1
|
Tripathi JN, Ntui VO, Tripathi L. Precision genetics tools for genetic improvement of banana. THE PLANT GENOME 2024; 17:e20416. [PMID: 38012108 DOI: 10.1002/tpg2.20416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/22/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023]
Abstract
Banana is an important food security crop for millions of people in the tropics but it faces challenges from diseases and pests. Traditional breeding methods have limitations, prompting the exploration of precision genetic tools like genetic modification and genome editing. Extensive efforts using transgenic approaches have been made to develop improved banana varieties with resistance to banana Xanthomonas wilt, Fusarium wilt, and nematodes. However, these efforts should be extended for other pests, diseases, and abiotic stresses. The commercialization of transgenic crops still faces continuous challenges with regulatory and public acceptance. Genome editing, particularly CRISPR/Cas, offers precise modifications to the banana genome and has been successfully applied in the improvement of banana. Targeting specific genes can contribute to the development of improved banana varieties with enhanced resistance to various biotic and abiotic constraints. This review discusses recent advances in banana improvement achieved through genetic modification and genome editing.
Collapse
Affiliation(s)
| | | | - Leena Tripathi
- International Institute of Tropical Agriculture, Nairobi, Kenya
| |
Collapse
|
2
|
Ntui VO, Tripathi JN, Shah T, Tripathi L. Targeted knockout of early nodulin-like 3 (MusaENODL3) gene in banana reveals its function in resistance to Xanthomonas wilt disease. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1101-1112. [PMID: 38013635 PMCID: PMC11022791 DOI: 10.1111/pbi.14248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/09/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Nodulins and nodulin-like proteins play an essential role in the symbiotic associations between legumes and Rhizobium bacteria. Their role extends beyond the leguminous species, as numerous nodulin-like proteins, including early nodulin-like proteins (ENODL), have been identified in various non-leguminous plants, implying their involvement in functions beyond nodulation, such as nutrient transport and growth modulation. Some ENODL proteins have been associated with plant defense against pathogens, as evident in banana infected with Xanthomonas campestris pv. musacearum (Xcm) causing banana Xanthomonas wilt (BXW) disease. Nonetheless, the specific role of ENODL in plant defense remains to be fully elucidated. The MusaENODL3 gene was found to be repressed in BXW-resistant banana progenitor 'Musa balbisiana' and 20-fold upregulated in BXW-susceptible cultivar 'Gonja Manjaya' upon early infection with Xcm. To further unravel the role of the ENODL gene in disease resistance, the CRISPR/Cas9 system was employed to disrupt the MusaENODL3 gene in 'Gonja Manjaya' precisely. Analysis of the enodl3 edited events confirmed the accurate manipulation of the MusaENODL3 gene. Disease resistance and gene expression analysis demonstrated that editing the MusaENODL3 gene resulted in resistance to BXW disease, with 50% of the edited plants remaining asymptomatic. The identification and manipulation of the MusaENODL3 gene highlight its potential as a critical player in plant-pathogen interactions, offering new opportunities for enhancing disease resistance in crops like banana, an important staple food crop and source of income for resource-poor farmers in the tropics. This study provides the first evidence of the direct role of the ENODL3 gene in developing disease-resistant plants.
Collapse
Affiliation(s)
| | | | - Trushar Shah
- International Institute of Tropical AgricultureNairobiKenya
| | - Leena Tripathi
- International Institute of Tropical AgricultureNairobiKenya
| |
Collapse
|
3
|
Adero M, Tripathi JN, Oduor R, Zipfel C, Tripathi L. Transgenic expression of Arabidopsis ELONGATION FACTOR-TU RECEPTOR (AtEFR) gene in banana enhances resistance against Xanthomonas campestris pv. musacearum. PLoS One 2023; 18:e0290884. [PMID: 37656732 PMCID: PMC10473477 DOI: 10.1371/journal.pone.0290884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023] Open
Abstract
Banana Xanthomonas wilt (BXW) caused by Xanthomonas campestris pv. musacearum (Xcm) is a severe bacterial disease affecting banana production in East and Central Africa, where banana is cultivated as a staple crop. Classical breeding of banana is challenging because the crop is clonally propagated and has limited genetic diversity. Thus, genetic engineering serves as a viable alternative for banana improvement. Studies have shown that transfer of the elongation factor Tu receptor gene (AtEFR) from Arabidopsis thaliana to other plant species can enhance resistance against bacterial diseases. However, AtEFR activity in banana and its efficacy against Xcm has not been demonstrated. In this study, transgenic events of banana (Musa acuminata) cultivar dwarf Cavendish expressing the AtEFR gene were generated and evaluated for resistance against Xcm under greenhouse conditions. The transgenic banana events were responsive to the EF-Tu-derived elf18 peptide and exhibited enhanced resistance to BXW disease compared to non-transgenic control plants. This study suggests that the functionality of AtEFR is retained in banana with the potential of enhancing resistance to BXW under field conditions.
Collapse
Affiliation(s)
- Mark Adero
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
- Kenyatta University, Nairobi, Kenya
| | | | | | - Cyril Zipfel
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Leena Tripathi
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| |
Collapse
|
4
|
Tripathi L, Ntui VO, Tripathi JN, Norman D, Crawford J. A new and novel high-fidelity genome editing tool for banana using Cas-CLOVER. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1731-1733. [PMID: 37402217 PMCID: PMC10440978 DOI: 10.1111/pbi.14100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023]
Affiliation(s)
- Leena Tripathi
- International Institute of Tropical Agriculture (IITA)NairobiKenya
| | | | | | | | | |
Collapse
|
5
|
Thingnam SS, Lourembam DS, Tongbram PS, Lokya V, Tiwari S, Khan MK, Pandey A, Hamurcu M, Thangjam R. A Perspective Review on Understanding Drought Stress Tolerance in Wild Banana Genetic Resources of Northeast India. Genes (Basel) 2023; 14:genes14020370. [PMID: 36833297 PMCID: PMC9957078 DOI: 10.3390/genes14020370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
The enormous perennial monocotyledonous herb banana (Musa spp.), which includes dessert and cooking varieties, is found in more than 120 countries and is a member of the order Zingiberales and family Musaceae. The production of bananas requires a certain amount of precipitation throughout the year, and its scarcity reduces productivity in rain-fed banana-growing areas due to drought stress. To increase the tolerance of banana crops to drought stress, it is necessary to explore crop wild relatives (CWRs) of banana. Although molecular genetic pathways involved in drought stress tolerance of cultivated banana have been uncovered and understood with the introduction of high-throughput DNA sequencing technology, next-generation sequencing (NGS) techniques, and numerous "omics" tools, unfortunately, such approaches have not been thoroughly implemented to utilize the huge potential of wild genetic resources of banana. In India, the northeastern region has been reported to have the highest diversity and distribution of Musaceae, with more than 30 taxa, 19 of which are unique to the area, accounting for around 81% of all wild species. As a result, the area is regarded as one of the main locations of origin for the Musaceae family. The understanding of the response of the banana genotypes of northeastern India belonging to different genome groups to water deficit stress at the molecular level will be useful for developing and improving drought tolerance in commercial banana cultivars not only in India but also worldwide. Hence, in the present review, we discuss the studies conducted to observe the effect of drought stress on different banana species. Moreover, the article highlights the tools and techniques that have been used or that can be used for exploring and understanding the molecular basis of differentially regulated genes and their networks in different drought stress-tolerant banana genotypes of northeast India, especially wild types, for unraveling their potential novel traits and genes.
Collapse
Affiliation(s)
| | | | - Punshi Singh Tongbram
- Department of Biotechnology, School of Life Sciences, Mizoram University, Aizawl 796004, India
| | - Vadthya Lokya
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali 140306, India
| | - Siddharth Tiwari
- Plant Tissue Culture and Genetic Engineering Lab, National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Sector 81, Knowledge City, S.A.S. Nagar, Mohali 140306, India
| | - Mohd. Kamran Khan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey
| | - Anamika Pandey
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey
| | - Mehmet Hamurcu
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya 42079, Turkey
| | - Robert Thangjam
- Department of Biotechnology, School of Life Sciences, Mizoram University, Aizawl 796004, India
- Department of Life Sciences, School of Life Sciences, Manipur University, Imphal 795003, India
- Correspondence:
| |
Collapse
|
6
|
Justine AK, Kaur N, Savita, Pati PK. Biotechnological interventions in banana: current knowledge and future prospects. Heliyon 2022; 8:e11636. [DOI: 10.1016/j.heliyon.2022.e11636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/01/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
|
7
|
Tripathi L, Ntui VO, Tripathi JN. Control of Bacterial Diseases of Banana Using CRISPR/Cas-Based Gene Editing. Int J Mol Sci 2022; 23:3619. [PMID: 35408979 PMCID: PMC8998688 DOI: 10.3390/ijms23073619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 12/30/2022] Open
Abstract
Banana is an important staple food crop and a source of income for smallholder farmers in about 150 tropical and sub-tropical countries. Several bacterial diseases, such as banana Xanthomonas wilt (BXW), blood, and moko disease, cause substantial impacts on banana production. There is a vast yield gap in the production of bananas in regions where bacterial pathogens and several other pathogens and pests are present together in the same field. BXW disease caused by Xanthomonas campestris pv. musacearum is reported to be the most destructive banana disease in East Africa. The disease affects all the banana varieties grown in the region. Only the wild-type diploid banana, Musa balbisiana, is resistant to BXW disease. Developing disease-resistant varieties of bananas is one of the most effective strategies to manage diseases. Recent advances in CRISPR/Cas-based gene editing techniques can accelerate banana improvement. Some progress has been made to create resistance against bacterial pathogens using CRISPR/Cas9-mediated gene editing by knocking out the disease-causing susceptibility (S) genes or activating the expression of the plant defense genes. A synopsis of recent advancements and perspectives on the application of gene editing for the control of bacterial wilt diseases are presented in this article.
Collapse
Affiliation(s)
- Leena Tripathi
- International Institute of Tropical Agriculture (IITA), Nairobi P.O. Box 30709-00100, Kenya; (V.O.N.); (J.N.T.)
| | | | | |
Collapse
|
8
|
Rijzaani H, Bayer PE, Rouard M, Doležel J, Batley J, Edwards D. The pangenome of banana highlights differences between genera and genomes. THE PLANT GENOME 2022; 15:e20100. [PMID: 34227250 DOI: 10.1002/tpg2.20100] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/22/2021] [Indexed: 05/19/2023]
Abstract
Banana (Musaceae family) has a complex genetic history and includes a genus Musa with a variety of cultivated clones with edible fruits, Ensete species that are grown for their edible corm, and monospecific Musella whose generic status has been questioned. The most commonly exported banana cultivars belong to Cavendish, a subgroup of Musa triploid cultivars, which is under threat by fungal pathogens, though there are also related species M. balbisiana Colla (B genome), M. textilis Née (T genome), and M. schizocarpa N. W. Simmonds (S genome), along with hybrids of these genomes, which potentially host genes of agronomic interest. Here we present the first cross-genus pangenome of banana, which contains representatives of the Musa and Ensete genera. Clusters based on gene presence-absence variation (PAV) clearly separate Musa and Ensete, while Musa is split further based on species. These results present the first pangenome study across genus boundaries and identifies genes that differentiate between Musaceae species, information that may support breeding programs in these crops.
Collapse
Affiliation(s)
- Habib Rijzaani
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
- Indonesian Agency for Agricultural Research and Development, Jakarta, Indonesia
| | - Philipp E Bayer
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, Montpellier, 34397, France
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc, 77900, Czech Republic
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
9
|
López J, Rayas A, Medero V, Santos A, Basail M, Beovides Y. Somatic Embryogenesis in Banana (Musa spp.). Methods Mol Biol 2022; 2527:97-110. [PMID: 35951186 DOI: 10.1007/978-1-0716-2485-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bananas (Musa ssp.) are among the world's most important crops. In terms of gross value of production, they are the fourth most important global food crop and have an important socioeconomic and ecological role. Somatic embryogenesis (SE) is a developmental process, in which somatic cells differentiate into embryos which eventually develop and regenerate into plants. SE is exploited to generate a large quantity of very high economic value, genetically identical and disease-free plantlets. In bananas, the use of shoot apexes of axillary buds to induce SE resulted an alternative for plant regeneration through embryogenic cell suspension (ECS). The protocol has been scaled up to commercial laboratories for tissue culture (biofactories) for production of planting materials. The genetic stability of regenerated plants and high yields obtained under field conditions demonstrate the feasibility of scaling up this biotechnological protocol and adapting it to commercial production of planting materials to mitigate a critical bottleneck in the value chain of this important crop.
Collapse
Affiliation(s)
- Jorge López
- Instituto de Investigaciones de Viandas Tropicales (INIVIT), Villa Clara, Cuba.
| | - Aymé Rayas
- Instituto de Investigaciones de Viandas Tropicales (INIVIT), Villa Clara, Cuba
| | - Víctor Medero
- Instituto de Investigaciones de Viandas Tropicales (INIVIT), Villa Clara, Cuba
| | - Arletys Santos
- Instituto de Investigaciones de Viandas Tropicales (INIVIT), Villa Clara, Cuba
| | - Milagros Basail
- Instituto de Investigaciones de Viandas Tropicales (INIVIT), Villa Clara, Cuba
| | - Yoel Beovides
- Instituto de Investigaciones de Viandas Tropicales (INIVIT), Villa Clara, Cuba
| |
Collapse
|
10
|
Liu J, Liu M, Wang J, Zhang J, Miao H, Wang Z, Jia C, Zhang J, Xu B, Jin Z. Transcription factor MaMADS36 plays a central role in regulating banana fruit ripening. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7078-7091. [PMID: 34282447 DOI: 10.1093/jxb/erab341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Bananas are model fruits for studying starch conversion and climactericity. Starch degradation and ripening are two important biological processes that occur concomitantly in banana fruit. Ethylene biosynthesis and postharvest fruit ripening processes, i.e. starch degradation, fruit softening, and sugar accumulation, are highly correlated and thus could be controlled by a common regulatory switch. However, this switch has not been identified. In this study, we transformed red banana (Musa acuminata L.) with sense and anti-sense constructs of the MaMADS36 transcription factor gene (also MuMADS1, Ma05_g18560.1). Analysis of these lines showed that MaMADS36 interacts with 74 other proteins to form a co-expression network and could act as an important switch to regulate ethylene biosynthesis, starch degradation, softening, and sugar accumulation. Among these target genes, musa acuminata beta-amylase 9b (MaBAM9b, Ma05_t07800.1), which encodes a starch degradation enzyme, was selected to further investigate the regulatory mechanism of MaMADS36. Our findings revealed that MaMADS36 directly binds to the CA/T(r)G box of the MaBAM9b promoter to increase MaBAM9b transcription and, in turn, enzyme activity and starch degradation during ripening. These results will further our understanding of the fine regulatory mechanisms of MADS-box transcription factors in regulating fruit ripening, which can be applied to breeding programs to improve fruit shelf-life.
Collapse
Affiliation(s)
- Juhua Liu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Mengting Liu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Horticulture, Hainan University, Haikou, China
| | - Jingyi Wang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jing Zhang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hongxia Miao
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhuo Wang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Caihong Jia
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jianbin Zhang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Biyu Xu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhiqiang Jin
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
11
|
Tripathi JN, Ntui VO, Shah T, Tripathi L. CRISPR/Cas9-mediated editing of DMR6 orthologue in banana (Musa spp.) confers enhanced resistance to bacterial disease. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1291-1293. [PMID: 33934462 PMCID: PMC8313124 DOI: 10.1111/pbi.13614] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/27/2021] [Indexed: 05/04/2023]
Affiliation(s)
| | | | - Trushar Shah
- International Institute of Tropical Agriculture (IITA)NairobiKenya
| | - Leena Tripathi
- International Institute of Tropical Agriculture (IITA)NairobiKenya
| |
Collapse
|
12
|
Tripathi L, Ntui VO, Tripathi JN, Kumar PL. Application of CRISPR/Cas for Diagnosis and Management of Viral Diseases of Banana. Front Microbiol 2021; 11:609784. [PMID: 33584573 PMCID: PMC7873300 DOI: 10.3389/fmicb.2020.609784] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/29/2020] [Indexed: 12/26/2022] Open
Abstract
Viral diseases are significant biotic constraints for banana (Musa spp.) production as they affect the yield and limit the international movement of germplasm. Among all the viruses known to infect banana, the banana bunchy top virus and banana streak viruses are widespread and economically damaging. The use of virus-resistant bananas is the most cost-effective option to minimize the negative impacts of viral-diseases on banana production. CRISPR/Cas-based genome editing is emerging as the most powerful tool for developing virus-resistant crop varieties in several crops, including the banana. The availability of a vigorous genetic transformation and regeneration system and a well-annotated whole-genome sequence of banana makes it a compelling candidate for genome editing. A robust CRISPR/Cas9-based genome editing of the banana has recently been established, which can be applied in developing disease-resistant varieties. Recently, the CRISPR system was exploited to detect target gene sequences using Cas9, Cas12, Cas13, and Cas14 enzymes, thereby unveiling the use of this technology for virus diagnosis. This article presents a synopsis of recent advancements and perspectives on the application of CRISPR/Cas-based genome editing for diagnosing and developing resistance against banana viruses and challenges in genome-editing of banana.
Collapse
Affiliation(s)
- Leena Tripathi
- International Institute of Tropical Agriculture, Nairobi, Kenya
| | | | | | - P. Lava Kumar
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| |
Collapse
|
13
|
Wang X, Yu R, Li J. Using Genetic Engineering Techniques to Develop Banana Cultivars With Fusarium Wilt Resistance and Ideal Plant Architecture. FRONTIERS IN PLANT SCIENCE 2021; 11:617528. [PMID: 33519876 PMCID: PMC7838362 DOI: 10.3389/fpls.2020.617528] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/16/2020] [Indexed: 05/28/2023]
Abstract
Bananas (Musa spp.) are an important fruit crop worldwide. The fungus Fusarium oxysporum f. sp. cubense (Foc), which causes Fusarium wilt, is widely regarded as one of the most damaging plant diseases. Fusarium wilt has previously devastated global banana production and continues to do so today. In addition, due to the current use of high-density banana plantations, desirable banana varieties with ideal plant architecture (IPA) possess high lodging resistance, optimum photosynthesis, and efficient water absorption. These properties may help to increase banana production. Genetic engineering is useful for the development of banana varieties with Foc resistance and ideal plant architecture due to the sterility of most cultivars. However, the sustained immune response brought about by genetic engineering is always accompanied by yield reductions. To resolve this problem, we should perform functional genetic studies of the Musa genome, in conjunction with genome editing experiments, to unravel the molecular mechanisms underlying the immune response and the formation of plant architecture in the banana. Further explorations of the genes associated with Foc resistance and ideal architecture might lead to the development of banana varieties with both ideal architecture and pathogen super-resistance. Such varieties will help the banana to remain a staple food worldwide.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Renbo Yu
- Key Laboratory of Vegetable Research Center, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jingyang Li
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
14
|
Jekayinoluwa T, Tripathi JN, Obiero G, Muge E, Tripathi L. Phytochemical Analysis and Establishment of Embryogenic Cell Suspension and Agrobacterium-mediated Transformation for Farmer Preferred Cultivars of West African Plantain ( Musa spp.). PLANTS 2020; 9:plants9060789. [PMID: 32599771 PMCID: PMC7357122 DOI: 10.3390/plants9060789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/15/2020] [Accepted: 06/20/2020] [Indexed: 12/23/2022]
Abstract
Banana and plantain are among the foremost staple food crops providing food and livelihood to over 500 million people in tropical countries. Despite the importance, their production is hampered due to several biotic and abiotic stresses. Plant tissue culture techniques such as somatic embryogenesis and genetic transformation offer a valuable tool for genetic improvement. Identification and quantification of phytochemicals found in banana and plantain are essential in optimizing in vitro activities for crop improvement. Total antioxidants, phenolics, flavonoids, and tannins were quantified in various explants obtained from the field, as well as in vitro plants of banana and plantain cultivars. The result showed genotypic variation in the phytochemicals of selected cultivars. The embryogenic cell suspensions were developed for three farmer-preferred plantain cultivars, Agbagba, Obino l’Ewai, and Orishele, using different MS and B5-based culture media. Both culture media supported the development of friable embryogenic calli (FEC), while MS culture media supported the proliferation of fine cell suspension in liquid culture media. The percentage of FEC generated for Agbagba, Obino l’Ewai, and Orishele were 22 ± 24%, 13 ± 28%, and 9 ± 16%, respectively. Cell suspensions produced from FECs were successfully transformed by Agrobacterium-mediated transformation with reporter gene constructs and regenerated into whole plants.
Collapse
Affiliation(s)
- Temitope Jekayinoluwa
- International Institute of Tropical Agriculture (IITA), 30709-00100 Nairobi, Kenya; (T.J.); (J.N.T.)
- Centre for Biotechnology and Bioinformatics, University of Nairobi, 30197-00100 Nairobi, Kenya;
| | - Jaindra Nath Tripathi
- International Institute of Tropical Agriculture (IITA), 30709-00100 Nairobi, Kenya; (T.J.); (J.N.T.)
| | - George Obiero
- Centre for Biotechnology and Bioinformatics, University of Nairobi, 30197-00100 Nairobi, Kenya;
| | - Edward Muge
- Department of Biochemistry, University of Nairobi, 30197-00100 Nairobi, Kenya;
| | - Leena Tripathi
- International Institute of Tropical Agriculture (IITA), 30709-00100 Nairobi, Kenya; (T.J.); (J.N.T.)
- Correspondence: ; Tel.: +254-20-422-3472
| |
Collapse
|
15
|
Marimuthu K, Subbaraya U, Suthanthiram B, Marimuthu SS. Molecular analysis of somatic embryogenesis through proteomic approach and optimization of protocol in recalcitrant Musa spp. PHYSIOLOGIA PLANTARUM 2019; 167:282-301. [PMID: 30883793 DOI: 10.1111/ppl.12966] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/23/2019] [Accepted: 03/11/2019] [Indexed: 05/12/2023]
Abstract
Somatic embryogenesis (SE) is a complex stress related process regulated by numerous biological factors. SE is mainly applicable to mass propagation and genetic improvement of plants through gene transfer technology and induced mutations. In banana, SE is highly genome dependent as the efficiency varies with cultivars. To understand the molecular mechanism of SE, a proteomics approach was carried out to identify proteins expressed during embryogenic calli (EC) induction, regeneration and germination of somatic embryos in the banana cultivar cv. Rasthali (AAB). In total, 70 spots were differentially expressed in various developmental stages of SE, of which 16 were uniquely expressed and 17 were highly abundant in EC compared to non-embryogenic calli and explants. Also, four spots were uniquely expressed in germinating somatic embryos. The functional annotation of identified proteins revealed that calcium signaling along with stress and endogenous hormones related proteins played a vital role in EC induction and germination of somatic embryos. Thus, based on this outcome, the callus induction media was modified and tested in five cultivars. Among them, cultivars Grand Naine (AAA), Monthan (ABB) and Ney Poovan (AB) showed a better response in tryptophan added media, whereas Red Banana (AAA) and Karpuravalli (ABB) showed maximum EC induction in kinetin and CaCl2 supplemented media respectively. Simultaneously, germination media were modified to induce proteins responsible for germination. In cv. Rasthali, media supplemented with 10 mM CaCl2 showed a maximum increase in germination (51.79%) over control plants. Thus, the present study revealed that media modification based on proteomic analysis can induce SE in recalcitrant cultivars and also enhance germination in cultivars amenable for SE.
Collapse
Affiliation(s)
- Kumaravel Marimuthu
- Crop Improvement Division, ICAR-National Research Centre for Banana, Tiruchirappalli, India
| | - Uma Subbaraya
- Crop Improvement Division, ICAR-National Research Centre for Banana, Tiruchirappalli, India
| | | | - Saraswathi S Marimuthu
- Crop Improvement Division, ICAR-National Research Centre for Banana, Tiruchirappalli, India
| |
Collapse
|
16
|
Efficient and rapid in-vitro plantlet regeneration via somatic embryogenesis in ornamental bananas (Musa spp.). Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00358-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Borrell JS, Biswas MK, Goodwin M, Blomme G, Schwarzacher T, Heslop-Harrison JS(P, Wendawek AM, Berhanu A, Kallow S, Janssens S, Molla EL, Davis AP, Woldeyes F, Willis K, Demissew S, Wilkin P. Enset in Ethiopia: a poorly characterized but resilient starch staple. ANNALS OF BOTANY 2019; 123:747-766. [PMID: 30715125 PMCID: PMC6526316 DOI: 10.1093/aob/mcy214] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/16/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Enset (Ensete ventricosum, Musaceae) is an African crop that currently provides the staple food for approx. 20 million Ethiopians. Whilst wild enset grows over much of East and Southern Africa and the genus extends across Asia to China, it has only ever been domesticated in the Ethiopian Highlands. Here, smallholder farmers cultivate hundreds of landraces across diverse climatic and agroecological systems. SCOPE Enset has several important food security traits. It grows over a relatively wide range of conditions, is somewhat drought-tolerant, and can be harvested at any time of the year, over several years. It provides an important dietary starch source, as well as fibres, medicines, animal fodder, roofing and packaging. It stabilizes soils and microclimates and has significant cultural importance. In contrast to the other cultivated species in the family Musaceae (banana), enset has received relatively little research attention. Here, we review and critically evaluate existing research, outline available genomic and germplasm resources, aspects of pathology, and explore avenues for crop development. CONCLUSION Enset is an underexploited starch crop with significant potential in Ethiopia and beyond. Research is lacking in several key areas: empirical studies on the efficacy of current agronomic practices, the genetic diversity of landraces, approaches to systematic breeding, characterization of existing and emerging diseases, adaptability to new ranges and land-use change, the projected impact of climate change, conservation of crop wild relatives, by-products or co-products or non-starch uses, and the enset microbiome. We also highlight the limited availability of enset germplasm in living collections and seedbanks, and the lack of knowledge of reproductive and germination biology needed to underpin future breeding. By reviewing the current state of the art in enset research and identifying gaps and opportunities, we hope to catalyse the development and sustainable exploitation of this neglected starch crop.
Collapse
Affiliation(s)
| | - Manosh K Biswas
- Department of Genetics and Genome Biology, University of Leicester, UK
| | - Mark Goodwin
- Department of Genetics and Genome Biology, University of Leicester, UK
| | - Guy Blomme
- Bioversity International, Addis Ababa, Ethiopia
| | | | | | | | - Admas Berhanu
- Department of Biology and Biotechnology, Wolkite University, Hawassa, Ethiopia
| | - Simon Kallow
- Conservation Science Department, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex, UK
- Division of Crop Biotechnics, Katholieke Universiteit Leuven, Willem de Croylaan, Leuven, Belgium
| | - Steven Janssens
- Laboratory of Plant Systematics, Institute of Botany and Microbiology, Katholieke Universiteit Leuven, Kasteelpark, Arenberg, Leuven, Belgium
| | - Ermias L Molla
- Department of Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | | | - Kathy Willis
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- Department of Zoology, University of Oxford, Oxford, UK
| | - Sebsebe Demissew
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- Department of Biology, Addis Ababa University, Addis Ababa, Ethiopia
- Gullele Botanic Garden, Addis Ababa, Ethiopia
| | - Paul Wilkin
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| |
Collapse
|
18
|
Tripathi L, Ntui VO, Tripathi JN. Application of genetic modification and genome editing for developing climate‐smart banana. Food Energy Secur 2019. [DOI: 10.1002/fes3.168] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Leena Tripathi
- International Institute of Tropical Agriculture (IITA) Nairobi Kenya
| | | | | |
Collapse
|
19
|
Merga IF, Tripathi L, Hvoslef-Eide AK, Gebre E. Application of Genetic Engineering for Control of Bacterial Wilt Disease of Enset, Ethiopia's Sustainability Crop. FRONTIERS IN PLANT SCIENCE 2019; 10:133. [PMID: 30863414 PMCID: PMC6399475 DOI: 10.3389/fpls.2019.00133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/28/2019] [Indexed: 05/05/2023]
Abstract
Enset (Ensete ventricosum (Welw.) Cheesman) is one of the Ethiopia's indigenous sustainability crops supporting the livelihoods of about 20 million people, mainly in the densely populated South and Southwestern parts of the country. Enset serves as a food security crop for humans, animal feed, and source of fiber for the producers. The production of enset has been constrained by plant pests, diseases, and abiotic factors. Among these constraints, bacterial wilt disease has been the most important limiting factor for enset production since its outbreak five decades ago. There is no known bacterial wilt disease resistant genetic material in the enset genetic pool to transfer this trait to susceptible enset varieties through conventional breeding. Moreover, the absence of effective chemicals against the disease has left farmers without means to combat bacterial wilt for decades. Genetic engineering has been the alternative approach to develop disease resistant plant materials in other crops where traditional breeding tools are ineffective. This review discusses enset cultivation and recent developments addressing the control of bacterial wilt disease in enset and related crops like banana to help design effective strategies.
Collapse
Affiliation(s)
- Ibsa Fite Merga
- International Institute of Tropical Agriculture, Nairobi, Kenya
- Norwegian University of Life Sciences, Ås, Norway
- Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Leena Tripathi
- International Institute of Tropical Agriculture, Nairobi, Kenya
| | | | - Endale Gebre
- Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| |
Collapse
|
20
|
Nandhakumar N, Kumar K, Sudhakar D, Soorianathasundaram K. Plant regeneration, developmental pattern and genetic fidelity of somatic embryogenesis derived Musa spp. J Genet Eng Biotechnol 2018; 16:587-598. [PMID: 30733777 PMCID: PMC6353768 DOI: 10.1016/j.jgeb.2018.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 08/29/2018] [Accepted: 10/01/2018] [Indexed: 11/24/2022]
Abstract
Multiplication of banana cvs. Grand Naine (Musa AAA, Cavendish-sub group) and Rasthali (Musa AAB, Silk-sub group) were attempted through somatic embryogenesis. The influence of position of male flower buds, amino acid supplements in the induction of somatic embryogenesis and field performance of embryogenic cell suspension (ECS) derived banana plants were studied. Differentiated immature male flower buds positioned at 6-8 th bract whorl as explants showed better callus induction and somatic embryogenesis. Supplementation with glutamine at 400 mg L-1 along with 20:20 g L-1sucrose: maltose in maturation media induced a 10-fold increase in somatic embryo formation compared to control. Cotyledonary stage somatic embryos desiccated for 2 h showed higher germination compared to non-desiccated embryos. The plantlets generated were hardened, and the genetic fidelity of the plantlets was confirmed using ISSR marker. To check the field performance of ECS derived plants, plantlets were hardened and planted in the field along with meristem and sucker. During the field growth, these ECS derived plants were morphologically similar to those of control plants. In this experiment, it was observed that ECS derived banana plants displayed normal phenotype as that of plants grown from meristem and sucker. The protocol developed could be useful highly for large-scale micropropagation or genetic manipulation studies in these commercially important banana cultivars.
Collapse
Affiliation(s)
- Natarajan Nandhakumar
- Department of Fruit Crops, Faculty of Horticulture, Tamil Nadu Agricultural University, Coimbatore, India
| | - Krish Kumar
- Department of Plant Biotechnology, Centre for Plant Biotechnology and Molecular Biology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Duraialagaraja Sudhakar
- Department of Plant Biotechnology, Centre for Plant Biotechnology and Molecular Biology, Tamil Nadu Agricultural University, Coimbatore, India
| | - K. Soorianathasundaram
- Department of Fruit Crops, Faculty of Horticulture, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
21
|
Shivani, Awasthi P, Sharma V, Kaur N, Kaur N, Pandey P, Tiwari S. Genome-wide analysis of transcription factors during somatic embryogenesis in banana (Musa spp.) cv. Grand Naine. PLoS One 2017; 12:e0182242. [PMID: 28797040 PMCID: PMC5552287 DOI: 10.1371/journal.pone.0182242] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/14/2017] [Indexed: 11/22/2022] Open
Abstract
Transcription factors BABY BOOM (BBM), WUSCHEL (WUS), BSD, LEAFY COTYLEDON (LEC), LEAFY COTYLEDON LIKE (LIL), VIVIPAROUS1 (VP1), CUP SHAPED COTYLEDONS (CUC), BOLITA (BOL), and AGAMOUS LIKE (AGL) play a crucial role in somatic embryogenesis. In this study, we identified eighteen genes of these nine transcription factors families from the banana genome database. All genes were analyzed for their structural features, subcellular, and chromosomal localization. Protein sequence analysis indicated the presence of characteristic conserved domains in these transcription factors. Phylogenetic analysis revealed close evolutionary relationship among most transcription factors of various monocots. The expression patterns of eighteen genes in embryogenic callus containing somatic embryos (precisely isolated by Laser Capture Microdissection), non-embryogenic callus, and cell suspension cultures of banana cultivar Grand Naine were analyzed. The application of 2, 4-dichlorophenoxyacetic acid (2, 4-D) in the callus induction medium enhanced the expression of MaBBM1, MaBBM2, MaWUS2, and MaVP1 in the embryogenic callus. It suggested 2, 4-D acts as an inducer for the expression of these genes. The higher expression of MaBBM2 and MaWUS2 in embryogenic cell suspension (ECS) as compared to non-embryogenic cells suspension (NECS), suggested that these genes may play a crucial role in banana somatic embryogenesis. MaVP1 showed higher expression in both ECS and NECS, whereas MaLEC2 expression was significantly higher in NECS. It suggests that MaLEC2 has a role in the development of non-embryogenic cells. We postulate that MaBBM2 and MaWUS2 can be served as promising molecular markers for the embryogencity in banana.
Collapse
Affiliation(s)
- Shivani
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Knowledge City, Mohali, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Praveen Awasthi
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Knowledge City, Mohali, Punjab, India
| | - Vikrant Sharma
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Knowledge City, Mohali, Punjab, India
| | - Navjot Kaur
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Knowledge City, Mohali, Punjab, India
| | - Navneet Kaur
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Knowledge City, Mohali, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Pankaj Pandey
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Knowledge City, Mohali, Punjab, India
| | - Siddharth Tiwari
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology, Ministry of Science and Technology (Government of India), Knowledge City, Mohali, Punjab, India
| |
Collapse
|
22
|
Liu J, Gao P, Sun X, Zhang J, Sun P, Wang J, Jia C, Zhang J, Hu W, Xu B, Jin Z. Efficient regeneration and genetic transformation platform applicable to five Musa varieties. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2016.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|