recommendations for Routine Genotyping Using Skim Whole Genome Re-sequencing in Canola. FRONTIERS IN PLANT SCIENCE 2018; 9:1809. [PMID: 30581450 PMCID: PMC6292936 DOI: 10.3389/fpls.2018.01809] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/21/2018] [Indexed: 05/25/2023]
Abstract
Whole genome sequencing offers genome wide, unbiased markers, and inexpensive library preparation. With the cost of sequencing decreasing rapidly, many plant genomes of modest size are amenable to skim whole genome resequencing (skim WGR). The use of skim WGR in diverse sample sets without the use of imputation was evaluated in silico in 149 canola samples representative of global diversity. Fastq files with an average of 10x coverage of the reference genome were used to generate skim samples representing 0.25x, 0.5x, 1x, 2x, 3x, 4x, and 5x sequencing coverage. Applying a pre-defined list of SNPs versus de novo SNP discovery was evaluated. As skim WGR is expected to result in some degree of insufficient allele sampling, all skim coverage levels were filtered at a range of minimum read depths from a relaxed minimum read depth of 2 to a stringent read depth of 5, resulting in 28 list-based SNP sets. As a broad recommendation, genotyping pre-defined SNPs between 1x and 2x coverage with relatively stringent depth filtering is appropriate for a diverse sample set of canola due to a balance between marker number, sufficient accuracy, and sequencing cost, but depends on the intended application. This was experimentally examined in two sample sets with different genetic backgrounds: 1x coverage of 1,590 individuals from 84 Australian spring type four-parent crosses aimed at maximizing diversity as well as one commercial F1 hybrid, and 2x coverage of 379 doubled haploids (DHs) derived from a subset of the four-parent crosses. To determine optimal coverage in a simpler genetic background, the DH sample sequence coverage was further down sampled in silico. The flexible and cost-effective nature of the protocol makes it highly applicable across a range of species and purposes.
Collapse
Affiliation(s)
- M. Michelle Malmberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | | | - Michelle C. Drayton
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Maiko Shinozuka
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Preeti Thakur
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Yvonne O. Ogaji
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - German C. Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Hans D. Daetwyler
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Noel O. I. Cogan
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
12
|
Gabur I, Chawla HS, Liu X, Kumar V, Faure S, von Tiedemann A, Jestin C, Dryzska E, Volkmann S, Breuer F, Delourme R, Snowdon R, Obermeier C. Finding invisible quantitative trait loci with missing data. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:2102-2112. [PMID: 29729219 PMCID: PMC6230954 DOI: 10.1111/pbi.12942] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 05/21/2023]
Abstract
Evolutionary processes during plant polyploidization and speciation have led to extensive presence-absence variation (PAV) in crop genomes, and there is increasing evidence that PAV associates with important traits. Today, high-resolution genetic analysis in major crops frequently implements simple, cost-effective, high-throughput genotyping from single nucleotide polymorphism (SNP) hybridization arrays; however, these are normally not designed to distinguish PAV from failed SNP calls caused by hybridization artefacts. Here, we describe a strategy to recover valuable information from single nucleotide absence polymorphisms (SNaPs) by population-based quality filtering of SNP hybridization data to distinguish patterns associated with genuine deletions from those caused by technical failures. We reveal that including SNaPs in genetic analyses elucidate segregation of small to large-scale structural variants in nested association mapping populations of oilseed rape (Brassica napus), a recent polyploid crop with widespread structural variation. Including SNaP markers in genomewide association studies identified numerous quantitative trait loci, invisible using SNP markers alone, for resistance to two major fungal diseases of oilseed rape, Sclerotinia stem rot and blackleg disease. Our results indicate that PAV has a strong influence on quantitative disease resistance in B. napus and that SNaP analysis using cost-effective SNP array data can provide extensive added value from 'missing data'. This strategy might also be applicable for improving the precision of genetic mapping in many important crop species.
Collapse
Affiliation(s)
- Iulian Gabur
- Department of Plant BreedingJustus Liebig UniversityGiessenGermany
| | | | - Xiwei Liu
- Department of Plant BreedingJustus Liebig UniversityGiessenGermany
| | - Vinod Kumar
- IGEPP, INRA, AGROCAMPUS OUESTUniv RennesLe RheuFrance
| | | | - Andreas von Tiedemann
- Section of General Plant Pathology and Crop ProtectionGeorg August UniversityGöttingenGermany
| | | | | | | | | | | | - Rod Snowdon
- Department of Plant BreedingJustus Liebig UniversityGiessenGermany
| | | |
Collapse
|
13
|
Kumar V, Paillard S, Fopa-Fomeju B, Falentin C, Deniot G, Baron C, Vallée P, Manzanares-Dauleux MJ, Delourme R. Multi-year linkage and association mapping confirm the high number of genomic regions involved in oilseed rape quantitative resistance to blackleg. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1627-1643. [PMID: 29728747 DOI: 10.1007/s00122-018-3103-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/20/2018] [Indexed: 05/02/2023]
Abstract
A repertoire of the genomic regions involved in quantitative resistance to Leptosphaeria maculans in winter oilseed rape was established from combined linkage-based QTL and genome-wide association (GWA) mapping. Linkage-based mapping of quantitative trait loci (QTL) and genome-wide association studies are complementary approaches for deciphering the genomic architecture of complex agronomical traits. In oilseed rape, quantitative resistance to blackleg disease, caused by L. maculans, is highly polygenic and is greatly influenced by the environment. In this study, we took advantage of multi-year data available on three segregating populations derived from the resistant cv Darmor and multi-year data available on oilseed rape panels to obtain a wide overview of the genomic regions involved in quantitative resistance to this pathogen in oilseed rape. Sixteen QTL regions were common to at least two biparental populations, of which nine were the same as previously detected regions in a multi-parental design derived from different resistant parents. Eight regions were significantly associated with quantitative resistance, of which five on A06, A08, A09, C01 and C04 were located within QTL support intervals. Homoeologous Brassica napus genes were found in eight homoeologous QTL regions, which corresponded to 657 pairs of homoeologous genes. Potential candidate genes underlying this quantitative resistance were identified. Genomic predictions and breeding are also discussed, taking into account the highly polygenic nature of this resistance.
Collapse
Affiliation(s)
- Vinod Kumar
- IGEPP, AGROCAMPUS OUEST, INRA, Univ Rennes, 35650, Le Rheu, France
| | - Sophie Paillard
- IGEPP, AGROCAMPUS OUEST, INRA, Univ Rennes, 35650, Le Rheu, France
| | | | - Cyril Falentin
- IGEPP, AGROCAMPUS OUEST, INRA, Univ Rennes, 35650, Le Rheu, France
| | - Gwenaëlle Deniot
- IGEPP, AGROCAMPUS OUEST, INRA, Univ Rennes, 35650, Le Rheu, France
| | - Cécile Baron
- IGEPP, AGROCAMPUS OUEST, INRA, Univ Rennes, 35650, Le Rheu, France
| | - Patrick Vallée
- IGEPP, AGROCAMPUS OUEST, INRA, Univ Rennes, 35650, Le Rheu, France
| | | | - Régine Delourme
- IGEPP, AGROCAMPUS OUEST, INRA, Univ Rennes, 35650, Le Rheu, France.
| |
Collapse
|
14
|
Malmberg MM, Pembleton LW, Baillie RC, Drayton MC, Sudheesh S, Kaur S, Shinozuka H, Verma P, Spangenberg GC, Daetwyler HD, Forster JW, Cogan NO. Genotyping-by-sequencing through transcriptomics: implementation in a range of crop species with varying reproductive habits and ploidy levels. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:877-889. [PMID: 28913899 PMCID: PMC5866951 DOI: 10.1111/pbi.12835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/03/2017] [Accepted: 09/08/2017] [Indexed: 05/09/2023]
Abstract
The application of genomics in crops has the ability to significantly improve genetic gain for agriculture. Many marker-dense tools have been developed, but few have seen broad adoption in plant genomics due to issues of significant variations of genome size, levels of ploidy, single nucleotide polymorphism (SNP) frequency and reproductive habit. When combined with limited breeding activities, small research communities and scant sequence resources, the suitability of popular systems is often suboptimal and routinely fails to effectively balance cost-effectiveness and sample throughput. Genotyping-by-sequencing (GBS) encompasses a range of protocols including resequencing of the transcriptome. This study describes a skim GBS-transcriptomics (GBS-t) approach developed to be broadly applicable, cost-effective and high-throughput while still assaying a significant number of SNP loci. A range of crop species with differing levels of ploidy and degree of inbreeding/outbreeding were chosen, including perennial ryegrass, a diploid outbreeding forage grass; phalaris, a putative segmental allotetraploid outbreeding forage grass; lentil, a diploid inbreeding grain legume; and canola, an allotetraploid partially outbreeding oilseed. GBS-t was validated as a simple and largely automated, cost-effective method which generates sufficient SNPs (from 89 738 to 231 977) with acceptable levels of missing data and even genome coverage from c. 3 million sequence reads per sample. GBS-t is therefore a broadly applicable system suitable for many crops, offering advantages over other systems. The correct choice of subsequent sequence analysis software is important, and the bioinformatics process should be iterative and tailored to the specific challenges posed by ploidy variation and extent of heterozygosity.
Collapse
Affiliation(s)
- M. Michelle Malmberg
- Agriculture VictoriaAgriBioCentre for AgriBioscience5 Ring RoadBundooraVictoria 3083Australia
- School of Applied Systems BiologyLa Trobe UniversityBundooraVictoria 3086Australia
| | - Luke W. Pembleton
- Agriculture VictoriaAgriBioCentre for AgriBioscience5 Ring RoadBundooraVictoria 3083Australia
| | - Rebecca C. Baillie
- Agriculture VictoriaAgriBioCentre for AgriBioscience5 Ring RoadBundooraVictoria 3083Australia
| | - Michelle C. Drayton
- Agriculture VictoriaAgriBioCentre for AgriBioscience5 Ring RoadBundooraVictoria 3083Australia
| | - Shimna Sudheesh
- Agriculture VictoriaAgriBioCentre for AgriBioscience5 Ring RoadBundooraVictoria 3083Australia
| | - Sukhjiwan Kaur
- Agriculture VictoriaAgriBioCentre for AgriBioscience5 Ring RoadBundooraVictoria 3083Australia
| | - Hiroshi Shinozuka
- Agriculture VictoriaAgriBioCentre for AgriBioscience5 Ring RoadBundooraVictoria 3083Australia
| | - Preeti Verma
- Agriculture VictoriaAgriBioCentre for AgriBioscience5 Ring RoadBundooraVictoria 3083Australia
| | - German C. Spangenberg
- Agriculture VictoriaAgriBioCentre for AgriBioscience5 Ring RoadBundooraVictoria 3083Australia
- School of Applied Systems BiologyLa Trobe UniversityBundooraVictoria 3086Australia
| | - Hans D. Daetwyler
- Agriculture VictoriaAgriBioCentre for AgriBioscience5 Ring RoadBundooraVictoria 3083Australia
- School of Applied Systems BiologyLa Trobe UniversityBundooraVictoria 3086Australia
| | - John W. Forster
- Agriculture VictoriaAgriBioCentre for AgriBioscience5 Ring RoadBundooraVictoria 3083Australia
- School of Applied Systems BiologyLa Trobe UniversityBundooraVictoria 3086Australia
| | - Noel O.I. Cogan
- Agriculture VictoriaAgriBioCentre for AgriBioscience5 Ring RoadBundooraVictoria 3083Australia
- School of Applied Systems BiologyLa Trobe UniversityBundooraVictoria 3086Australia
| |
Collapse
|
15
|
Neik TX, Barbetti MJ, Batley J. Current Status and Challenges in Identifying Disease Resistance Genes in Brassica napus. FRONTIERS IN PLANT SCIENCE 2017; 8:1788. [PMID: 29163558 PMCID: PMC5681527 DOI: 10.3389/fpls.2017.01788] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/02/2017] [Indexed: 05/18/2023]
Abstract
Brassica napus is an economically important crop across different continents including temperate and subtropical regions in Europe, Canada, South Asia, China and Australia. Its widespread cultivation also brings setbacks as it plays host to fungal, oomycete and chytrid pathogens that can lead to serious yield loss. For sustainable crop production, identification of resistance (R) genes in B. napus has become of critical importance. In this review, we discuss four key pathogens affecting Brassica crops: Clubroot (Plasmodiophora brassicae), Blackleg (Leptosphaeria maculans and L. biglobosa), Sclerotinia Stem Rot (Sclerotinia sclerotiorum), and Downy Mildew (Hyaloperonospora parasitica). We first review current studies covering prevalence of these pathogens on Brassica crops and highlight the R genes and QTL that have been identified from Brassica species against these pathogens. Insights into the relationships between the pathogen and its Brassica host, the unique host resistance mechanisms and how these affect resistance outcomes is also presented. We discuss challenges in identification and deployment of R genes in B. napus in relation to highly specific genetic interactions between host subpopulations and pathogen pathotypes and emphasize the need for common or shared techniques and research materials or tighter collaboration between researchers to reconcile the inconsistencies in the research outcomes. Using current genomics tools, we provide examples of how characterization and cloning of R genes in B. napus can be carried out more effectively. Lastly, we put forward strategies to breed resistant cultivars through introgressions supported by genomic approaches and suggest prospects that can be implemented in the future for a better, pathogen-resistant B. napus.
Collapse
Affiliation(s)
- Ting Xiang Neik
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Martin J. Barbetti
- School of Agriculture and Environment and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|