1
|
Midorikawa K, Kodama Y. A tool for live-cell confocal imaging of temperature-dependent organelle dynamics. Microscopy (Oxf) 2024; 73:343-348. [PMID: 38217102 PMCID: PMC11288189 DOI: 10.1093/jmicro/dfad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024] Open
Abstract
Intracellular organelles alter their morphology in response to ambient conditions such as temperature to optimize physiological activities in cells. Observing organelle dynamics at various temperatures deepens our understanding of cellular responses to the environment. Confocal laser microscopy is a powerful tool for live-cell imaging of fluorescently labeled organelles. However, the large contact area between the specimen and the ambient air on the microscope stage makes it difficult to maintain accurate cellular temperatures. Here, we present a method for precisely controlling cellular temperatures using a custom-made adaptor that can be installed on a commercially available temperature-controlled microscope stage. Using this adaptor, we observed temperature-dependent organelle dynamics in living plant cells; morphological changes in chloroplasts and peroxisomes were temperature dependent. This newly developed adaptor can be easily placed on a temperature-controlled stage to capture intracellular responses to temperature at unprecedentedly high resolution.
Collapse
Affiliation(s)
- Keiko Midorikawa
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi 321-8505, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi 321-8505, Japan
| |
Collapse
|
2
|
Yuan L, Ni Y, Chen H, Li J, Lu Q, Wang L, Zhang X, Yue J, Yang H, Liu C. Comparative chloroplast genomes study of five officinal Ardisia Species: Unraveling interspecific diversity and evolutionary insights in Ardisia. Gene 2024; 912:148349. [PMID: 38460806 DOI: 10.1016/j.gene.2024.148349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/11/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Ardisia S.W. (Primulaceae), naturally distributed in tropical and subtropical regions, has edible and medicinal values and is prevalent in clinical and daily use in China. More genetic information for distinct species delineation is needed to support the development and utilization of the genus Ardisia. We sequenced, annotated, and compared the chloroplast genomes of five Ardisia species: A. brunnescens, A. pusilla, A. squamulosa, A. crenata, and A. brevicaulis in this study. We found a typical quadripartite structure in all five chloroplast genomes, with lengths ranging from 155,045 to 156,943 bp. Except for A. pusilla, which lacked the ycf15 gene, the other four Ardisia species contained 114 unique genes, including 79 protein-coding genes, 30 tRNAs, and four rRNAs. In addition, the rps19 pseudogene gene was present only in A. brunnescens. Five highly variable DNA barcodes were identified for five Ardisia species, including trnT-GGU-psbD, trnT-UGU-trnL-UAA, rps4-trnT-UGU, rpl32-trnL-UAG, and rpoB-trnC-GAA. The RNA editiing sites of protein-coding genes in the five Ardisia plastome were characterized and compared, and 274 (A. crenata)-288 (A. brevicaulis) were found. The results of the phylogenetic analysis were consistent with the morphological classification. Sequence alignment and phylogenetic analysis showed that ycf15 genes were highly divergent in Primulaceae. Reconstructions of ancestral character states indicated that leaf margin morphology is critical for classifying the genus Ardisia, with a rodent-like character being the most primitive. These results provide valuable information on the taxonomy and evolution of Ardisia plants.
Collapse
Affiliation(s)
- Lichai Yuan
- Institute of Medicine Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Ni
- Institute of Medicine Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Haimei Chen
- Institute of Medicine Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jingling Li
- Institute of Medicine Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Qianqi Lu
- Institute of Medicine Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| | - Liqiang Wang
- College of Pharmacy, Heze University, Heze, Shandong, China.
| | - Xinyi Zhang
- Institute of Medicine Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jingwen Yue
- Institute of Medicine Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| | - Heyu Yang
- Institute of Medicine Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Chang Liu
- Institute of Medicine Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Tao K, Tao L, Huang J, Duan H, Luo Y, Li L. Complete chloroplast genome structural characterization of two Aerides (Orchidaceae) species with a focus on phylogenetic position of Aerides flabellata. BMC Genomics 2024; 25:552. [PMID: 38825700 PMCID: PMC11145882 DOI: 10.1186/s12864-024-10458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND The disputed phylogenetic position of Aerides flabellata Rolfe ex Downie, due to morphological overlaps with related species, was investigated based on evidence of complete chloroplast (cp) genomes. The structural characterization of complete cp genomes of A. flabellata and A. rosea Lodd. ex Lindl. & Paxton were analyzed and compared with those of six related species in "Vanda-Aerides alliance" to provide genomic information on taxonomy and phylogeny. RESULTS The cp genomes of A. flabellata and A. rosea exhibited conserved quadripartite structures, 148,145 bp and 147,925 bp in length, with similar GC content (36.7 ~ 36.8%). Gene annotations revealed 110 single-copy genes, 18 duplicated in inverted regions, and ten with introns. Comparative analysis across related species confirmed stable sequence identity and higher variation in single-copy regions. However, there are notable differences in the IR regions between two Aerides Lour. species and the other six related species. The phylogenetic analysis based on CDS from complete cp genomes indicated that Aerides species except A. flabellata formed a monophyletic clade nested in the subtribe Aeridinae, being a sister group to Renanthera Lour., consistent with previous studies. Meanwhile, a separate clade consisted of A. flabellata and six Vanda R. Br. species was formed, as a sister taxon to Holcoglossum Schltr. CONCLUSIONS This research was the first report on the complete cp genomes of A. flabellata. The results provided insights into understanding of plastome evolution and phylogenetic relationships of Aerides. The phylogenetic analysis based on complete cp genomes showed that A. flabellata should be placed in Vanda rather than in Aerides.
Collapse
Affiliation(s)
- Kaifeng Tao
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Lei Tao
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Jialin Huang
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi, Yunnan, 653100, China
| | - Hanning Duan
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Yan Luo
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.
| | - Lu Li
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, 650224, China.
| |
Collapse
|
4
|
Yan S, Li J, Zhang Q, Jia S, Zhang Q, Wang R, Ju M, Gu P. Transcriptional Response of Wolfberry to Infestation with the Endophytic Fusarium nematophilum Strain NQ8GII4. PLANT DISEASE 2024; 108:1514-1525. [PMID: 38050402 DOI: 10.1094/pdis-07-23-1397-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Fusarium nematophilum NQ8GII4 is an endophytic fungus isolated from the root of healthy wolfberry (Lycium barbarum). Previous studies have reported that NQ8GII4 could dwell in wolfberry roots and enhance the defense responses in wolfberry against root rot, which is caused by F. oxysporum. To further elucidate the molecular mechanism of wolfberry disease resistance induced by NQ8GII4, in the present study, we adopted RNA sequencing analysis to profile the transcriptome of wolfberry response to NQ8GII4 infestation over a time course of 3 and 7 days postinoculation. Gene ontology enrichment analysis revealed that differentially expressed genes (DEGs) were enriched in biological regulation, response to stimulus, signaling, detoxification, immune system process, transporter activity, electron carrier activity, transcription factor activity, nucleic acid binding transcription factor, and antioxidant activity. Through Kyoto Encyclopedia of Genes and Genomes analysis, it was found that many of these DEGs were enriched in pathways related to plant-pathogen interactions, hormone signal transduction, and the phenylpropanoid biosynthesis pathway in wolfberry. This result suggested that innate immunity, phytohormone signaling, and numerous phenylpropanoid compounds comprise a complex defense network in wolfberry. Chloroplast 50S ribosomal proteins were consistently located at the core position of the response in wolfberry following infestation with NQ8GII4 analyzed by the protein-protein interaction network. This study elucidated the molecular mechanism underlying the interaction between NQ8GII4 and wolfberry, clarified the wolfberry immune response network to endophytic fungi infestation, identified candidate resistance genes in wolfberry, and provided a fundamental date for subsequent work.
Collapse
Affiliation(s)
- Siyuan Yan
- College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China
| | - Jin Li
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Qingchen Zhang
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL 32611, U.S.A
| | - Shuxin Jia
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Qiangqiang Zhang
- College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China
| | - Ruotong Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Mingxiu Ju
- College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China
| | - Peiwen Gu
- College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
5
|
Sánchez-Vicente I, Albertos P, Sanz C, Wybouw B, De Rybel B, Begara-Morales JC, Chaki M, Mata-Pérez C, Barroso JB, Lorenzo O. Reversible S-nitrosylation of bZIP67 by peroxiredoxin IIE activity and nitro-fatty acids regulates the plant lipid profile. Cell Rep 2024; 43:114091. [PMID: 38607914 PMCID: PMC11063630 DOI: 10.1016/j.celrep.2024.114091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/30/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Nitric oxide (NO) is a gasotransmitter required in a broad range of mechanisms controlling plant development and stress conditions. However, little is known about the specific role of this signaling molecule during lipid storage in the seeds. Here, we show that NO is accumulated in developing embryos and regulates the fatty acid profile through the stabilization of the basic/leucine zipper transcription factor bZIP67. NO and nitro-linolenic acid target and accumulate bZIP67 to induce the downstream expression of FAD3 desaturase, which is misregulated in a non-nitrosylable version of the protein. Moreover, the post-translational modification of bZIP67 is reversible by the trans-denitrosylation activity of peroxiredoxin IIE and defines a feedback mechanism for bZIP67 redox regulation. These findings provide a molecular framework to control the seed fatty acid profile caused by NO, and evidence of the in vivo functionality of nitro-fatty acids during plant developmental signaling.
Collapse
Affiliation(s)
- Inmaculada Sánchez-Vicente
- Department of Botany and Plant Physiology, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca. C/ Río Duero 12, 37185 Salamanca, Spain
| | - Pablo Albertos
- Department of Botany and Plant Physiology, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca. C/ Río Duero 12, 37185 Salamanca, Spain.
| | - Carlos Sanz
- Department Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa-CSIC, Campus Universidad Pablo de Olavide, Ctra Utrera km 1, 41013 Sevilla, Spain
| | - Brecht Wybouw
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Bert De Rybel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Juan C Begara-Morales
- Department of Experimental Biology, Facultad de Ciencias Experimentales, Campus Universitario "Las Lagunillas" s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | - Mounira Chaki
- Department of Experimental Biology, Facultad de Ciencias Experimentales, Campus Universitario "Las Lagunillas" s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | - Capilla Mata-Pérez
- Department of Botany and Plant Physiology, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca. C/ Río Duero 12, 37185 Salamanca, Spain
| | - Juan B Barroso
- Department of Experimental Biology, Facultad de Ciencias Experimentales, Campus Universitario "Las Lagunillas" s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | - Oscar Lorenzo
- Department of Botany and Plant Physiology, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca. C/ Río Duero 12, 37185 Salamanca, Spain.
| |
Collapse
|
6
|
Lao XL, Meng Y, Wu J, Wen J, Nie ZL. Plastid genomes provide insights into the phylogeny and chloroplast evolution of the paper daisy tribe Gnaphalieae (Asteraceae). Gene 2024; 901:148177. [PMID: 38242378 DOI: 10.1016/j.gene.2024.148177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Chloroplast genomes, as an essential source of phylogenetic information, are increasingly utilized in the evolutionary study of angiosperms. Gnaphalieae is a medium-sized tribe of the sunflower family of Asteraceae, with about 2,100 species in 178 genera distributed in temperate habitats worldwide. There has been considerable progress in our understanding of their phylogenetic evolution using both nuclear and chloroplast sequences, but no focus on chloroplast genomic data. In this study, we performed sequencing, assembly, and annotation of 16 representative chloroplast genomes from all the major lineages of Gnaphalieae. Our results showed that the plastomes exhibited a typical circular tetrad structure with similar genomic structure gene content. But there were differences in genome size, SSRs, and codon usage within the tribe. Phylogenetic analysis revealed Relhania clade is the earliest diverged lineages with the Lasiopogon clade and the Gnaphalium s.s. clade diverged subsequently. The core group includes FLAG clade sister to the HAP and Australasian group. Compared with the outgroup species, chloroplast genome size of the FLAG clade is much reduced whereas those of Australasian, HAP, Gnaphalium s.s., Lasiopogon and Relhania clades are relatively expanded. Insertions and deletions in the intergenic regions associated with repetitive sequence variations are supposed to be the main factor leading to length variations in the chloroplast genomes of Gnaphalieae. The comparative analyses of chloroplast genomes would provide useful implications into understanding the taxonomic and evolutionary history of Gnaphalieae.
Collapse
Affiliation(s)
- Xiao-Lin Lao
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China
| | - Ying Meng
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China
| | - Jue Wu
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Ze-Long Nie
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China.
| |
Collapse
|
7
|
Mueller-Schuessele SJ, Leterme S, Michaud M. Plastid Transient and Stable Interactions with Other Cell Compartments. Methods Mol Biol 2024; 2776:107-134. [PMID: 38502500 DOI: 10.1007/978-1-0716-3726-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Plastids are organelles delineated by two envelopes playing important roles in different cellular processes such as energy production or lipid biosynthesis. To regulate their biogenesis and their function, plastids have to communicate with other cellular compartments. This communication can be mediated by metabolites, signaling molecules, and by the establishment of direct contacts between the plastid envelope and other organelles such as the endoplasmic reticulum, mitochondria, peroxisomes, plasma membrane, and the nucleus. These interactions are highly dynamic and respond to different biotic and abiotic stresses. However, the mechanisms involved in the formation of plastid-organelle contact sites and their functions are still far from being understood. In this chapter, we summarize our current knowledge about plastid contact sites and their role in the regulation of plastid biogenesis and function.
Collapse
Affiliation(s)
| | - Sébastien Leterme
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France
| | - Morgane Michaud
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France.
| |
Collapse
|
8
|
Martins J, Neves M, Canhoto J. Drought-Stress-Induced Changes in Chloroplast Gene Expression in Two Contrasting Strawberry Tree ( Arbutus unedo L.) Genotypes. PLANTS (BASEL, SWITZERLAND) 2023; 12:4133. [PMID: 38140460 PMCID: PMC10747485 DOI: 10.3390/plants12244133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
This study investigated the effect of drought stress on the expression of chloroplast genes in two different genotypes (A1 and A4) of strawberry tree plants with contrasting performances. Two-year-old plants were subjected to drought (20 days at 18% field capacity), and the photosynthetic activity, chlorophyll content, and expression levels of 16 chloroplast genes involved in photosynthesis and metabolism-related enzymes were analyzed. Genotype-specific responses were prominent, with A1 displaying wilting and leaf curling, contrasting with the mild symptoms observed in A4. Quantification of damage using the net CO2 assimilation rates and chlorophyll content unveiled a significant reduction in A1, while A4 maintained stability. Gene expression analysis revealed substantial downregulation of A1 (15 out of 16 genes) and upregulation of A4 (14 out of 16 genes). Notably, psbC was downregulated in A1, while it was prominently upregulated in A4. Principal Component Analysis (PCA) highlighted genotype-specific clusters, emphasizing distinct responses under stress, whereas a correlation analysis elucidated intricate relationships between gene expression, net CO2 assimilation, and chlorophyll content. Particularly, a positive correlation with psaB, whereas a negative correlation with psbC was found in genotype A1. Regression analysis identified potential predictors for net CO2 assimilation, in particular psaB. These findings contribute valuable insights for future strategies targeting crop enhancement and stress resilience, highlighting the central role of chloroplasts in orchestrating plant responses to environmental stressors, and may contribute to the development of drought-tolerant plant varieties, which are essential for sustaining agriculture in regions affected by water scarcity.
Collapse
Affiliation(s)
- João Martins
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (M.N.); (J.C.)
| | | | | |
Collapse
|
9
|
Chen X, Li B, Zhang X. Comparison of chloroplast genomes and phylogenetic analysis of four species in Quercus section Cyclobalanopsis. Sci Rep 2023; 13:18731. [PMID: 37907468 PMCID: PMC10618267 DOI: 10.1038/s41598-023-45421-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
The identification in Quercus L. species was considered to be difficult all the time. The fundamental phylogenies of Quercus have already been discussed by morphological and molecular means. However, the morphological characteristics of some Quercus groups may not be consistent with the molecular results (such as the group Helferiana), which may lead to blurring of species relationships and prevent further evolutionary researches. To understand the interspecific relationships and phylogenetic positions, we sequenced and assembled the CPGs (160,715 bp-160842 bp) of four Quercus section Cyclobalanopsis species by Illumina pair-end sequencing. The genomic structure, GC content, and IR/SC boundaries exhibited significant conservatism. Six highly variable hotspots were detected in comparison analysis, among which rpoC1, clpP and ycf1 could be used as molecular markers. Besides, two genes (petA, ycf2) were detected to be under positive selection pressure. The phylogenetic analysis showed: Trigonobalanus genus and Fagus genus located at the base of the phylogeny tree; The Quercus genus species were distincted to two clades, including five sections. All Compound Trichome Base species clustered into a single branch, which was in accordance with the results of the morphological studies. But neither of group Gilva nor group Helferiana had formed a monophyly. Six Compound Trichome Base species gathered together in pairs to form three branch respectively (Quercus kerrii and Quercus chungii; Quercus austrocochinchinensis with Quercus gilva; Quercus helferiana and Quercus rex). Due to a low support rate (0.338) in the phylogeny tree, the interspecies relationship between the two branches differentiated by this node remained unclear. We believe that Q. helferiana and Q. kerrii can exist as independent species due to their distance in the phylogeny tree. Our study provided genetic information in Quercus genus, which could be applied to further studies in taxonomy and phylogenetics.
Collapse
Affiliation(s)
- Xiaoli Chen
- College of Life Sciences, China West Normal University, Nanchong, 637009, China
| | - Buyu Li
- College of Life Sciences, China West Normal University, Nanchong, 637009, China
| | - Xuemei Zhang
- College of Life Sciences, China West Normal University, Nanchong, 637009, China.
| |
Collapse
|
10
|
Bwalya J, Widyasari K, Völz R, Kim KH. Chloroplast-related host proteins interact with NIb and NIa-Pro of soybeans mosaic virus and induce resistance in the susceptible cultivar. Virus Res 2023; 336:199205. [PMID: 37607595 PMCID: PMC10472001 DOI: 10.1016/j.virusres.2023.199205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 08/24/2023]
Abstract
To gain a deeper understanding of the molecular mechanisms involved in viral infection and the corresponding plant resistance responses, it is essential to investigate the interactions between viral and host proteins. In the case of viral infections in plants, a significant portion of the affected gene products are closely associated with chloroplasts and photosynthesis. However, the molecular mechanisms underlying the interplay between the virus and host chloroplast proteins during replication remain poorly understood. In our previous study, we made an interesting discovery regarding soybean mosaic virus (SMV) infection in resistant and susceptible soybean cultivars. We found that the photosystem I (PSI) subunit (PSaC) and ATP synthase subunit α (ATPsyn-α) genes were up-regulated in the resistant cultivar following SMV-G7H and SMV-G5H infections compared to the susceptible cultivar. Overexpression of these two genes within the SMV-G7H genome in the susceptible cultivar Lee74 (rsv3-null) reduced SMV accumulation, whereas silencing of the PSaC and ATPsyn-α genes promoted SMV accumulation. We have also found that the PSaC and ATPsyn-α proteins are present in the chloroplast envelope, nucleus, and cytoplasm. Building on these findings, we now characterized protein-protein interactions between PSaC and ATPsyn-α with two viral proteins, NIb and NIa-Pro, respectively, of SMV. Through co-immunoprecipitation (Co-IP) experiments, we confirmed the interactions between these proteins. Moreover, when the C-terminal region of either PSaC or ATPsyn-α was overexpressed in the SMV-G7H genome, we observed a reduction in viral accumulation and systemic infection in the susceptible cultivar. Based on these results, we propose that the PSaC and ATPsyn-α genes play a modulatory role in conferring resistance to SMV infection by influencing the function of NIb and NIa-Pro-in SMV replication and movement. The identification of these photosynthesis-related genes as key players in the interplay between the virus and the host provides valuable insights for developing more targeted control strategies against SMV. Additionally, by utilizing these genes, it may be possible to genetically engineer plants with improved photosynthetic efficiency and enhanced resistance to SMV infection.
Collapse
Affiliation(s)
- John Bwalya
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kristin Widyasari
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ronny Völz
- Research of Institute Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea; Research of Institute Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Zhang X, Wang L, Pan T, Wu X, Shen J, Jiang L, Tajima H, Blumwald E, Qiu QS. Plastid KEA-type cation/H + antiporters are required for vacuolar protein trafficking in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2157-2174. [PMID: 37252889 DOI: 10.1111/jipb.13537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/28/2023] [Indexed: 06/01/2023]
Abstract
Arabidopsis plastid antiporters KEA1 and KEA2 are critical for plastid development, photosynthetic efficiency, and plant development. Here, we show that KEA1 and KEA2 are involved in vacuolar protein trafficking. Genetic analyses found that the kea1 kea2 mutants had short siliques, small seeds, and short seedlings. Molecular and biochemical assays showed that seed storage proteins were missorted out of the cell and the precursor proteins were accumulated in kea1 kea2. Protein storage vacuoles (PSVs) were smaller in kea1 kea2. Further analyses showed that endosomal trafficking in kea1 kea2 was compromised. Vacuolar sorting receptor 1 (VSR1) subcellular localizations, VSR-cargo interactions, and p24 distribution on the endoplasmic reticulum (ER) and Golgi apparatus were affected in kea1 kea2. Moreover, plastid stromule growth was reduced and plastid association with the endomembrane compartments was disrupted in kea1 kea2. Stromule growth was regulated by the cellular pH and K+ homeostasis maintained by KEA1 and KEA2. The organellar pH along the trafficking pathway was altered in kea1 kea2. Overall, KEA1 and KEA2 regulate vacuolar trafficking by controlling the function of plastid stromules via adjusting pH and K+ homeostasis.
Collapse
Affiliation(s)
- Xiao Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 73000, China
- Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, 810000, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730000, China
| | - Lu Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 73000, China
- Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, 810000, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730000, China
| | - Ting Pan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 73000, China
| | - Xuexia Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 73000, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hiromi Tajima
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 73000, China
- Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, 810000, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
12
|
Tao L, Duan H, Tao K, Luo Y, Li Q, Li L. Complete chloroplast genome structural characterization of two Phalaenopsis (Orchidaceae) species and comparative analysis with their alliance. BMC Genomics 2023; 24:359. [PMID: 37369999 DOI: 10.1186/s12864-023-09448-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The taxonomy and infrageneric delimitation of Phalaenopsis Blume has been significantly disputed due to some overlapping morphological features between species related, which needed further evidence for clarification. The structural characterization of complete chloroplast genomes of P. storbatiana and P. wilsonii were analyzed and compared with those of related taxa to provide a better understanding of their genomic information on taxonomy and phylogeny. RESULTS It was shown that chloroplast genomes of Phalaenopsis storbatiana and P. wilsonii had a typical quadripartite structure with conserved genome arrangements and moderate divergence. The chloroplast genomes of P. storbatiana and P. wilsonii were 145,885 bp and 145,445 bp in length, respectively, and shared a similar GC content of 36.8%. Gene annotations of two species revealed 109 single-copy genes consistently. In addition, 20 genes duplicated in the inverted regions, 16 genes each possessed one or more introns, and five ndh (NA (D)H dehydrogenase) genes were observed in both. Comparative analysis of the total cp genomes of P. storbatiana and P. wilsonii with those of other six related Phalaenopsis species confirmed the stable sequence identity for coding and non-coding regions and higher sequence variation in SC regions than IR regions. Most of their protein-coding genes had a high degree of codon preference. Moreover, 45 genes were discovered with significantly positive selection. However, different amplifications in IR regions were observed in these eight species. Phylogenetic analysis based on CDS from 60 species representing main clades in Orchidaceae indicated that Phalaenopsis species including P. stobartiana and P. wilsonii formed a monophyletic clade with high bootstrap nested in tribe Vandeae of Epidendroideae, which was consistent with those from previous studies. CONCLUSIONS The results could provide insight into understanding the plastome evolution and phylogenetic relationships of Phalaenopsis.
Collapse
Affiliation(s)
- Lei Tao
- Department of Biological Conservation, Southwest Forestry University, Kunming, Yunnan, 650224, China
- Department of Life Science, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Hanning Duan
- Department of Biological Conservation, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Kaifeng Tao
- Department of Biological Conservation, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Yan Luo
- Department of Horticulture and Gardening, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Qingqing Li
- Department of Life Science, Southwest Forestry University, Kunming, Yunnan, 650224, China
- Kunming Xianghao Technology Co. Ltd., Kunming, Yunnan, 650204, China
| | - Lu Li
- Department of Biological Conservation, Southwest Forestry University, Kunming, Yunnan, 650224, China.
| |
Collapse
|
13
|
Pang Y, Liao Q, Peng H, Qian C, Wang F. CO 2 mesophyll conductance regulated by light: a review. PLANTA 2023; 258:11. [PMID: 37289402 DOI: 10.1007/s00425-023-04157-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/17/2023] [Indexed: 06/09/2023]
Abstract
MAIN CONCLUSION Light quality and intensity regulate plant mesophyll conductance, which has played an essential role in photosynthesis by controlling leaf structural and biochemical properties. Mesophyll conductance (gm), a crucial physiological factor influencing the photosynthetic rate of leaves, is used to describe the resistance of CO2 from the sub-stomatal cavity into the chloroplast up to the carboxylation site. Leaf structural and biochemical components, as well as external environmental factors such as light, temperature, and water, all impact gm. As an essential factor of plant photosynthesis, light affects plant growth and development and plays a vital role in regulating gm as well as determining photosynthesis and yield. This review aimed to summarize the mechanisms of gm response to light. Both structural and biochemical perspectives were combined to reveal the effects of light quality and intensity on the gm, providing a guide for selecting the optimal conditions for intensifying photosynthesis in plants.
Collapse
Affiliation(s)
- Yadan Pang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213, China
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400712, China
| | - Qiuhong Liao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213, China
| | - Honggui Peng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400712, China
| | - Chun Qian
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400712, China
| | - Fang Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213, China.
| |
Collapse
|
14
|
UPL5 modulates WHY2 protein distribution in a Kub-site dependent ubiquitination in response to [Ca2+]cyt-induced leaf senescence. iScience 2023; 26:106216. [PMID: 36994183 PMCID: PMC10040967 DOI: 10.1016/j.isci.2023.106216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/08/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
The translocation of proteins between various compartments of cells is the simplest and most direct way of an/retrograde communication. However, the mechanism of protein trafficking is far understood. In this study, we showed that the alteration of WHY2 protein abundance in various compartments of cells was dependent on a HECT-type ubiquitin E3 ligase UPL5 interacting with WHY2 in the cytoplasm, plastid, and nucleus, as well as mitochondrion to selectively ubiquitinate various Kub-sites (Kub 45 and Kub 227) of WHY2. Plastid genome stability can be maintained by the UPL5-WHY2 module, accompany by the alteration of photosystem activity and senescence-associated gene expression. In addition, the specificity of UPL5 ubiquitinating various Kub-sites of WHY2 was responded to cold or CaCl2 stress, in a dose [Ca2+]cyt-dependent manner. This demonstrates the integration of the UPL5 ubiquitination with the regulation of WHY2 distribution and retrograde communication between organelle and nuclear events of leaf senescence.
Collapse
|
15
|
Bwalya J, Kim KH. The Crucial Role of Chloroplast-Related Proteins in Viral Genome Replication and Host Defense against Positive-Sense Single-Stranded RNA Viruses. THE PLANT PATHOLOGY JOURNAL 2023; 39:28-38. [PMID: 36760047 PMCID: PMC9929168 DOI: 10.5423/ppj.rw.10.2022.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Plant viruses are responsible for worldwide production losses of numerous economically important crops. The most common plant RNA viruses are positivesense single-stranded RNA viruses [(+)ss RNA viruses]. These viruses have small genomes that encode a limited number of proteins. The viruses depend on their host's machinery for the replication of their RNA genome, assembly, movement, and attraction to the vectors for dispersal. Recently researchers have reported that chloroplast proteins are crucial for replicating (+)ss plant RNA viruses. Some chloroplast proteins, including translation initiation factor [eIF(iso)4E] and 75 DEAD-box RNA helicase RH8, help viruses fulfill their infection cycle in plants. In contrast, other chloroplast proteins such as PAP2.1, PSaC, and ATPsyn-α play active roles in plant defense against viruses. This is also consistent with the idea that reactive oxygen species, salicylic acid, jasmonic acid, and abscisic acid are produced in chloroplast. However, knowledge of molecular mechanisms and functions underlying these chloroplast host factors during the virus infection is still scarce and remains largely unknown. Our review briefly summarizes the latest knowledge regarding the possible role of chloroplast in plant virus replication, emphasizing chloroplast-related proteins. We have highlighted current advances regarding chloroplast-related proteins' role in replicating plant (+)ss RNA viruses.
Collapse
Affiliation(s)
- John Bwalya
- Department of Agriculture Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Kook-Hyung Kim
- Department of Agriculture Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826,
Korea
- Research of Institute Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
16
|
Xu X, Shen Y, Zhang Y, Li Q, Wang W, Chen L, Chen G, Ng WL, Islam MN, Punnarak P, Zheng H, Zhu X. A comparison of 25 complete chloroplast genomes between sister mangrove species Kandelia obovata and Kandelia candel geographically separated by the South China Sea. FRONTIERS IN PLANT SCIENCE 2023; 13:1075353. [PMID: 36684775 PMCID: PMC9845719 DOI: 10.3389/fpls.2022.1075353] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
In 2003, Kandelia obovata was identified as a new mangrove species differentiated from Kandelia candel. However, little is known about their chloroplast (cp) genome differences and their possible ecological significance. In this study, 25 whole cp genomes, with seven samples of K. candel from Malaysia, Thailand, and Bangladesh and 18 samples of K. obovata from China, were sequenced for comparison. The cp genomes of both species encoded 128 genes, namely 83 protein-coding genes, 37 tRNA genes, and eight rRNA genes, but the cp genome size of K. obovata was ~2 kb larger than that of K. candle due to the presence of more and longer repeat sequences. Of these, tandem repeats and simple sequence repeats exhibited great differences. Principal component analysis based on indels, and phylogenetic tree analyses constructed with homologous protein genes from the single-copy genes, as well as 38 homologous pair genes among 13 mangrove species, gave strong support to the separation of the two species within the Kandelia genus. Homologous genes ndhD and atpA showed intraspecific consistency and interspecific differences. Molecular dynamics simulations of their corresponding proteins, NAD(P)H dehydrogenase chain 4 (NDH-D) and ATP synthase subunit alpha (ATP-A), predicted them to be significantly different in the functions of photosynthetic electron transport and ATP generation in the two species. These results suggest that the energy requirement was a pivotal factor in their adaptation to differential environments geographically separated by the South China Sea. Our results also provide clues for future research on their physiological and molecular adaptation mechanisms to light and temperature.
Collapse
Affiliation(s)
- Xiuming Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yingjia Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yuchen Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Qianying Li
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Wenqing Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Luzhen Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Guangcheng Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Wei Lun Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Selangor Darul Ehsan, Malaysia
| | - Md Nazrul Islam
- Forestry and Wood Technology Discipline, Khulna University, Khulna, Bangladesh
| | - Porntep Punnarak
- Aquatic Resources Research Institute, Chulalongkorn University, Bangkok, Thailand
| | - Hailei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Xueyi Zhu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
17
|
Zhu Y, Zhang X, Yan S, Feng C, Wang D, Yang W, Daud MK, Xiang J, Mei L. SSR identification and phylogenetic analysis in four plant species based on complete chloroplast genome sequences. Plasmid 2023; 125:102670. [PMID: 36828204 DOI: 10.1016/j.plasmid.2023.102670] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
The effective utilization of traditional Chinese medicine (TCM) has been challenged by the difficulty to accurately distinguish between similar plant varieties. The stability and conservation of the chloroplast genome can aid in resolving genotypes. Previous studies using nuclear sequences and molecular markers have not effectively differentiated the species from related taxa, such as Machilus leptophylla, Hanceola exserta, Rubus bambusarum, and Rubus henryi. This study aimed to characterize the chloroplast genomes of these four plant species, and analyze their simple sequence repeats (SSRs) and phylogenetic positions. The results demonstrated the four chloroplast genomes consisted of 152.624 kb, 153.296 kb, 156.309 kb, and 158.953 kb in length, involving 124, 130, 129, and 131 genes, respectively. They also contained four specific regions with mononucleotide being the class with the most members. Moreover, these repeating types of SSR were various in individual class. Phylogenetic analysis showed that M. leptophylla was clustered with M. yunnanensis, and H. exserta was confirmed as belonging to the family Ocimeae. Additionally, R. bambusarum and R. henryi were grouped together but differed in their SSR features, indicating that they were not the same species. This research provides evidence for resolving species and contributes new genetic information for further studies.
Collapse
Affiliation(s)
- Yueyi Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xianwen Zhang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shufeng Yan
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Chen Feng
- Lushan Botanical Garden, Chinese Academy of Sciences, Lushan 330000, China
| | - Dongfang Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wei Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Muhammad Khan Daud
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Jiqian Xiang
- Enshi Tujia & Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China
| | - Lei Mei
- Enshi Tujia & Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China; Center of Research and Development, Senium Science Development (Zhejiang) Company Limited, Hangzhou 311121, China.
| |
Collapse
|
18
|
Riaz A, Deng F, Chen G, Jiang W, Zheng Q, Riaz B, Mak M, Zeng F, Chen ZH. Molecular Regulation and Evolution of Redox Homeostasis in Photosynthetic Machinery. Antioxidants (Basel) 2022; 11:antiox11112085. [PMID: 36358456 PMCID: PMC9686623 DOI: 10.3390/antiox11112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 01/14/2023] Open
Abstract
The recent advances in plant biology have significantly improved our understanding of reactive oxygen species (ROS) as signaling molecules in the redox regulation of complex cellular processes. In plants, free radicals and non-radicals are prevalent intra- and inter-cellular ROS, catalyzing complex metabolic processes such as photosynthesis. Photosynthesis homeostasis is maintained by thiol-based systems and antioxidative enzymes, which belong to some of the evolutionarily conserved protein families. The molecular and biological functions of redox regulation in photosynthesis are usually to balance the electron transport chain, photosystem II, photosystem I, mesophyll and bundle sheath signaling, and photo-protection regulating plant growth and productivity. Here, we review the recent progress of ROS signaling in photosynthesis. We present a comprehensive comparative bioinformatic analysis of redox regulation in evolutionary distinct photosynthetic cells. Gene expression, phylogenies, sequence alignments, and 3D protein structures in representative algal and plant species revealed conserved key features including functional domains catalyzing oxidation and reduction reactions. We then discuss the antioxidant-related ROS signaling and important pathways for achieving homeostasis of photosynthesis. Finally, we highlight the importance of plant responses to stress cues and genetic manipulation of disturbed redox status for balanced and enhanced photosynthetic efficiency and plant productivity.
Collapse
Affiliation(s)
- Adeel Riaz
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 414000, China
| | - Fenglin Deng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 414000, China
| | - Guang Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wei Jiang
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 414000, China
| | - Qingfeng Zheng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 414000, China
| | - Bisma Riaz
- Department of Biotechnology, University of Okara, Okara, Punjab 56300, Pakistan
| | - Michelle Mak
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Fanrong Zeng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 414000, China
- Correspondence: (F.Z.); (Z.-H.C.)
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
- Correspondence: (F.Z.); (Z.-H.C.)
| |
Collapse
|
19
|
Ichikawa S, Kato S, Fujii Y, Ishikawa K, Numata K, Kodama Y. Organellar Glue: A Molecular Tool to Artificially Control Chloroplast-Chloroplast Interactions. ACS Synth Biol 2022; 11:3190-3197. [PMID: 36178266 PMCID: PMC9594315 DOI: 10.1021/acssynbio.2c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Organelles can physically interact to facilitate various cellular processes such as metabolite exchange. Artificially regulating these interactions represents a promising approach for synthetic biology. Here, we artificially controlled chloroplast-chloroplast interactions in living plant cells with our organelle glue (ORGL) technique, which is based on reconstitution of a split fluorescent protein. We simultaneously targeted N-terminal and C-terminal fragments of a fluorescent protein to the chloroplast outer envelope membrane or cytosol, respectively, which induced chloroplast-chloroplast interactions. The cytosolic C-terminal fragment likely functions as a bridge between two N-terminal fragments, thereby bringing the chloroplasts in close proximity to interact. We modulated the frequency of chloroplast-chloroplast interactions by altering the ratio of N- and C-terminal fragments. We conclude that the ORGL technique can successfully control chloroplast-chloroplast interactions in plants, providing a proof of concept for the artificial regulation of organelle interactions in living cells.
Collapse
Affiliation(s)
- Shintaro Ichikawa
- Center
for Bioscience Research and Education, Utsunomiya
University, Tochigi 321-8505, Japan,Graduate
School of Regional Development and Creativity, Utsunomiya University, Tochigi 321-8505, Japan
| | - Shota Kato
- Center
for Bioscience Research and Education, Utsunomiya
University, Tochigi 321-8505, Japan
| | - Yuta Fujii
- Center
for Bioscience Research and Education, Utsunomiya
University, Tochigi 321-8505, Japan
| | - Kazuya Ishikawa
- Center
for Bioscience Research and Education, Utsunomiya
University, Tochigi 321-8505, Japan
| | - Keiji Numata
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan,Biomacromolecules
Research Team, Center for Sustainable Resource
Science, RIKEN, Saitama 351-0198, Japan
| | - Yutaka Kodama
- Center
for Bioscience Research and Education, Utsunomiya
University, Tochigi 321-8505, Japan,Graduate
School of Regional Development and Creativity, Utsunomiya University, Tochigi 321-8505, Japan,Biomacromolecules
Research Team, Center for Sustainable Resource
Science, RIKEN, Saitama 351-0198, Japan,
| |
Collapse
|
20
|
Midorikawa K, Tateishi A, Toyooka K, Sato M, Imai T, Kodama Y, Numata K. Three-dimensional nanoscale analysis of light-dependent organelle changes in Arabidopsis mesophyll cells. PNAS NEXUS 2022; 1:pgac225. [PMID: 36712360 PMCID: PMC9802074 DOI: 10.1093/pnasnexus/pgac225] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 09/15/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022]
Abstract
Different organelles function coordinately in numerous intracellular processes. Photorespiration incidental to photosynthetic carbon fixation is organized across three subcellular compartments: chloroplasts, peroxisomes, and mitochondria. Under light conditions, these three organelles often form a ternary organellar complex in close proximity, suggesting a connection with metabolism during photorespiration. However, due to the heterogeneity of intercellular organelle localization and morphology, organelles' responses to changes in the external environment remain poorly understood. Here, we used array tomography by field emission scanning electron microscopy to image organelles inside the whole plant cell at nanometer resolution, generating a three-dimensional (3D) spatial map of the light-dependent positioning of chloroplasts, peroxisomes, nuclei, and vacuoles. Our results show, in light-treated cells, the volume of peroxisomes increased, and mitochondria were simplified. In addition, the population of free organelles decreased, and the ternary complex centered on chloroplasts increased. Moreover, our results emphasized the expansion of the proximity area rather than the increase in the number of proximity sites interorganelles. All of these phenomena were quantified for the first time on the basis of nanoscale spatial maps. In summary, we provide the first 3D reconstruction of Arabidopsis mesophyll cells, together with nanoscale quantified organelle morphology and their positioning via proximity areas, and then evidence of their light-dependent changes.
Collapse
Affiliation(s)
- Keiko Midorikawa
- Biomacromoleules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan,Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
| | - Ayaka Tateishi
- Biomacromoleules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan,Department of Material Chemistry, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama, Kanagawa 230-0045, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama, Kanagawa 230-0045, Japan
| | - Takuto Imai
- Biomacromoleules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
21
|
Peng JY, Zhang XS, Zhang DG, Wang Y, Deng T, Huang XH, Kuang TH, Zhou Q. Newly reported chloroplast genome of Sinosenecio albonervius Y. Liu & Q. E. Yang and comparative analyses with other Sinosenecio species. BMC Genomics 2022; 23:639. [PMID: 36076168 PMCID: PMC9454173 DOI: 10.1186/s12864-022-08872-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/31/2022] [Indexed: 11/10/2022] Open
Abstract
Background Sinosenecio B. Nordenstam (Asteraceae) currently comprises 44 species. To investigate the interspecific relationship, several chloroplast markers, including ndhC-trnV, rpl32-trnL, matK, and rbcL, are used to analyze the phylogeny of Sinosenecio. However, the chloroplast genomes of this genus have not been thoroughly investigated. We sequenced and assembled the Sinosenecio albonervius chloroplast genome for the first time. A detailed comparative analysis was performed in this study using the previously reported chloroplast genomes of three Sinosenecio species. Results The results showed that the chloroplast genomes of four Sinosenecio species exhibit a typical quadripartite structure. There are equal numbers of total genes, protein-coding genes and RNA genes among the annotated genomes. Per genome, 49–56 simple sequence repeats and 99 repeat sequences were identified. Thirty codons were identified as RSCU values greater than 1 in the chloroplast genome of S. albonervius based on 54 protein-coding genes, indicating that they showed biased usage. Among 18 protein-coding genes, 46 potential RNA editing sites were discovered. By comparing these chloroplast genomes' structures, inverted repeat regions and coding regions were more conserved than single-copy and non-coding regions. The junctions among inverted repeat and single-copy regions showed slight difference. Several hot spots of genomic divergence were detected, which can be used as new DNA barcodes for species identification. Phylogenetic analysis of the whole chloroplast genome showed that the four Sinosenecio species have close interspecific relationships. Conclusions The complete chloroplast genome of Sinosenecio albonervius was revealed in this study, which included a comparison of Sinosenecio chloroplast genome structure, variation, and phylogenetic analysis for related species. These will help future research on Sinosenecio taxonomy, identification, origin, and evolution to some extent. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08872-3.
Collapse
Affiliation(s)
- Jing-Yi Peng
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, Hunan, China
| | - Xiao-Shuang Zhang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Dai-Gui Zhang
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, Hunan, China.,Key Laboratory of Plant Resources Conservation and Utilization, Jishou University, College of Hunan Province, Jishou, 416000, Hunan, China
| | - Yi Wang
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, Hunan, China
| | - Tao Deng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xian-Han Huang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Tian-Hui Kuang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Qiang Zhou
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, Hunan, China. .,Key Laboratory of Plant Resources Conservation and Utilization, Jishou University, College of Hunan Province, Jishou, 416000, Hunan, China.
| |
Collapse
|
22
|
Three-Dimensional Envelope and Subunit Interactions of the Plastid-Encoded RNA Polymerase from Sinapis alba. Int J Mol Sci 2022; 23:ijms23179922. [PMID: 36077319 PMCID: PMC9456514 DOI: 10.3390/ijms23179922] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
RNA polymerases (RNAPs) are found in all living organisms. In the chloroplasts, the plastid-encoded RNA polymerase (PEP) is a prokaryotic-type multimeric RNAP involved in the selective transcription of the plastid genome. One of its active states requires the assembly of nuclear-encoded PEP-Associated Proteins (PAPs) on the catalytic core, producing a complex of more than 900 kDa, regarded as essential for chloroplast biogenesis. In this study, sequence alignments of the catalytic core subunits across various chloroplasts of the green lineage and prokaryotes combined with structural data show that variations are observed at the surface of the core, whereas internal amino acids associated with the catalytic activity are conserved. A purification procedure compatible with a structural analysis was used to enrich the native PEP from Sinapis alba chloroplasts. A mass spectrometry (MS)-based proteomic analysis revealed the core components, the PAPs and additional proteins, such as FLN2 and pTAC18. MS coupled with crosslinking (XL-MS) provided the initial structural information in the form of protein clusters, highlighting the relative position of some subunits with the surfaces of their interactions. Using negative stain electron microscopy, the PEP three-dimensional envelope was calculated. Particles classification shows that the protrusions are very well-conserved, offering a framework for the future positioning of all the PAPs. Overall, the results show that PEP-associated proteins are firmly and specifically associated with the catalytic core, giving to the plastid transcriptional complex a singular structure compared to other RNAPs.
Collapse
|
23
|
Banday ZZ, Cecchini NM, Speed DJ, Scott AT, Parent C, Hu CT, Filzen RC, Agbo E, Greenberg JT. Friend or foe: Hybrid proline-rich proteins determine how plants respond to beneficial and pathogenic microbes. PLANT PHYSIOLOGY 2022; 190:860-881. [PMID: 35642916 PMCID: PMC9434206 DOI: 10.1093/plphys/kiac263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/08/2022] [Indexed: 05/21/2023]
Abstract
Plant plastids generate signals, including some derived from lipids, that need to be mobilized to effect signaling. We used informatics to discover potential plastid membrane proteins involved in microbial responses in Arabidopsis (Arabidopsis thaliana). Among these are proteins co-regulated with the systemic immunity component AZELAIC ACID INDUCED 1, a hybrid proline-rich protein (HyPRP), and HyPRP superfamily members. HyPRPs have a transmembrane domain, a proline-rich region (PRR), and a lipid transfer protein domain. The precise subcellular location(s) and function(s) are unknown for most HyPRP family members. As predicted by informatics, a subset of HyPRPs has a pool of proteins that target plastid outer envelope membranes via a mechanism that requires the PRR. Additionally, two HyPRPs may be associated with thylakoid membranes. Most of the plastid- and nonplastid-localized family members also have pools that localize to the endoplasmic reticulum, plasma membrane, or plasmodesmata. HyPRPs with plastid pools regulate, positively or negatively, systemic immunity against the pathogen Pseudomonas syringae. HyPRPs also regulate the interaction with the plant growth-promoting rhizobacteria Pseudomonas simiae WCS417 in the roots to influence colonization, root system architecture, and/or biomass. Thus, HyPRPs have broad and distinct roles in immunity, development, and growth responses to microbes and reside at sites that may facilitate signal molecule transport.
Collapse
Affiliation(s)
- Zeeshan Z Banday
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | - DeQuantarius J Speed
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Allison T Scott
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | - Ciara T Hu
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Rachael C Filzen
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Elinam Agbo
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
24
|
Biniaz Y, Tahmasebi A, Tahmasebi A, Albrectsen BR, Poczai P, Afsharifar A. Transcriptome Meta-Analysis Identifies Candidate Hub Genes and Pathways of Pathogen Stress Responses in Arabidopsis thaliana. BIOLOGY 2022; 11:1155. [PMID: 36009782 PMCID: PMC9404733 DOI: 10.3390/biology11081155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
Following a pathogen attack, plants defend themselves using multiple defense mechanisms to prevent infections. We used a meta-analysis and systems-biology analysis to search for general molecular plant defense responses from transcriptomic data reported from different pathogen attacks in Arabidopsis thaliana. Data from seven studies were subjected to meta-analysis, which revealed a total of 3694 differentially expressed genes (DEGs), where both healthy and infected plants were considered. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis further suggested that the DEGs were involved in several biosynthetic metabolic pathways, including those responsible for the biosynthesis of secondary metabolites and pathways central to photosynthesis and plant-pathogen interactions. Using network analysis, we highlight the importance of WRKY40, WRKY46 and STZ, and suggest that they serve as major points in protein-protein interactions. This is especially true regarding networks of composite-metabolic responses by pathogens. In summary, this research provides a new approach that illuminates how different mechanisms of transcriptome responses can be activated in plants under pathogen infection and indicates that common genes vary in their ability to regulate plant responses to the pathogens studied herein.
Collapse
Affiliation(s)
- Yaser Biniaz
- Plant Virology Research Center, Faculty of Agriculture, Shiraz University, Shiraz 7194685115, Iran;
| | - Ahmad Tahmasebi
- Institute of Biotechnology, Faculty of Agriculture, Shiraz University, Shiraz 7194685115, Iran;
| | - Aminallah Tahmasebi
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas 7916193145, Iran;
- Plant Protection Research Group, University of Hormozgan, Bandar Abbas 7916193145, Iran
| | - Benedicte Riber Albrectsen
- Department of Plant Physiology, Faculty of Science and Technology, Umeå University, 901 87 Umeå, Sweden;
| | - Péter Poczai
- Botany Unit, Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, FI-00014 Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00065 Helsinki, Finland
- Institute of Advanced Studies Kőszeg (iASK), P.O. Box 4, H-9731 Kőszeg, Hungary
| | - Alireza Afsharifar
- Plant Virology Research Center, Faculty of Agriculture, Shiraz University, Shiraz 7194685115, Iran;
| |
Collapse
|
25
|
Li Y, Wang TR, Kozlowski G, Liu MH, Yi LT, Song YG. Complete Chloroplast Genome of an Endangered Species Quercus litseoides, and Its Comparative, Evolutionary, and Phylogenetic Study with Other Quercus Section Cyclobalanopsis Species. Genes (Basel) 2022; 13:genes13071184. [PMID: 35885967 PMCID: PMC9316884 DOI: 10.3390/genes13071184] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023] Open
Abstract
Quercus litseoides, an endangered montane cloud forest species, is endemic to southern China. To understand the genomic features, phylogenetic relationships, and molecular evolution of Q. litseoides, the complete chloroplast (cp) genome was analyzed and compared in Quercus section Cyclobalanopsis. The cp genome of Q. litseoides was 160,782 bp in length, with an overall guanine and cytosine (GC) content of 36.9%. It contained 131 genes, including 86 protein-coding genes, eight ribosomal RNA genes, and 37 transfer RNA genes. A total of 165 simple sequence repeats (SSRs) and 48 long sequence repeats with A/T bias were identified in the Q. litseoides cp genome, which were mainly distributed in the large single copy region (LSC) and intergenic spacer regions. The Q. litseoides cp genome was similar in size, gene composition, and linearity of the structural region to those of Quercus species. The non-coding regions were more divergent than the coding regions, and the LSC region and small single copy region (SSC) were more divergent than the inverted repeat regions (IRs). Among the 13 divergent regions, 11 were in the LSC region, and only two were in the SSC region. Moreover, the coding sequence (CDS) of the six protein-coding genes (rps12, matK, atpF, rpoC2, rpoC1, and ndhK) were subjected to positive selection pressure when pairwise comparison of 16 species of Quercus section Cyclobalanopsis. A close relationship between Q. litseoides and Quercus edithiae was found in the phylogenetic analysis of cp genomes. Our study provided highly effective molecular markers for subsequent phylogenetic analysis, species identification, and biogeographic analysis of Quercus.
Collapse
Affiliation(s)
- Yu Li
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (Y.L.); (M.-H.L.)
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (T.-R.W.); (G.K.)
| | - Tian-Rui Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (T.-R.W.); (G.K.)
| | - Gregor Kozlowski
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (T.-R.W.); (G.K.)
- Department of Biology and Botanic Garden, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
- Natural History Museum Fribourg, Chemin du Musée 6, 1700 Fribourg, Switzerland
| | - Mei-Hua Liu
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (Y.L.); (M.-H.L.)
| | - Li-Ta Yi
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (Y.L.); (M.-H.L.)
- Correspondence: (L.-T.Y.); (Y.-G.S.)
| | - Yi-Gang Song
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (Y.L.); (M.-H.L.)
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (T.-R.W.); (G.K.)
- Correspondence: (L.-T.Y.); (Y.-G.S.)
| |
Collapse
|
26
|
Sheikh-Assadi M, Naderi R, Kafi M, Fatahi R, Salami SA, Shariati V. Complete chloroplast genome of Lilium ledebourii (Baker) Boiss and its comparative analysis: lights into selective pressure and adaptive evolution. Sci Rep 2022; 12:9375. [PMID: 35672390 PMCID: PMC9174193 DOI: 10.1038/s41598-022-13449-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/24/2022] [Indexed: 01/02/2023] Open
Abstract
Lilium ledebourii (Baker) Boiss is a rare species, which exhibits valuable traits. However, before its genetic diversity and evolutionary were uncovered, its wild resources were jeopardized. Moreover, some ambiguities in phylogenetic relationships of this genus remain unresolved. Therefore, obtaining the whole chloroplast sequences of L. ledebourii and its comparative analysis along with other Lilium species is crucial and pivotal to understanding the evolution of this genus as well as the genetic populations. A multi-scale genome-level analysis, especially selection pressure, was conducted. Detailed third‑generation sequencing and analysis revealed a whole chloroplast genome of 151,884 bp, with an ordinary quadripartite and protected structure comprising 37.0% GC. Overall, 113 different genes were recognized in the chloroplast genome, consisting of 30 distinct tRNA genes, four distinct ribosomal RNAs genes, and 79 unique protein-encoding genes. Here, 3234 SSRs and 2053 complex repeats were identified, and a comprehensive analysis was performed for IR expansion and contraction, and codon usage bias. Moreover, genome-wide sliding window analysis revealed the variability of rpl32-trnL-ccsA, petD-rpoA, ycf1, psbI-trnS-trnG, rps15-ycf1, trnR, trnT-trnL, and trnP-psaJ-rpl33 were higher among the 48 Lilium cp genomes, displaying higher variability of nucleotide in SC regions. Following 1128 pairwise comparisons, ndhB, psbJ, psbZ, and ycf2 exhibit zero synonymous substitution, revealing divergence or genetic restriction. Furthermore, out of 78 protein-coding genes, we found that accD and rpl36 under positive selection: however, at the entire-chloroplast protein scale, the Lilium species have gone through a purifying selection. Also, a new phylogenetic tree for Lilium was rebuilt, and we believe that the Lilium classification is clearer than before. The genetic resources provided here will aid future studies in species identification, population genetics, and Lilium conservation.
Collapse
Affiliation(s)
- Morteza Sheikh-Assadi
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran.
| | - Roohangiz Naderi
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran.
| | - Mohsen Kafi
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran
| | - Reza Fatahi
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran
| | - Seyed Alireza Salami
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj, Iran
| | - Vahid Shariati
- NIGEB Genome Center, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
27
|
Lee S, Vemanna RS, Oh S, Rojas CM, Oh Y, Kaundal A, Kwon T, Lee HK, Senthil-Kumar M, Mysore KS. Functional role of formate dehydrogenase 1 (FDH1) for host and nonhost disease resistance against bacterial pathogens. PLoS One 2022; 17:e0264917. [PMID: 35594245 PMCID: PMC9122214 DOI: 10.1371/journal.pone.0264917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
Nonhost disease resistance is the most common type of plant defense mechanism against potential pathogens. In the present study, the metabolic enzyme formate dehydrogenase 1 (FDH1) was identified to associate with nonhost disease resistance in Nicotiana benthamiana and Arabidopsis thaliana. In Arabidopsis, AtFDH1 was highly upregulated in response to both host and nonhost bacterial pathogens. The Atfdh1 mutants were compromised in nonhost resistance, basal resistance, and gene-for-gene resistance. The expression patterns of salicylic acid (SA) and jasmonic acid (JA) marker genes after pathogen infections in Atfdh1 mutant indicated that both SA and JA are involved in the FDH1-mediated plant defense response to both host and nonhost bacterial pathogens. Previous studies reported that FDH1 localizes to mitochondria, or both mitochondria and chloroplasts. Our results showed that the AtFDH1 mainly localized to mitochondria, and the expression level of FDH1 was drastically increased upon infection with host or nonhost pathogens. Furthermore, we identified the potential co-localization of mitochondria expressing FDH1 with chloroplasts after the infection with nonhost pathogens in Arabidopsis. This finding suggests the possible role of FDH1 in mitochondria and chloroplasts during defense responses against bacterial pathogens in plants.
Collapse
Affiliation(s)
- Seonghee Lee
- Noble Research Institute, LLC, Ardmore, OK, United States of America
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Wimauma, FL, United States of America
| | - Ramu S. Vemanna
- Noble Research Institute, LLC, Ardmore, OK, United States of America
| | - Sunhee Oh
- Noble Research Institute, LLC, Ardmore, OK, United States of America
| | | | - Youngjae Oh
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Wimauma, FL, United States of America
| | - Amita Kaundal
- Noble Research Institute, LLC, Ardmore, OK, United States of America
| | - Taegun Kwon
- Noble Research Institute, LLC, Ardmore, OK, United States of America
| | - Hee-Kyung Lee
- Noble Research Institute, LLC, Ardmore, OK, United States of America
| | | | - Kirankumar S. Mysore
- Noble Research Institute, LLC, Ardmore, OK, United States of America
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, United States of America
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States of America
| |
Collapse
|
28
|
Li JY, Yang C, Tian YY, Liu JX. Regulation of Chloroplast Development and Function at Adverse Temperatures in Plants. PLANT & CELL PHYSIOLOGY 2022; 63:580-591. [PMID: 35141744 DOI: 10.1093/pcp/pcac022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
The chloroplast is essential for photosynthesis, plant growth and development. As semiautonomous organelles, the biogenesis and development of chloroplasts need to be well-regulated during plant growth and stress responses. Low or high ambient temperatures are adverse environmental stresses that affect crop growth and productivity. As sessile organisms, plants regulate the development and function of chloroplasts in a fluctuating temperature environment to maintain normal photosynthesis. This review focuses on the molecular mechanisms and regulatory factors required for chloroplast biogenesis and development under cold or heat stress conditions and highlights the importance of chloroplast gene transcription, RNA metabolism, ribosome function and protein homeostasis essential for chloroplast development under adverse temperature conditions.
Collapse
Affiliation(s)
- Jin-Yu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, Zhejiang 310027, China
| | - Chuang Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, Zhejiang 310027, China
| | - Ying-Ying Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, Zhejiang 310027, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
29
|
Krupinska K, Desel C, Frank S, Hensel G. WHIRLIES Are Multifunctional DNA-Binding Proteins With Impact on Plant Development and Stress Resistance. FRONTIERS IN PLANT SCIENCE 2022; 13:880423. [PMID: 35528945 PMCID: PMC9070903 DOI: 10.3389/fpls.2022.880423] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/24/2022] [Indexed: 06/01/2023]
Abstract
WHIRLIES are plant-specific proteins binding to DNA in plastids, mitochondria, and nucleus. They have been identified as significant components of nucleoids in the organelles where they regulate the structure of the nucleoids and diverse DNA-associated processes. WHIRLIES also fulfil roles in the nucleus by interacting with telomers and various transcription factors, among them members of the WRKY family. While most plants have two WHIRLY proteins, additional WHIRLY proteins evolved by gene duplication in some dicot families. All WHIRLY proteins share a conserved WHIRLY domain responsible for ssDNA binding. Structural analyses revealed that WHIRLY proteins form tetramers and higher-order complexes upon binding to DNA. An outstanding feature is the parallel localization of WHIRLY proteins in two or three cell compartments. Because they translocate from organelles to the nucleus, WHIRLY proteins are excellent candidates for transducing signals between organelles and nucleus to allow for coordinated activities of the different genomes. Developmental cues and environmental factors control the expression of WHIRLY genes. Mutants and plants with a reduced abundance of WHIRLY proteins gave insight into their multiple functionalities. In chloroplasts, a reduction of the WHIRLY level leads to changes in replication, transcription, RNA processing, and DNA repair. Furthermore, chloroplast development, ribosome formation, and photosynthesis are impaired in monocots. In mitochondria, a low level of WHIRLIES coincides with a reduced number of cristae and a low rate of respiration. The WHIRLY proteins are involved in the plants' resistance toward abiotic and biotic stress. Plants with low levels of WHIRLIES show reduced responsiveness toward diverse environmental factors, such as light and drought. Consequently, because such plants are impaired in acclimation, they accumulate reactive oxygen species under stress conditions. In contrast, several plant species overexpressing WHIRLIES were shown to have a higher resistance toward stress and pathogen attacks. By their multiple interactions with organelle proteins and nuclear transcription factors maybe a comma can be inserted here? and their participation in organelle-nucleus communication, WHIRLY proteins are proposed to serve plant development and stress resistance by coordinating processes at different levels. It is proposed that the multifunctionality of WHIRLY proteins is linked to the plasticity of land plants that develop and function in a continuously changing environment.
Collapse
Affiliation(s)
- Karin Krupinska
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christine Desel
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Susann Frank
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Götz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
30
|
Saeid Nia M, Repnik U, Krupinska K, Bilger W. The plastid-nucleus localized DNA-binding protein WHIRLY1 is required for acclimation of barley leaves to high light. PLANTA 2022; 255:84. [PMID: 35279792 PMCID: PMC8918454 DOI: 10.1007/s00425-022-03854-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/11/2022] [Indexed: 05/14/2023]
Abstract
In accordance with a key role of WHIRLY1 in light-acclimation mechanisms, typical features of acclimation to high light, including photosynthesis and leaf morphology, are compromised in WHIRLY1 deficient plants. Acclimation to the environment requires efficient communication between chloroplasts and the nucleus. Previous studies indicated that the plastid-nucleus located WHIRLY1 protein is required for the communication between plastids and the nucleus in situations of high light exposure. To investigate the consequences of WHIRLY1 deficiency on the light acclimation of photosynthesis and leaf anatomy, transgenic barley plants with an RNAi-mediated knockdown of HvWHIRLY1 were compared to wild-type plants when growing at low and high irradiance. While wild-type plants showed the typical light acclimation responses, i.e. higher photosynthetic capacity and thicker leaves, the WHIRLY1 deficient plants were not able to respond to differences in irradiance. The results revealed a systemic role of WHIRLY1 in light acclimation by coordinating responses at the level of the chloroplast and the level of leaf morphology.
Collapse
Affiliation(s)
| | - Urska Repnik
- Central Microscopy, Department of Biology, Christian-Albrechts-University, Kiel, Germany
| | - Karin Krupinska
- Institute of Botany, Christian-Albrechts-University, Kiel, Germany.
| | - Wolfgang Bilger
- Institute of Botany, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
31
|
Chitosan nanomaterials: A prelim of next-generation fertilizers; existing and future prospects. Carbohydr Polym 2022; 288:119356. [DOI: 10.1016/j.carbpol.2022.119356] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 01/20/2023]
|
32
|
Elshikh MS, Ajmal Ali M, Al-Hemaid F, Yong Kim S, Elangbam M, Bahadur Gurung A, Mukherjee P, El-Zaidy M, Lee J. Insights into plastome of Fagonia indica Burm.f. (Zygophyllaceae) : organization, annotation and phylogeny. Saudi J Biol Sci 2022; 29:1313-1321. [PMID: 35280582 PMCID: PMC8913386 DOI: 10.1016/j.sjbs.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/15/2022] Open
Abstract
The enhanced understanding of chloroplast genomics would facilitate various biotechnology applications; however, the chloroplast (cp) genome / plastome characteristics of plants like Fagonia indica Burm.f. (family Zygophyllaceae), which have the capability to grow in extremely hot sand desert, have been rarely understood. The de novo genome sequence of F. indica using the Illumina high-throughput sequencing technology determined 128,379 bp long cp genome, encode 115 unique coding genes. The present study added the evidence of the loss of a copy of the IR in the cp genome of the taxa capable to grow in the hot sand desert. The maximum likelihood analysis revealed two distinct sub-clades i.e. Krameriaceae and Zygophyllaceae of the order Zygophyllales, nested within fabids.
Collapse
Affiliation(s)
- Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad Al-Hemaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Soo Yong Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Meena Elangbam
- Genetics Laboratory, Centre of Advanced Studies in Life Sciences, Manipur University, Canchipur 795 003, India
| | - Arun Bahadur Gurung
- Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong-793022, Meghalaya, India
| | - Prasanjit Mukherjee
- Department of Botany, Kumar Kalidas Memorial College, Pakur-816107, Jharkhand, India
| | - Mohamed El-Zaidy
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Joongku Lee
- Department of Environment and Forest Resources, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
33
|
Zhang Z, Tao M, Shan X, Pan Y, Sun C, Song L, Pei X, Jing Z, Dai Z. Characterization of the complete chloroplast genome of Brassica oleracea var. italica and phylogenetic relationships in Brassicaceae. PLoS One 2022; 17:e0263310. [PMID: 35202392 PMCID: PMC8870505 DOI: 10.1371/journal.pone.0263310] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/18/2022] [Indexed: 11/23/2022] Open
Abstract
Broccoli (Brassica oleracea var. italica) is an important B. oleracea cultivar, with high economic and agronomic value. However, comparative genome analyses are still needed to clarify variation among cultivars and phylogenetic relationships within the family Brassicaceae. Herein, the complete chloroplast (cp) genome of broccoli was generated by Illumina sequencing platform to provide basic information for genetic studies and to establish phylogenetic relationships within Brassicaceae. The whole genome was 153,364 bp, including two inverted repeat (IR) regions of 26,197 bp each, separated by a small single copy (SSC) region of 17,834 bp and a large single copy (LSC) region of 83,136 bp. The total GC content of the entire chloroplast genome accounts for 36%, while the GC content in each region of SSC,LSC, and IR accounts for 29.1%, 34.15% and 42.35%, respectively. The genome harbored 133 genes, including 88 protein-coding genes, 37 tRNAs, and 8 rRNAs, with 17 duplicates in IRs. The most abundant amino acid was leucine and the least abundant was cysteine. Codon usage analyses revealed a bias for A/T-ending codons. A total of 35 repeat sequences and 92 simple sequence repeats were detected, and the SC-IR boundary regions were variable between the seven cp genomes. A phylogenetic analysis suggested that broccoli is closely related to Brassica oleracea var. italica MH388764.1, Brassica oleracea var. italica MH388765.1, and Brassica oleracea NC_0441167.1. Our results are expected to be useful for further species identification, population genetics analyses, and biological research on broccoli.
Collapse
Affiliation(s)
- Zhenchao Zhang
- Department of Vegetables and Flowers, Zhenjiang Institute of Agricultural Sciences, Jurong, China
| | - Meiqi Tao
- Department of Vegetables and Flowers, Zhenjiang Institute of Agricultural Sciences, Jurong, China
| | - Xi Shan
- Department of Vegetables and Flowers, Zhenjiang Institute of Agricultural Sciences, Jurong, China
| | - Yongfei Pan
- Department of Vegetables and Flowers, Zhenjiang Institute of Agricultural Sciences, Jurong, China
| | - Chunqing Sun
- Department of Vegetables and Flowers, Zhenjiang Institute of Agricultural Sciences, Jurong, China
| | - Lixiao Song
- Department of Vegetables, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xuli Pei
- College of Agriculture and Life Science, Kunming University, Kunming, China
| | - Zange Jing
- College of Agriculture and Life Science, Kunming University, Kunming, China
| | - Zhongliang Dai
- Department of Vegetables and Flowers, Zhenjiang Institute of Agricultural Sciences, Jurong, China
| |
Collapse
|
34
|
Breeze E, Mullineaux PM. The Passage of H 2O 2 from Chloroplasts to Their Associated Nucleus during Retrograde Signalling: Reflections on the Role of the Nuclear Envelope. PLANTS (BASEL, SWITZERLAND) 2022; 11:552. [PMID: 35214888 PMCID: PMC8876790 DOI: 10.3390/plants11040552] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 05/05/2023]
Abstract
The response of chloroplasts to adverse environmental cues, principally increases in light intensity, stimulates chloroplast-to-nucleus retrograde signalling, which leads to the induction of immediate protective responses and longer-term acclimation. Hydrogen peroxide (H2O2), generated during photosynthesis, is proposed to both initiate and transduce a retrograde signal in response to photoinhibitory light intensities. Signalling specificity achieved by chloroplast-sourced H2O2 for signal transduction may be dependent upon the oft-observed close association of a proportion of these organelles with the nucleus. In this review, we consider more precisely the nature of the close association between a chloroplast appressed to the nucleus and the requirement for H2O2 to cross both the double membranes of the chloroplast and nuclear envelopes. Of particular relevance is that the endoplasmic reticulum (ER) has close physical contact with chloroplasts and is contiguous with the nuclear envelope. Therefore, the perinuclear space, which transducing H2O2 molecules would have to cross, may have an oxidising environment the same as the ER lumen. Based on studies in animal cells, the ER lumen may be a significant source of H2O2 in plant cells arising from the oxidative folding of proteins. If this is the case, then there is potential for the ER lumen/perinuclear space to be an important location to modify chloroplast-to-nucleus H2O2 signal transduction and thereby introduce modulation of it by additional different environmental cues. These would include for example, heat stress and pathogen infection, which induce the unfolded protein response characterised by an increased H2O2 level in the ER lumen.
Collapse
Affiliation(s)
- Emily Breeze
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK;
| | - Philip M. Mullineaux
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| |
Collapse
|
35
|
Trinh MDL, Masuda S. Chloroplast pH Homeostasis for the Regulation of Photosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:919896. [PMID: 35693183 PMCID: PMC9174948 DOI: 10.3389/fpls.2022.919896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/04/2022] [Indexed: 05/16/2023]
Abstract
The pH of various chloroplast compartments, such as the thylakoid lumen and stroma, is light-dependent. Light illumination induces electron transfer in the photosynthetic apparatus, coupled with proton translocation across the thylakoid membranes, resulting in acidification and alkalization of the thylakoid lumen and stroma, respectively. Luminal acidification is crucial for inducing regulatory mechanisms that protect photosystems against photodamage caused by the overproduction of reactive oxygen species (ROS). Stromal alkalization activates enzymes involved in the Calvin-Benson-Bassham (CBB) cycle. Moreover, proton translocation across the thylakoid membranes generates a proton gradient (ΔpH) and an electric potential (ΔΨ), both of which comprise the proton motive force (pmf) that drives ATP synthase. Then, the synthesized ATP is consumed in the CBB cycle and other chloroplast metabolic pathways. In the dark, the pH of both the chloroplast stroma and thylakoid lumen becomes neutral. Despite extensive studies of the above-mentioned processes, the molecular mechanisms of how chloroplast pH can be maintained at proper levels during the light phase for efficient activation of photosynthesis and other metabolic pathways and return to neutral levels during the dark phase remain largely unclear, especially in terms of the precise control of stromal pH. The transient increase and decrease in chloroplast pH upon dark-to-light and light-to-dark transitions have been considered as signals for controlling other biological processes in plant cells. Forward and reverse genetic screening approaches recently identified new plastid proteins involved in controlling ΔpH and ΔΨ across the thylakoid membranes and chloroplast proton/ion homeostasis. These proteins have been conserved during the evolution of oxygenic phototrophs and include putative photosynthetic protein complexes, proton transporters, and/or their regulators. Herein, we summarize the recently identified protein players that control chloroplast pH and influence photosynthetic efficiency in plants.
Collapse
Affiliation(s)
- Mai Duy Luu Trinh
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- *Correspondence: Shinji Masuda,
| |
Collapse
|
36
|
Suescún-Bolívar LP, Thomé PE. The specific inhibition of glycerol synthesis and the phosphorylation of a putative MAPK give insight into the mechanism of osmotic sensing in a dinoflagellate symbiont. J Eukaryot Microbiol 2021; 69:e12883. [PMID: 34936156 DOI: 10.1111/jeu.12883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022]
Abstract
Signaling pathways are fundamental for the establishment and maintenance of diverse symbioses. The symbiosis of cnidarians and dinoflagellate algae is the foundation for the ecological success of coral reefs, involving the transfer of photosynthetic products from symbiont to host. However, signal transduction pathways for this symbiosis remain uncharacterized. Cultured and natural cnidarian symbionts can produce glycerol, one of the main translocated photosynthates. Here, we investigate whether a signal transduction pathway may be involved in inducing glycerol synthesis in cultured symbionts under an osmotic stress model. We evaluated the effect of specific inhibitors of the main transduction pathways, p38, JNK, and ERK 1/2 in Brevolium minutum, the symbiont of the Aiptasia model system. We found that glycerol production and the specific activity of the enzyme Gpdh were selectively inhibited by a p38 MAPK inhibitor. Additionally, the phosphorylation of a putative p38-like protein was rapidly detected. Finally, we studied the presence of each of the components of the p38 MAPK pathway in silico, in genomes and transcriptomes reported up to date for different symbiont types. We propose a model for the arrangement of this pathway in the family of dinoflagellate symbionts known as Symbiodiniaceae.
Collapse
Affiliation(s)
- L P Suescún-Bolívar
- Universidad Nacional Autónoma de México Instituto de Ciencias del Mar y Limnología Unidad Académica de Sistemas Arrecifales Puerto Morelos, Puerto Morelos, Mexico
| | - P E Thomé
- Universidad Nacional Autónoma de México Instituto de Ciencias del Mar y Limnología Unidad Académica de Sistemas Arrecifales Puerto Morelos, Puerto Morelos, Mexico
| |
Collapse
|
37
|
Mahapatra K, Banerjee S, De S, Mitra M, Roy P, Roy S. An Insight Into the Mechanism of Plant Organelle Genome Maintenance and Implications of Organelle Genome in Crop Improvement: An Update. Front Cell Dev Biol 2021; 9:671698. [PMID: 34447743 PMCID: PMC8383295 DOI: 10.3389/fcell.2021.671698] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022] Open
Abstract
Besides the nuclear genome, plants possess two small extra chromosomal genomes in mitochondria and chloroplast, respectively, which contribute a small fraction of the organelles’ proteome. Both mitochondrial and chloroplast DNA have originated endosymbiotically and most of their prokaryotic genes were either lost or transferred to the nuclear genome through endosymbiotic gene transfer during the course of evolution. Due to their immobile nature, plant nuclear and organellar genomes face continuous threat from diverse exogenous agents as well as some reactive by-products or intermediates released from various endogenous metabolic pathways. These factors eventually affect the overall plant growth and development and finally productivity. The detailed mechanism of DNA damage response and repair following accumulation of various forms of DNA lesions, including single and double-strand breaks (SSBs and DSBs) have been well documented for the nuclear genome and now it has been extended to the organelles also. Recently, it has been shown that both mitochondria and chloroplast possess a counterpart of most of the nuclear DNA damage repair pathways and share remarkable similarities with different damage repair proteins present in the nucleus. Among various repair pathways, homologous recombination (HR) is crucial for the repair as well as the evolution of organellar genomes. Along with the repair pathways, various other factors, such as the MSH1 and WHIRLY family proteins, WHY1, WHY2, and WHY3 are also known to be involved in maintaining low mutation rates and structural integrity of mitochondrial and chloroplast genome. SOG1, the central regulator in DNA damage response in plants, has also been found to mediate endoreduplication and cell-cycle progression through chloroplast to nucleus retrograde signaling in response to chloroplast genome instability. Various proteins associated with the maintenance of genome stability are targeted to both nuclear and organellar compartments, establishing communication between organelles as well as organelles and nucleus. Therefore, understanding the mechanism of DNA damage repair and inter compartmental crosstalk mechanism in various sub-cellular organelles following induction of DNA damage and identification of key components of such signaling cascades may eventually be translated into strategies for crop improvement under abiotic and genotoxic stress conditions. This review mainly highlights the current understanding as well as the importance of different aspects of organelle genome maintenance mechanisms in higher plants.
Collapse
Affiliation(s)
- Kalyan Mahapatra
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| | - Samrat Banerjee
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| | - Sayanti De
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| | - Mehali Mitra
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| | - Pinaki Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| | - Sujit Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| |
Collapse
|
38
|
Pivato M, Ballottari M. Chlamydomonas reinhardtii cellular compartments and their contribution to intracellular calcium signalling. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5312-5335. [PMID: 34077536 PMCID: PMC8318260 DOI: 10.1093/jxb/erab212] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/11/2021] [Indexed: 05/12/2023]
Abstract
Calcium (Ca2+)-dependent signalling plays a well-characterized role in the response to different environmental stimuli, in both plant and animal cells. In the model organism for green algae, Chlamydomonas reinhardtii, Ca2+ signals were reported to have a crucial role in different physiological processes, such as stress responses, photosynthesis, and flagella functions. Recent reports identified the underlying components of the Ca2+ signalling machinery at the level of specific subcellular compartments and reported in vivo imaging of cytosolic Ca2+ concentration in response to environmental stimuli. The characterization of these Ca2+-related mechanisms and proteins in C. reinhardtii is providing knowledge on how microalgae can perceive and respond to environmental stimuli, but also on how this Ca2+ signalling machinery has evolved. Here, we review current knowledge on the cellular mechanisms underlying the generation, shaping, and decoding of Ca2+ signals in C. reinhardtii, providing an overview of the known and possible molecular players involved in the Ca2+ signalling of its different subcellular compartments. The advanced toolkits recently developed to measure time-resolved Ca2+ signalling in living C. reinhardtii cells are also discussed, suggesting how they can improve the study of the role of Ca2+ signals in the cellular response of microalgae to environmental stimuli.
Collapse
Affiliation(s)
- Matteo Pivato
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Matteo Ballottari
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
39
|
Liu J, Jiang M, Chen H, Liu Y, Liu C, Wu W. Comparative genome analysis revealed gene inversions, boundary expansions and contractions, and gene loss in the Stemona sessilifolia (Miq.) Miq. chloroplast genome. PLoS One 2021; 16:e0247736. [PMID: 34143785 PMCID: PMC8213164 DOI: 10.1371/journal.pone.0247736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/19/2021] [Indexed: 11/19/2022] Open
Abstract
Stemona sessilifolia (Miq.) Miq., commonly known as Baibu, is one of the most popular herbal medicines in Asia. In the Chinese Pharmacopoeia, Baibu has multiple authentic sources and there are many similar herbs sold as Baibu in herbal medicine markets. The existence of counterfeits of Baibu brings challenges to its identification. To assist in its accurate identification, we sequenced and analyzed the complete chloroplast genome of S. sessilifolia using next-generation sequencing technology. The genome was found to be 154,037 bp in length, possessing a typical quadripartite structure consisting of a pair of inverted repeats (IRs: 27,090 bp) separated by a large single copy (LSC: 81,949 bp) and a small single copy (SSC: 17,908 bp). A total of 112 unique genes were identified, including 80 protein-coding, 28 transfer RNA and four ribosomal RNA genes. In addition, 45 tandem, 27 forward, 23 palindromic and 104 simple sequence repeats were detected in the genome by repeated analysis. Compared with its counterfeits (Asparagus officinalis and Carludovica palmata) we found that IR expansion and SSC contraction events of S. sessilifolia resulted in two copies of the rpl22 gene in the IR regions and a partial duplication of the ndhF gene in the SSC region. An approximately 3-kb-long inversion was also identified in the LSC region, leading to the petA and cemA genes being presented in the complementary strand of the chloroplast DNA molecule. Comparative analysis revealed some highly variable regions, including trnF-GAA_ndhJ, atpB_rbcL, rps15_ycf1, trnG-UCC_trnR-UCU, ndhF_rpl32, accD_psaI, rps2_rpoC2, trnS-GCU_trnG-UCC, trnT-UGU_trnL-UAA and rps16_trnQ-UUG. Finally, gene loss events were investigated in the context of phylogenetic relationships. In summary, the complete plastome of S. sessilifolia will provide valuable information for the distinction between Baibu and its counterfeits and assist in elucidating the evolution of S. sessilifolia.
Collapse
Affiliation(s)
- Jingting Liu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P. R. China
| | - Mei Jiang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P. R. China
| | - Haimei Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P. R. China
| | - Yu Liu
- Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China
| | - Chang Liu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P. R. China
| | - Wuwei Wu
- Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China
| |
Collapse
|
40
|
Polymorphism in the Chloroplast ATP Synthase Beta-Subunit Is Associated with a Maternally Inherited Enhanced Cold Recovery in Cucumber. PLANTS 2021; 10:plants10061092. [PMID: 34072439 PMCID: PMC8226925 DOI: 10.3390/plants10061092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022]
Abstract
Cucumber (Cucumis sativus L.) is a warm-season crop that is sensitive to chilling temperatures and a maternally inherited cold tolerance exists in the heirloom cultivar 'Chipper' (CH). Because the organelles of cucumber show differential transmission (maternal for chloroplast and paternal for mitochondrion), this cold tolerance is hypothesized to be chloroplast-associated. The goal of this research was to characterize the cold tolerant phenotype from CH and determine its genetic basis. Doubled haploid (DH) lines were produced from CH and cold susceptible cucumbers, reciprocal hybrids with identical nuclear genotypes were produced, and plants were subjected to cold treatments under lights at 4 °C for 5.5 h. Hybrid plants with CH as the maternal parent had significantly higher fresh and dry weights 14 days after cold treatment compared to the reciprocal hybrid, revealing an enhanced cold recovery phenotype maternally conferred by CH. Results from analyses of the nuclear transcriptome and reactive oxygen species (ROS) between reciprocal hybrids were consistent with the cold recovery phenotype. Sequencing of the chloroplast genome and transcriptome of the DH parents and reciprocal hybrids, respectively, revealed one maternally transmitted non-synonymous single nucleotide polymorphism (SNP) in the chloroplast F1FO-ATP synthase (CF1FO-ATPase) beta-subunit gene (atpB) of CH which confers an amino acid change from threonine to arginine. Protein modeling revealed that this change is located at the interface of the alpha- and beta-subunits in the CF1FO-ATPase complex. Polymorphisms in the CF1FO-ATPase complex have been associated with stress tolerances in other plants, and selection for or creation of polymorphic beta-subunit proteins by chloroplast transformation or gene editing could condition improved recovery from cold stress in plants.
Collapse
|
41
|
Iqbal Z, Iqbal MS, Hashem A, Abd_Allah EF, Ansari MI. Plant Defense Responses to Biotic Stress and Its Interplay With Fluctuating Dark/Light Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:631810. [PMID: 33763093 PMCID: PMC7982811 DOI: 10.3389/fpls.2021.631810] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/08/2021] [Indexed: 05/24/2023]
Abstract
Plants are subjected to a plethora of environmental cues that cause extreme losses to crop productivity. Due to fluctuating environmental conditions, plants encounter difficulties in attaining full genetic potential for growth and reproduction. One such environmental condition is the recurrent attack on plants by herbivores and microbial pathogens. To surmount such attacks, plants have developed a complex array of defense mechanisms. The defense mechanism can be either preformed, where toxic secondary metabolites are stored; or can be inducible, where defense is activated upon detection of an attack. Plants sense biotic stress conditions, activate the regulatory or transcriptional machinery, and eventually generate an appropriate response. Plant defense against pathogen attack is well understood, but the interplay and impact of different signals to generate defense responses against biotic stress still remain elusive. The impact of light and dark signals on biotic stress response is one such area to comprehend. Light and dark alterations not only regulate defense mechanisms impacting plant development and biochemistry but also bestow resistance against invading pathogens. The interaction between plant defense and dark/light environment activates a signaling cascade. This signaling cascade acts as a connecting link between perception of biotic stress, dark/light environment, and generation of an appropriate physiological or biochemical response. The present review highlights molecular responses arising from dark/light fluctuations vis-à-vis elicitation of defense mechanisms in plants.
Collapse
Affiliation(s)
- Zahra Iqbal
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | | | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza, Egypt
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
42
|
Dong F, Lin Z, Lin J, Ming R, Zhang W. Chloroplast Genome of Rambutan and Comparative Analyses in Sapindaceae. PLANTS 2021; 10:plants10020283. [PMID: 33540810 PMCID: PMC7912957 DOI: 10.3390/plants10020283] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 02/03/2023]
Abstract
Rambutan (Nephelium lappaceum L.) is an important fruit tree that belongs to the family Sapindaceae and is widely cultivated in Southeast Asia. We sequenced its chloroplast genome for the first time and assembled 161,321 bp circular DNA. It is characterized by a typical quadripartite structure composed of a large (86,068 bp) and small (18,153 bp) single-copy region interspersed by two identical inverted repeats (IRs) (28,550 bp). We identified 132 genes including 78 protein-coding genes, 29 tRNA and 4 rRNA genes, with 21 genes duplicated in the IRs. Sixty-three simple sequence repeats (SSRs) and 98 repetitive sequences were detected. Twenty-nine codons showed biased usage and 49 potential RNA editing sites were predicted across 18 protein-coding genes in the rambutan chloroplast genome. In addition, coding gene sequence divergence analysis suggested that ccsA, clpP, rpoA, rps12, psbJ and rps19 were under positive selection, which might reflect specific adaptations of N. lappaceum to its particular living environment. Comparative chloroplast genome analyses from nine species in Sapindaceae revealed that a higher similarity was conserved in the IR regions than in the large single-copy (LSC) and small single-copy (SSC) regions. The phylogenetic analysis showed that N. lappaceum chloroplast genome has the closest relationship with that of Pometia tomentosa. The understanding of the chloroplast genomics of rambutan and comparative analysis of Sapindaceae species would provide insight into future research on the breeding of rambutan and Sapindaceae evolutionary studies.
Collapse
Affiliation(s)
- Fei Dong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; or
| | - Zhicong Lin
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; or
| | - Jing Lin
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, Fuzhou 350002, China; or
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence: (R.M.); (W.Z.); Tel.: +1-217-333-1221 (R.M.); Tel.: +86-15-8006-2379 (W.Z.)
| | - Wenping Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, Fuzhou 350002, China; or
- Correspondence: (R.M.); (W.Z.); Tel.: +1-217-333-1221 (R.M.); Tel.: +86-15-8006-2379 (W.Z.)
| |
Collapse
|
43
|
Razi K, Muneer S. Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Crit Rev Biotechnol 2021; 41:669-691. [PMID: 33525946 DOI: 10.1080/07388551.2021.1874280] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Drought stress is one of the most adverse abiotic stresses that hinder plants' growth and productivity, threatening sustainable crop production. It impairs normal growth, disturbs water relations and reduces water-use efficiency in plants. However, plants have evolved many physiological and biochemical responses at the cellular and organism levels, in order to cope with drought stress. Photosynthesis, which is considered one of the most crucial biological processes for survival of plants, is greatly affected by drought stress. A gradual decrease in CO2 assimilation rates, reduced leaf size, stem extension and root proliferation under drought stress, disturbs plant water relations, reducing water-use efficiency, disrupts photosynthetic pigments and reduces the gas exchange affecting the plants adversely. In such conditions, the chloroplast, organelle responsible for photosynthesis, is found to counteract the ill effects of drought stress by its critical involvement as a sensor of changes occurring in the environment, as the first process that drought stress affects is photosynthesis. Beside photosynthesis, chloroplasts carry out primary metabolic functions such as the biosynthesis of starch, amino acids, lipids, and tetrapyroles, and play a central role in the assimilation of nitrogen and sulfur. Because the chloroplasts are central organelles where the photosynthetic reactions take place, modifications in their physiology and protein pools are expected in response to the drought stress-induced variations in leaf gas exchanges and the accumulation of ROS. Higher expression levels of various transcription factors and other proteins including heat shock-related protein, LEA proteins seem to be regulating the heat tolerance mechanisms. However, several aspects of plastid alterations, following a water deficit environment are still poorly characterized. Since plants adapt to various stress tolerance mechanisms to respond to drought stress, understanding mechanisms of drought stress tolerance in plants will lead toward the development of drought tolerance in crop plants. This review throws light on major droughts stress-induced molecular/physiological mechanisms in response to severe and prolonged drought stress and addresses the molecular response of chloroplasts in common vegetable crops. It further highlights research gaps, identifying unexplored domains and suggesting recommendations for future investigations.
Collapse
Affiliation(s)
- Kaukab Razi
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India.,School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sowbiya Muneer
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
44
|
Anand A, Pandi G. Noncoding RNA: An Insight into Chloroplast and Mitochondrial Gene Expressions. Life (Basel) 2021; 11:life11010049. [PMID: 33450961 PMCID: PMC7828403 DOI: 10.3390/life11010049] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 12/22/2022] Open
Abstract
Regulation of gene expression in any biological system is a complex process with many checkpoints at the transcriptional, post-transcriptional and translational levels. The control mechanism is mediated by various protein factors, secondary metabolites and a newly included regulatory member, i.e., noncoding RNAs (ncRNAs). It is known that ncRNAs modulate the mRNA or protein profiles of the cell depending on the degree of complementary and context of the microenvironment. In plants, ncRNAs are essential for growth and development in normal conditions by controlling various gene expressions and have emerged as a key player to guard plants during adverse conditions. In order to have smooth functioning of the plants under any environmental pressure, two very important DNA-harboring semi-autonomous organelles, namely, chloroplasts and mitochondria, are considered as main players. These organelles conduct the most crucial metabolic pathways that are required to maintain cell homeostasis. Thus, it is imperative to explore and envisage the molecular machineries responsible for gene regulation within the organelles and their coordination with nuclear transcripts. Therefore, the present review mainly focuses on ncRNAs origination and their gene regulation in chloroplasts and plant mitochondria.
Collapse
Affiliation(s)
- Asha Anand
- Correspondence: (A.A.); (G.P.); Tel.: +91-452-245-8230 (G.P.)
| | - Gopal Pandi
- Correspondence: (A.A.); (G.P.); Tel.: +91-452-245-8230 (G.P.)
| |
Collapse
|
45
|
Favier A, Gans P, Boeri Erba E, Signor L, Muthukumar SS, Pfannschmidt T, Blanvillain R, Cobessi D. The Plastid-Encoded RNA Polymerase-Associated Protein PAP9 Is a Superoxide Dismutase With Unusual Structural Features. FRONTIERS IN PLANT SCIENCE 2021; 12:668897. [PMID: 34276730 PMCID: PMC8278866 DOI: 10.3389/fpls.2021.668897] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/28/2021] [Indexed: 05/09/2023]
Abstract
In Angiosperms, the plastid-encoded RNA polymerase (PEP) is a multimeric enzyme, essential for the proper expression of the plastid genome during chloroplast biogenesis. It is especially required for the light initiated expression of photosynthesis genes and the subsequent build-up of the photosynthetic apparatus. The PEP complex is composed of a prokaryotic-type core of four plastid-encoded subunits and 12 nuclear-encoded PEP-associated proteins (PAPs). Among them, there are two iron superoxide dismutases, FSD2/PAP9 and FSD3/PAP4. Superoxide dismutases usually are soluble enzymes not bound into larger protein complexes. To investigate this unusual feature, we characterized PAP9 using molecular genetics, fluorescence microscopy, mass spectrometry, X-ray diffraction, and solution-state NMR. Despite the presence of a predicted nuclear localization signal within the sequence of the predicted chloroplast transit peptide, PAP9 was mainly observed within plastids. Mass spectrometry experiments with the recombinant Arabidopsis PAP9 suggested that monomers and dimers of PAP9 could be associated to the PEP complex. In crystals, PAP9 occurred as a dimeric enzyme that displayed a similar fold to that of the FeSODs or manganese SOD (MnSODs). A zinc ion, instead of the expected iron, was found to be penta-coordinated with a trigonal-bipyramidal geometry in the catalytic center of the recombinant protein. The metal coordination involves a water molecule and highly conserved residues in FeSODs. Solution-state NMR and DOSY experiments revealed an unfolded C-terminal 34 amino-acid stretch in the stand-alone protein and few internal residues interacting with the rest of the protein. We hypothesize that this C-terminal extension had appeared during evolution as a distinct feature of the FSD2/PAP9 targeting it to the PEP complex. Close vicinity to the transcriptional apparatus may allow for the protection against the strongly oxidizing aerial environment during plant conquering of terrestrial habitats.
Collapse
Affiliation(s)
- Adrien Favier
- Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Pierre Gans
- Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | | | - Luca Signor
- Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | | | | | - Robert Blanvillain
- Université Grenoble-Alpes, CNRS, CEA, INRA, IRIG-LPCV, Grenoble, France
- *Correspondence: Robert Blanvillain,
| | - David Cobessi
- Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
- David Cobessi,
| |
Collapse
|
46
|
Zhao D, Wang H, Chen S, Yu D, Reiter RJ. Phytomelatonin: An Emerging Regulator of Plant Biotic Stress Resistance. TRENDS IN PLANT SCIENCE 2021; 26:70-82. [PMID: 32896490 DOI: 10.1016/j.tplants.2020.08.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/14/2020] [Accepted: 08/14/2020] [Indexed: 05/06/2023]
Abstract
Melatonin has diverse functions in plant development and stress tolerance, with recent evidence showing a beneficial role in plant biotic stress tolerance. It has been hypothesized that pathogenic invasion causes the immediate generation of melatonin, reactive oxygen species (ROS), and reactive nitrogen species (RNS), with these being mutually dependent, forming the integrative melatonin-ROS-RNS feedforward loop. Here we discuss how the loop, possibly located in the mitochondria and chloroplasts, maximizes disease resistance in the early pathogen ingress stage, providing on-site protection. We also review how melatonin interacts with phytohormone signaling pathways to mediate defense responses and discuss the evolutionary context from the beginnings of the melatonin receptor-mitogen-activated protein kinase (MAPK) cascade in unicellular green algae, followed by the occurrence of phytohormone pathways in land plants.
Collapse
Affiliation(s)
- Dake Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, School of Ecology and Environmental Science, Yunnan University, Kunming, China.
| | - Houping Wang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Suiyun Chen
- Biocontrol Engineering Research Center of Plant Disease and Pest, Biocontrol Engineering Research Center of Crop Disease and Pest, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio (UT Health), San Antonio, TX, USA.
| |
Collapse
|
47
|
Wang L, Liang J, Sa W, Wang L. Sequencing and comparative analysis of the chloroplast genome of Ribes odoratum provide insights for marker development and phylogenetics in Ribes. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:81-92. [PMID: 33627964 PMCID: PMC7873140 DOI: 10.1007/s12298-021-00932-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/10/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED Ribes odoratum, commonly known as clove currant, is a perennial deciduous shrub noted for its long-lasting fragrant flowers and edible fruits. Owing to its ornamental values, this species has been widely used in city gardening and urban landscaping. Here, the complete cp genome of R. odoratum was de novo assembled for the first time. The plastome is 157,152 bp in length, with a GC content of 38.2%. The cp genome featured a typical quadripartite structure, consisting of a pair of inverted repeat regions of 25,961 bp, separated by a large single copy region of 86,896 bp, and a small single copy region of 18,333 bp. A total of 131 genes were annotated in the plastome, including 86 protein coding genes, 37 tRNA genes, and 8 rRNA genes. 56 SSRs were identified, among which, 82.35% were located in the intergenic regions. A strong A/T bias in base composition was observed in these cpSSRs. In addition, 49 repeats of different sizes and types were also found in the plastome. Through comparison, seven divergence hotspots were identified between the cp genomes of R. odoratum and R. fasciculatum var. chinense. Sequences of these divergent regions could be developed as potential markers for species delimitation in further studies. We re-investigated the relationship aomong 32 Saxifragales species through plastome-based phylogenywhich revealed that R. odoratum as a sister of R. fasciculatum var. chinense. Thus, our study provides genomic resources and valuable reference for marker development and phylogenomics in Ribes. SUPPLEMENTARY INFORMATION The online version of this article (10.1007/s12298-021-00932-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Le Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi’ning, 810016 China
- Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, Xi’ning, 810016 China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xi’ning, 810016 China
- Qinghai Plateau Key Laboratory of Tree Genetics and Breeding, Xi’ning, 810016 Qinghai China
| | - Jian Liang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi’ning, 810016 China
- Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, Xi’ning, 810016 China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xi’ning, 810016 China
- Qinghai Plateau Key Laboratory of Tree Genetics and Breeding, Xi’ning, 810016 Qinghai China
| | - Wei Sa
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi’ning, 810016 China
| | - Li Wang
- Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, Xi’ning, 810016 China
- Qinghai Plateau Key Laboratory of Tree Genetics and Breeding, Xi’ning, 810016 Qinghai China
| |
Collapse
|
48
|
Chamorro-Flores A, Tiessen-Favier A, Gregorio-Jorge J, Villalobos-López MA, Guevara-García ÁA, López-Meyer M, Arroyo-Becerra A. High levels of glucose alter Physcomitrella patens metabolism and trigger a differential proteomic response. PLoS One 2020; 15:e0242919. [PMID: 33275616 PMCID: PMC7717569 DOI: 10.1371/journal.pone.0242919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/11/2020] [Indexed: 11/18/2022] Open
Abstract
Sugars act not only as substrates for plant metabolism, but also have a pivotal role in signaling pathways. Glucose signaling has been widely studied in the vascular plant Arabidopsis thaliana, but it has remained unexplored in non-vascular species such as Physcomitrella patens. To investigate P. patens response to high glucose treatment, we explored the dynamic changes in metabolism and protein population by applying a metabolomic fingerprint analysis (DIESI-MS), carbohydrate and chlorophyll quantification, Fv/Fm determination and label-free untargeted proteomics. Glucose feeding causes specific changes in P. patens metabolomic fingerprint, carbohydrate contents and protein accumulation, which is clearly different from those of osmotically induced responses. The maximal rate of PSII was not affected although chlorophyll decreased in both treatments. The biological process, cellular component, and molecular function gene ontology (GO) classifications of the differentially expressed proteins indicate the translation process is the most represented category in response to glucose, followed by photosynthesis, cellular response to oxidative stress and protein refolding. Importantly, although several proteins have high fold changes, these proteins have no predicted identity. The most significant discovery of our study at the proteome level is that high glucose increase abundance of proteins related to the translation process, which was not previously evidenced in non-vascular plants, indicating that regulation by glucose at the translational level is a partially conserved response in both plant lineages. To our knowledge, this is the first time that metabolome fingerprint and proteomic analyses are performed after a high sugar treatment in non-vascular plants. These findings unravel evolutionarily shared and differential responses between vascular and non-vascular plants.
Collapse
Affiliation(s)
- Alejandra Chamorro-Flores
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (CIBA-IPN), Tepetitla de Lardizábal, Tlaxcala, México
| | - Axel Tiessen-Favier
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados (CINVESTAV Unidad Irapuato), Irapuato, Guanajuato, México
| | - Josefat Gregorio-Jorge
- Consejo Nacional de Ciencia y Tecnología, Instituto Politécnico Nacional-Centro de Investigación en Biotecnología Aplicada (CIBA-IPN), Ciudad de México, México
| | - Miguel Angel Villalobos-López
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (CIBA-IPN), Tepetitla de Lardizábal, Tlaxcala, México
| | - Ángel Arturo Guevara-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (IBT-UNAM), Cuernavaca, Morelos, México
| | - Melina López-Meyer
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Instituto Politécnico Nacional (CIIDIR-IPN Unidad Sinaloa), Guasave, Sinaloa, México
| | - Analilia Arroyo-Becerra
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (CIBA-IPN), Tepetitla de Lardizábal, Tlaxcala, México
| |
Collapse
|
49
|
Lin W, Zhang H, Huang D, Schenke D, Cai D, Wu B, Miao Y. Dual-Localized WHIRLY1 Affects Salicylic Acid Biosynthesis via Coordination of ISOCHORISMATE SYNTHASE1, PHENYLALANINE AMMONIA LYASE1, and S-ADENOSYL-L-METHIONINE-DEPENDENT METHYLTRANSFERASE1. PLANT PHYSIOLOGY 2020; 184:1884-1899. [PMID: 32900979 PMCID: PMC7723104 DOI: 10.1104/pp.20.00964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/25/2020] [Indexed: 05/11/2023]
Abstract
Salicylic acid (SA) influences developmental senescence and is spatiotemporally controlled by various mechanisms, including biosynthesis, transport, and conjugate formation. Altered localization of Arabidopsis WHIRLY1 (WHY1), a repressor of leaf natural senescence, in the nucleus or chloroplast causes a perturbation in SA homeostasis, resulting in adverse plant senescence phenotypes. WHY1 loss-of-function mutation resulted in SA peaking 5 d earlier compared to wild-type plants, which accumulated SA at 42 d after germination. SA accumulation coincided with an early leaf-senescence phenotype, which could be prevented by ectopic expression of the nuclear WHY1 isoform (nWHY1). However, expressing the plastid WHY1 isoform (pWHY1) greatly enhanced cellular SA levels. Transcriptome analysis in the WHY1 loss-of-function mutant background following expression of either pWHY1 or nWHY1 indicated that hormone metabolism-related genes were most significantly altered. The pWHY1 isoform predominantly affected stress-related gene expression, whereas nWHY1 primarily controlled developmental gene expression. Chromatin immunoprecipitation-quantitative PCR assays indicated that nWHY1 directly binds to the promoter region of isochorismate synthase1 (ICS1), thus activating its expression at later developmental stages, but that it indirectly activates S-adenosyl- l -Met-dependent methyltransferase1 (BSMT1) expression via ethylene response factor 109 (ERF109). Moreover, nWHY1 repressed expression of Phe ammonia lyase-encoding gene (PAL1) via R2R3-MYB member 15 (MYB15) during the early stages of development. Interestingly, rising SA levels exerted a feedback effect by inducing nWHY1 modification and pWHY1 accumulation. Thus, the alteration of WHY1 organelle isoforms and the feedback of SA are involved in a circularly integrated regulatory network during developmental or stress-induced senescence in Arabidopsis.
Collapse
Affiliation(s)
- Wenfang Lin
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Hong Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Dongmei Huang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Dirk Schenke
- Department of Molecular Phytopathology, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Daguang Cai
- Department of Molecular Phytopathology, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Binghua Wu
- College of Horticulture Science, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| |
Collapse
|
50
|
Kuźniak E, Kopczewski T. The Chloroplast Reactive Oxygen Species-Redox System in Plant Immunity and Disease. FRONTIERS IN PLANT SCIENCE 2020; 11:572686. [PMID: 33281842 PMCID: PMC7688986 DOI: 10.3389/fpls.2020.572686] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/27/2020] [Indexed: 05/29/2023]
Abstract
Pathogen infections limit plant growth and productivity, thus contributing to crop losses. As the site of photosynthesis, the chloroplast is vital for plant productivity. This organelle, communicating with other cellular compartments challenged by infection (e.g., apoplast, mitochondria, and peroxisomes), is also a key battlefield in the plant-pathogen interaction. Here, we focus on the relation between reactive oxygen species (ROS)-redox signaling, photosynthesis which is governed by redox control, and biotic stress response. We also discuss the pathogen strategies to weaken the chloroplast-mediated defense responses and to promote pathogenesis. As in the next decades crop yield increase may depend on the improvement of photosynthetic efficiency, a comprehensive understanding of the integration between photosynthesis and plant immunity is required to meet the future food demand.
Collapse
|