1
|
He Y, Li P, Zhou X, Ali S, Zhu J, Ma Y, Li J, Zhang N, Li H, Li Y, Nie Y. A ribonuclease T2 protein FocRnt2 contributes to the virulence of Fusarium oxysporum f. sp. cubense tropical race 4. MOLECULAR PLANT PATHOLOGY 2024; 25:e13502. [PMID: 39118198 PMCID: PMC11310096 DOI: 10.1111/mpp.13502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024]
Abstract
Banana Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), is a major disease of banana plants worldwide. Effector proteins play critical roles in banana-Foc TR4 interaction. Our previous studies highlighted a ribonuclease protein belonging to the T2 family (named as FocRnt2) in the Foc TR4 secretome, which was predicted to be an effector. However, its biological function in Foc TR4 infection is still unclear. Herein, we observed significant expression of FocRnt2 during the early stage of fungal infection in planta. A yeast signal sequence trap assay showed that FocRnt2 contained a functional signal peptide for secretion. FocRnt2 possessed ribonuclease activity that could degrade the banana total RNA in vitro. Subcellular localization showed that FocRnt2 was localized in the nucleus and cytoplasm of Nicotiana benthamiana leaves. Transient expression of FocRnt2 suppressed the expression of salicylic acid- and jasmonic acid-signalling marker genes, reactive oxygen species accumulation, and BAX-mediated cell death in N. benthamiana. FocRnt2 deletion limited fungal penetration, reduced fusaric acid biosynthesis in Foc TR4, and attenuated fungal virulence against banana plants, but had little effect on Foc TR4 growth and sensitivity to various stresses. Furthermore, FocRnt2 deletion mutants induced higher expression of the defence-related genes in banana plants. These results suggest that FocRnt2 plays an important role in full virulence of Foc TR4, further improving our understanding of effector-mediated Foc TR4 pathogenesis.
Collapse
Affiliation(s)
- Yanqiu He
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant ProtectionSouth China Agricultural UniversityGuangzhouChina
- Institute of Plant Protection and Agro‐Products SafetyAnhui Academy of Agricultural SciencesHefeiChina
| | - Pengfei Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant ProtectionSouth China Agricultural UniversityGuangzhouChina
| | - Xiaoshu Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant ProtectionSouth China Agricultural UniversityGuangzhouChina
| | - Shaukat Ali
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant ProtectionSouth China Agricultural UniversityGuangzhouChina
| | - Jie Zhu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant ProtectionSouth China Agricultural UniversityGuangzhouChina
| | - Yini Ma
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant ProtectionSouth China Agricultural UniversityGuangzhouChina
| | - Jieling Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant ProtectionSouth China Agricultural UniversityGuangzhouChina
| | - Nan Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant ProtectionSouth China Agricultural UniversityGuangzhouChina
| | - Huaping Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant ProtectionSouth China Agricultural UniversityGuangzhouChina
| | - Yunfeng Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant ProtectionSouth China Agricultural UniversityGuangzhouChina
| | - Yanfang Nie
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant ProtectionSouth China Agricultural UniversityGuangzhouChina
- College of Materials and EnergySouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
2
|
Zhao Y, Zheng X, Tabima JF, Zhu S, Søndreli KL, Hundley H, Bauer D, Barry K, Zhang Y, Schmutz J, Wang Y, LeBoldus JM, Xiong Q. Secreted Effector Proteins of Poplar Leaf Spot and Stem Canker Pathogen Sphaerulina musiva Manipulate Plant Immunity and Contribute to Virulence in Diverse Ways. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:779-795. [PMID: 37551980 DOI: 10.1094/mpmi-07-23-0091-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Fungal effectors play critical roles in manipulating plant immune responses and promoting colonization. Sphaerulina musiva is a heterothallic ascomycete fungus that causes Septoria leaf spot and stem canker disease in poplar (Populus spp.) plantations. This disease can result in premature defoliation, branch and stem breakage, increased mortality, and plantation failure. However, little is known about the interaction between S. musiva and poplar. Previous work predicted 142 candidate secreted effector proteins in S. musiva (SmCSEPs), 19 of which were selected for further functional characterization in this study. SmCSEP3 induced plant cell death in Nicotiana benthamiana, while 8 out of 19 tested SmCSEPs suppressed cell death. The signal peptides of these eight SmCSEPs exhibited secretory activity in a yeast signal sequence trap assay. Confocal microscopy revealed that four of these eight SmCSEPs target both the cytoplasm and the nucleus, whereas four predominantly localize to discrete punctate structures. Pathogen challenge assays in N. benthamiana demonstrated that the transient expression of six SmCSEPs promoted Fusarium proliferatum infection. The expression of these six SmCSEP genes were induced during infection. SmCSEP2, SmCSEP13, and SmCSEP25 suppressed chitin-triggered reactive oxygen species burst and callose deposition in N. benthamiana. The candidate secreted effector proteins of S. musiva target multiple compartments in the plant cell and modulate different pattern-triggered immunity pathways. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2023.
Collapse
Affiliation(s)
- Yao Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210095, China
| | - Xinyue Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Javier F Tabima
- Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, U.S.A
- Department of Forest Engineering, Resources and Management, College of Forestry, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Sheng Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kelsey L Søndreli
- Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Hope Hundley
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, U.S.A
| | - Diane Bauer
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, U.S.A
| | - Kerrie Barry
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, U.S.A
| | - Yaxin Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jeremy Schmutz
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A
| | - Yuanchao Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210095, China
| | - Jared M LeBoldus
- Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, U.S.A
- Department of Biology, Clark University, Worcester, MA 01610, U.S.A
| | - Qin Xiong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Wilkerson DG, Crowell CR, Carlson CH, McMullen PW, Smart CD, Smart LB. Comparative transcriptomics and eQTL mapping of response to Melampsora americana in selected Salix purpurea F2 progeny. BMC Genomics 2022; 23:71. [PMID: 35065596 PMCID: PMC8783449 DOI: 10.1186/s12864-021-08254-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/10/2021] [Indexed: 11/20/2022] Open
Abstract
Background Melampsora spp. rusts are the greatest pathogen threat to shrub willow (Salix spp.) bioenergy crops. Genetic resistance is key to limit the effects of these foliar diseases on host response and biomass yield, however, the genetic basis of host resistance has not been characterized. The addition of new genomic resources for Salix provides greater power to investigate the interaction between S. purpurea and M. americana, species commonly found in the Northeast US. Here, we utilize 3′ RNA-seq to investigate host-pathogen interactions following controlled inoculations of M. americana on resistant and susceptible F2S. purpurea genotypes identified in a recent QTL mapping study. Differential gene expression, network analysis, and eQTL mapping were used to contrast the response to inoculation and to identify associated candidate genes. Results Controlled inoculation in a replicated greenhouse study identified 19 and 105 differentially expressed genes between resistant and susceptible genotypes at 42 and 66 HPI, respectively. Defense response gene networks were activated in both resistant and susceptible genotypes and enriched for many of the same defense response genes, yet the hub genes of these common response modules showed greater mean expression among the resistant plants. Further, eight and six eQTL hotspots were identified at 42 and 66 HPI, respectively. The combined results of three analyses highlight 124 candidate genes in the host for further analysis while analysis of pathogen RNA showed differential expression of 22 genes, two of which are candidate pathogen effectors. Conclusions We identified two differentially expressed M. americana transcripts and 124 S. purpurea genes that are good candidates for future studies to confirm their role in conferring resistance. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08254-1.
Collapse
|
4
|
He Y, Zhou X, Li J, Li H, Li Y, Nie Y. In Vitro Secretome Analysis Suggests Differential Pathogenic Mechanisms between Fusarium oxysporum f. sp. cubense Race 1 and Race 4. Biomolecules 2021; 11:1353. [PMID: 34572566 PMCID: PMC8466104 DOI: 10.3390/biom11091353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Banana Fusarium wilt, caused by the fungus pathogen Fusarium oxysporum f. sp. cubense (Foc), is a devastating disease that causes tremendous reductions in banana yield worldwide. Secreted proteins can act as pathogenicity factors and play important roles in the Foc-banana interactions. In this study, a shotgun-based proteomic approach was employed to characterize and compare the secretomes of Foc1 and Foc4 upon banana extract treatment, which detected 1183 Foc1 and 2450 Foc4 proteins. Comprehensive in silico analyses further identified 447 Foc1 and 433 Foc4 proteins in the classical and non-classical secretion pathways, while the remaining proteins might be secreted through currently unknown mechanisms. Further analyses showed that the secretomes of Foc1 and Foc4 are similar in their overall functional characteristics and share largely conserved repertoires of CAZymes and effectors. However, we also identified a number of potentially important pathogenicity factors that are differentially present in Foc1 and Foc4, which may contribute to their different pathogenicity against banana hosts. Furthermore, our quantitative PCR analysis revealed that genes encoding secreted pathogenicity factors differ significantly between Foc1 and Foc4 in their expression regulation in response to banana extract treatment. To our knowledge, this is the first experimental secretome analysis that focused on the pathogenicity mechanism in different Foc races. The results of this study provide useful resources for further exploration of the complicated pathogenicity mechanisms in Foc.
Collapse
Affiliation(s)
- Yanqiu He
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (X.Z.); (J.L.); (H.L.)
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (X.Z.); (J.L.); (H.L.)
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Jieling Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (X.Z.); (J.L.); (H.L.)
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Huaping Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (X.Z.); (J.L.); (H.L.)
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yunfeng Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (X.Z.); (J.L.); (H.L.)
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yanfang Nie
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
dos Santos KCG, Pelletier G, Séguin A, Guillemette F, Hawkes J, Desgagné-Penix I, Germain H. Unrelated Fungal Rust Candidate Effectors Act on Overlapping Plant Functions. Microorganisms 2021; 9:microorganisms9050996. [PMID: 34063040 PMCID: PMC8148019 DOI: 10.3390/microorganisms9050996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 11/21/2022] Open
Abstract
Rust fungi cause epidemics that threaten the production of important plant species, such as wheat and soy. Melampsora larici-populina (Mlp) causes the poplar rust and encodes at least 1184 candidate effectors (CEs) whose functions are poorly known. In this study, we sequenced the transcriptome and used mass spectrometry to analyze the metabolome of Arabidopsis plants constitutively expressing 14 Mlp CEs and of a control line to discover alterations leading to plant susceptibility. We found 2299 deregulated genes across the experiment. Genes involved in pattern-triggered immunity, such as FRK1, PR1, RBOHD, and WRKY33, as well as AUX/IAA genes were down-regulated. We further observed that 680 metabolites were deregulated in at least one CE-expressing transgenic line, with “highly unsaturated and phenolic compounds” and “peptides” enriched among down- and up-regulated metabolites. Interestingly, transgenic lines expressing unrelated CEs had correlated patterns of gene and metabolite deregulation, while expression of CEs belonging to the same family deregulated different genes and metabolites. Thus, our results uncouple effector sequence similarity and function. This supports that effector functional investigation in the context of their virulence activity and effect on plant susceptibility requires the investigation of the individual effector and precludes generalization based on sequence similarity.
Collapse
Affiliation(s)
- Karen Cristine Goncalves dos Santos
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H9, Canada; (K.C.G.d.S.); (I.D.-P.)
- Plant Biology Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 1V3, Canada
| | - Gervais Pelletier
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC G1V 4C7, Canada; (G.P.); (A.S.)
| | - Armand Séguin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC G1V 4C7, Canada; (G.P.); (A.S.)
| | - François Guillemette
- Centre for Research on Aquatic Ecosystem Interactions (RIVE), Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 1V3, Canada;
| | - Jeffrey Hawkes
- Department of Chemistry—BMC, Analytical Chemistry, Uppsala University, VJ2J+92 Uppsala, Sweden;
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H9, Canada; (K.C.G.d.S.); (I.D.-P.)
- Plant Biology Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 1V3, Canada
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H9, Canada; (K.C.G.d.S.); (I.D.-P.)
- Plant Biology Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 1V3, Canada
- Correspondence:
| |
Collapse
|
6
|
Feurtey A, Lorrain C, Croll D, Eschenbrenner C, Freitag M, Habig M, Haueisen J, Möller M, Schotanus K, Stukenbrock EH. Genome compartmentalization predates species divergence in the plant pathogen genus Zymoseptoria. BMC Genomics 2020; 21:588. [PMID: 32842972 PMCID: PMC7448473 DOI: 10.1186/s12864-020-06871-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/26/2020] [Indexed: 11/25/2022] Open
Abstract
Background Antagonistic co-evolution can drive rapid adaptation in pathogens and shape genome architecture. Comparative genome analyses of several fungal pathogens revealed highly variable genomes, for many species characterized by specific repeat-rich genome compartments with exceptionally high sequence variability. Dynamic genome structure may enable fast adaptation to host genetics. The wheat pathogen Zymoseptoria tritici with its highly variable genome, has emerged as a model organism to study genome evolution of plant pathogens. Here, we compared genomes of Z. tritici isolates and of sister species infecting wild grasses to address the evolution of genome composition and structure. Results Using long-read technology, we sequenced and assembled genomes of Z. ardabiliae, Z. brevis, Z. pseudotritici and Z. passerinii, together with two isolates of Z. tritici. We report a high extent of genome collinearity among Zymoseptoria species and high conservation of genomic, transcriptomic and epigenomic signatures of compartmentalization. We identify high gene content variability both within and between species. In addition, such variability is mainly limited to the accessory chromosomes and accessory compartments. Despite strong host specificity and non-overlapping host-range between species, predicted effectors are mainly shared among Zymoseptoria species, yet exhibiting a high level of presence-absence polymorphism within Z. tritici. Using in planta transcriptomic data from Z. tritici, we suggest different roles for the shared orthologs and for the accessory genes during infection of their hosts. Conclusion Despite previous reports of high genomic plasticity in Z. tritici, we describe here a high level of conservation in genomic, epigenomic and transcriptomic composition and structure across the genus Zymoseptoria. The compartmentalized genome allows the maintenance of a functional core genome co-occurring with a highly variable accessory genome.
Collapse
Affiliation(s)
- Alice Feurtey
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.,Environmental Genomics, Christian-Albrechts University of Kiel, 24118, Kiel, Germany
| | - Cécile Lorrain
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany. .,Environmental Genomics, Christian-Albrechts University of Kiel, 24118, Kiel, Germany. .,INRA Centre Grand Est - Nancy, UMR 1136 INRA/Universite de Lorraine Interactions Arbres/Microorganismes, 54280, Champenoux, France.
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | - Christoph Eschenbrenner
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.,Environmental Genomics, Christian-Albrechts University of Kiel, 24118, Kiel, Germany
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Michael Habig
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.,Environmental Genomics, Christian-Albrechts University of Kiel, 24118, Kiel, Germany
| | - Janine Haueisen
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.,Environmental Genomics, Christian-Albrechts University of Kiel, 24118, Kiel, Germany
| | - Mareike Möller
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.,Environmental Genomics, Christian-Albrechts University of Kiel, 24118, Kiel, Germany.,Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Klaas Schotanus
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.,Environmental Genomics, Christian-Albrechts University of Kiel, 24118, Kiel, Germany.,Department of Molecular Genetics and Microbiology, Duke University, Duke University Medical Center, Durham, NC, 27710, USA
| | - Eva H Stukenbrock
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.,Environmental Genomics, Christian-Albrechts University of Kiel, 24118, Kiel, Germany
| |
Collapse
|
7
|
Nvsvrot T, Xia W, Xiao Z, Zhan C, Liu M, Yang X, Zhang Y, Wang N. Combining QTL Mapping with Genome Resequencing Identifies an Indel in an R Gene that is Associated with Variation in Leaf Rust Disease Resistance in Poplar. PHYTOPATHOLOGY 2020; 110:900-906. [PMID: 31958037 DOI: 10.1094/phyto-10-19-0402-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Poplar trees (Populus spp.) are important and are widely grown worldwide. However, the extensive occurrence of leaf rust disease caused by Melampsora spp. seriously inhibits their growth and reduces their biomass. In our previous study, a high-quality genetic map was constructed for the poplar F1 population I-69 × XYY by using next-generation sequencing-based genotyping-by-sequencing. Here, we collected phenotypic data on leaf rust disease resistance on three different dates for all 300 progenies of the F1 population. Combining a high-quality genetic map and phenotypic data, we were able to detect 11 major quantitative trait loci (QTLs) for leaf rust disease resistance. Among these 11 QTLs, two pairs were detected on at least two dates. In the corresponding genomic sequence, we found that resistance (R) gene clusters were located in these two QTL regions. By using genome resequencing, PCR confirmation and statistical analysis, a 611-bp deletion within an R gene in one QTL region was found to be associated with variation in leaf rust disease resistance. A PCR-based examination of this 611-bp deletion was performed. This 611-bp deletion was also found to affect mRNA splicing and form a new protein with the loss of some key protein domains. Based on this study, we were able to determine the genetic architecture of variation in poplar leaf rust disease resistance, and the 611-bp deletion in the R gene could be used as a diagnostic marker for future poplar molecular breeding.
Collapse
Affiliation(s)
- Tashbek Nvsvrot
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenxiu Xia
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Logistics Service Group, Wuhan University, Wuhan, 430070, China
| | - Zheng'ang Xiao
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chang Zhan
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meifeng Liu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoqing Yang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan Zhang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nian Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
8
|
Kretschmer M, Damoo D, Djamei A, Kronstad J. Chloroplasts and Plant Immunity: Where Are the Fungal Effectors? Pathogens 2019; 9:E19. [PMID: 31878153 PMCID: PMC7168614 DOI: 10.3390/pathogens9010019] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/17/2019] [Accepted: 12/21/2019] [Indexed: 12/12/2022] Open
Abstract
Chloroplasts play a central role in plant immunity through the synthesis of secondary metabolites and defense compounds, as well as phytohormones, such as jasmonic acid and salicylic acid. Additionally, chloroplast metabolism results in the production of reactive oxygen species and nitric oxide as defense molecules. The impact of viral and bacterial infections on plastids and chloroplasts has been well documented. In particular, bacterial pathogens are known to introduce effectors specifically into chloroplasts, and many viral proteins interact with chloroplast proteins to influence viral replication and movement, and plant defense. By contrast, clear examples are just now emerging for chloroplast-targeted effectors from fungal and oomycete pathogens. In this review, we first present a brief overview of chloroplast contributions to plant defense and then discuss examples of connections between fungal interactions with plants and chloroplast function. We then briefly consider well-characterized bacterial effectors that target chloroplasts as a prelude to discussing the evidence for fungal effectors that impact chloroplast activities.
Collapse
Affiliation(s)
- Matthias Kretschmer
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (M.K.); (D.D.)
| | - Djihane Damoo
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (M.K.); (D.D.)
| | - Armin Djamei
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben Corrensstrasse 3, D-06466 Stadt Seeland, Germany;
| | - James Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (M.K.); (D.D.)
| |
Collapse
|
9
|
Sharma Poudel R, Richards J, Shrestha S, Solanki S, Brueggeman R. Transcriptome-wide association study identifies putative elicitors/suppressor of Puccinia graminis f. sp. tritici that modulate barley rpg4-mediated stem rust resistance. BMC Genomics 2019; 20:985. [PMID: 31842749 PMCID: PMC6915985 DOI: 10.1186/s12864-019-6369-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 12/04/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stem rust is an economically important disease of wheat and barley. However, studies to gain insight into the molecular basis of these host-pathogen interactions have primarily focused on wheat because of its importance in human sustenance. This is the first extensive study utilizing a transcriptome-wide association mapping approach to identify candidate Puccinia graminis f. sp. tritici (Pgt) effectors/suppressors that elicit or suppress barley stem rust resistance genes. Here we focus on identifying Pgt elicitors that interact with the rpg4-mediated resistance locus (RMRL), the only effective source of Pgt race TTKSK resistance in barley. RESULTS Thirty-seven Pgt isolates showing differential responses on RMRL were genotyped using Restriction Site Associated DNA-Genotyping by Sequencing (RAD-GBS), identifying 24 diverse isolates that were used for transcript analysis during the infection process. In planta RNAseq was conducted with the 24 diverse isolates on the susceptible barley variety Harrington, 5 days post inoculation. The transcripts were mapped to the Pgt race SCCL reference genome identifying 114 K variants in predicted genes that would result in nonsynonymous amino acid substitutions. Transcriptome wide association analysis identified 33 variants across 28 genes that were associated with dominant RMRL virulence, thus, representing candidate suppressors of resistance. Comparative transcriptomics between the 9 RMRL virulent -vs- the 15 RMRL avirulent Pgt isolates identified 44 differentially expressed genes encoding candidate secreted effector proteins (CSEPs), among which 38 were expressed at lower levels in virulent isolates suggesting that they may represent RMRL avirulence genes. Barley transcript analysis after colonization with 9 RMRL virulent and 15 RMRL avirulent isolates inoculated on the susceptible line Harrington showed significantly lower expression of host biotic stress responses specific to RMRL virulent isolates suggesting virulent isolates harbor effectors that suppress resistance responses. CONCLUSIONS This transcriptomic study provided novel findings that help fill knowledge gaps in the understanding of stem rust virulence/avirulence and host resistance in barley. The pathogen transcriptome analysis suggested RMRL virulence might depend on the lack of avirulence genes, but evidence from pathogen association mapping analysis and host transcriptional analysis also suggested the alternate hypothesis that RMRL virulence may be due to the presence of suppressors of defense responses.
Collapse
Affiliation(s)
| | - Jonathan Richards
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA, USA
| | - Subidhya Shrestha
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA
| | - Shyam Solanki
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Robert Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA.
| |
Collapse
|
10
|
Hong J, Luo Y, Mou M, Fu J, Zhang Y, Xue W, Xie T, Tao L, Lou Y, Zhu F. Convolutional neural network-based annotation of bacterial type IV secretion system effectors with enhanced accuracy and reduced false discovery. Brief Bioinform 2019; 21:1825-1836. [PMID: 31860715 DOI: 10.1093/bib/bbz120] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/12/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022] Open
Abstract
The type IV bacterial secretion system (SS) is reported to be one of the most ubiquitous SSs in nature and can induce serious conditions by secreting type IV SS effectors (T4SEs) into the host cells. Recent studies mainly focus on annotating new T4SE from the huge amount of sequencing data, and various computational tools are therefore developed to accelerate T4SE annotation. However, these tools are reported as heavily dependent on the selected methods and their annotation performance need to be further enhanced. Herein, a convolution neural network (CNN) technique was used to annotate T4SEs by integrating multiple protein encoding strategies. First, the annotation accuracies of nine encoding strategies integrated with CNN were assessed and compared with that of the popular T4SE annotation tools based on independent benchmark. Second, false discovery rates of various models were systematically evaluated by (1) scanning the genome of Legionella pneumophila subsp. ATCC 33152 and (2) predicting the real-world non-T4SEs validated using published experiments. Based on the above analyses, the encoding strategies, (a) position-specific scoring matrix (PSSM), (b) protein secondary structure & solvent accessibility (PSSSA) and (c) one-hot encoding scheme (Onehot), were identified as well-performing when integrated with CNN. Finally, a novel strategy that collectively considers the three well-performing models (CNN-PSSM, CNN-PSSSA and CNN-Onehot) was proposed, and a new tool (CNN-T4SE, https://idrblab.org/cnnt4se/) was constructed to facilitate T4SE annotation. All in all, this study conducted a comprehensive analysis on the performance of a collection of encoding strategies when integrated with CNN, which could facilitate the suppression of T4SS in infection and limit the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Jiajun Hong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongchao Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianbo Fu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Zhang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Tian Xie
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, School of Medicine, Hangzhou Normal University, Hangzhou 310036, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, School of Medicine, Hangzhou Normal University, Hangzhou 310036, China
| | - Yan Lou
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou 310000, Zhejiang, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Lorrain C, Gonçalves Dos Santos KC, Germain H, Hecker A, Duplessis S. Advances in understanding obligate biotrophy in rust fungi. THE NEW PHYTOLOGIST 2019; 222:1190-1206. [PMID: 30554421 DOI: 10.1111/nph.15641] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/13/2018] [Indexed: 05/18/2023]
Abstract
Contents Summary 1190 I. Introduction 1190 II. Rust fungi: a diverse and serious threat to agriculture 1191 III. The different facets of rust life cycles and unresolved questions about their evolution 1191 IV. The biology of rust infection 1192 V. Rusts in the genomics era: the ever-expanding list of candidate effector genes 1195 VI. Functional characterization of rust effectors 1197 VII. Putting rusts to sleep: Pucciniales research outlooks 1201 Acknowledgements 1202 References 1202 SUMMARY: Rust fungi (Pucciniales) are the largest group of plant pathogens and represent one of the most devastating threats to agricultural crops worldwide. Despite the economic importance of these highly specialized pathogens, many aspects of their biology remain obscure, largely because rust fungi are obligate biotrophs. The rise of genomics and advances in high-throughput sequencing technology have presented new options for identifying candidate effector genes involved in pathogenicity mechanisms of rust fungi. Transcriptome analysis and integrated bioinformatics tools have led to the identification of key genetic determinants of host susceptibility to infection by rusts. Thousands of genes encoding secreted proteins highly expressed during host infection have been reported for different rust species, which represents significant potential towards understanding rust effector function. Recent high-throughput in planta expression screen approaches (effectoromics) have pushed the field ahead even further towards predicting high-priority effectors and identifying avirulence genes. These new insights into rust effector biology promise to inform future research and spur the development of effective and sustainable strategies for managing rust diseases.
Collapse
Affiliation(s)
- Cécile Lorrain
- INRA Centre Grand Est - Nancy, UMR 1136 INRA/Université de Lorraine Interactions Arbres/Microorganismes, Champenoux, 54280, France
| | | | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics, Université du Quebec à Trois-Rivières, Trois-Rivières, QC, G9A 5H7, Canada
| | - Arnaud Hecker
- Université de Lorraine, UMR 1136 Université de Lorraine/INRA Interactions Arbres/Microorganismes, Vandoeuvre-lès-Nancy, France
| | - Sébastien Duplessis
- INRA Centre Grand Est - Nancy, UMR 1136 INRA/Université de Lorraine Interactions Arbres/Microorganismes, Champenoux, 54280, France
| |
Collapse
|
12
|
Wang W, Deng Z, Wu H, Zhao Q, Li T, Zhu W, Wang X, Tang L, Wang C, Cui SZ, Xiao H, Chen J. A small secreted protein triggers a TLR2/4-dependent inflammatory response during invasive Candida albicans infection. Nat Commun 2019; 10:1015. [PMID: 30833559 PMCID: PMC6399272 DOI: 10.1038/s41467-019-08950-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/17/2019] [Indexed: 11/09/2022] Open
Abstract
Candida albicans can switch from commensal to pathogenic mode, causing mucosal or disseminated candidiasis. The host relies on pattern-recognition receptors including Toll-like receptors (TLRs) and C-type lectin receptors (CLRs) to sense invading fungal pathogens and launch immune defense mechanisms. However, the complex interplay between fungus and host innate immunity remains incompletely understood. Here we report that C. albicans upregulates expression of a small secreted cysteine-rich protein Sel1 upon encountering limited nitrogen and abundant serum. Sel1 activates NF-κB and MAPK signaling pathways, leading to expression of proinflammatory cytokines and chemokines. Comprehensive genetic and biochemical analyses reveal both TLR2 and TLR4 are required for the recognition of Sel1. Further, SEL1-deficient C. albicans display an impaired immune response in vivo, causing increased morbidity and mortality in a bloodstream infection model. We identify a critical component in the Candida-host interaction that opens a new avenue to tackle Candida infection and inflammation.
Collapse
Affiliation(s)
- Wenjuan Wang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Zihou Deng
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Hongyu Wu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Qun Zhao
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Tiantian Li
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Wencheng Zhu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Xiongjun Wang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Longhai Tang
- Suzhou Blood Center, Suzhou, Jiangsu, 215000, China
| | - Chengshu Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shu-Zhong Cui
- State Key Laboratory of Respiratory Diseases, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Hui Xiao
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
| | - Jiangye Chen
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
| |
Collapse
|
13
|
See PT, Iagallo EM, Oliver RP, Moffat CS. Heterologous Expression of the Pyrenophora tritici-repentis Effector Proteins ToxA and ToxB, and the Prevalence of Effector Sensitivity in Australian Cereal Crops. Front Microbiol 2019; 10:182. [PMID: 30809209 PMCID: PMC6379657 DOI: 10.3389/fmicb.2019.00182] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/23/2019] [Indexed: 12/05/2022] Open
Abstract
Here, we evaluate the expression of the proteinaceous effectors ToxA and ToxB, produced by the necrotrophic fungal pathogen Pyrenophora tritici-repentis, which confer tan spot disease susceptibility on wheat. These necrotrophic effectors were expressed in two heterologous systems: Escherichia coli and Pichia pastoris. The E. coli SHuffle system was demonstrated to be superior to P. pastoris in generating high-levels of recombinant proteins that were soluble and stable. In addition, protein extracts from P. pastoris induced non-specific chlorosis on wheat, postulated to be caused by co-purified glucanases secreted by the host. Up to 79.6 μg/ml of ToxB was obtained using the SHuffle system in the absence of the native signal peptide, whilst the ToxA yield was considerably lower at 3.2 μg/ml. Results indicated that a histidine tag at the ToxA C-terminus interfered with effector functionality. Heterologously expressed ToxA and ToxB were tested on a panel of Australian cereals, including 122 varieties of bread wheat, 16 durum, 20 triticale and 5 barley varieties, as well as common plant model species including tobacco and Arabidopsis thaliana. A varying degree of effector sensitivities was observed, with a higher ToxB sensitivity and prevalence in the durum and triticale varieties. ToxB-induced chlorosis was also detected on barley. The heterologous expression of effectors that are easily scalable, will facilitate effector-assisted selection of varieties in wheat breeding programs as well as the investigation of P. tritici-repentis effectors in host and non-host interactions.
Collapse
Affiliation(s)
| | | | | | - Caroline S. Moffat
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
14
|
Lorrain C, Marchal C, Hacquard S, Delaruelle C, Pétrowski J, Petre B, Hecker A, Frey P, Duplessis S. The Rust Fungus Melampsora larici-populina Expresses a Conserved Genetic Program and Distinct Sets of Secreted Protein Genes During Infection of Its Two Host Plants, Larch and Poplar. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:695-706. [PMID: 29336199 DOI: 10.1094/mpmi-12-17-0319-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Mechanisms required for broad-spectrum or specific host colonization of plant parasites are poorly understood. As a perfect illustration, heteroecious rust fungi require two alternate host plants to complete their life cycles. Melampsora larici-populina infects two taxonomically unrelated plants, larch, on which sexual reproduction is achieved, and poplar, on which clonal multiplication occurs, leading to severe epidemics in plantations. We applied deep RNA sequencing to three key developmental stages of M. larici-populina infection on larch: basidia, pycnia, and aecia, and we performed comparative transcriptomics of infection on poplar and larch hosts, using available expression data. Secreted protein was the only significantly overrepresented category among differentially expressed M. larici-populina genes between the basidial, the pycnial, and the aecial stages, highlighting their probable involvement in the infection process. Comparison of fungal transcriptomes in larch and poplar revealed a majority of rust genes were commonly expressed on the two hosts and a fraction exhibited host-specific expression. More particularly, gene families encoding small secreted proteins presented striking expression profiles that highlight probable candidate effectors specialized on each host. Our results bring valuable new information about the biological cycle of rust fungi and identify genes that may contribute to host specificity.
Collapse
Affiliation(s)
- Cécile Lorrain
- 1 INRA/Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, INRA Centre Grand Est-Nancy, F-54280 Champenoux, France; and
| | - Clémence Marchal
- 1 INRA/Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, INRA Centre Grand Est-Nancy, F-54280 Champenoux, France; and
| | - Stéphane Hacquard
- 1 INRA/Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, INRA Centre Grand Est-Nancy, F-54280 Champenoux, France; and
| | - Christine Delaruelle
- 1 INRA/Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, INRA Centre Grand Est-Nancy, F-54280 Champenoux, France; and
| | - Jérémy Pétrowski
- 1 INRA/Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, INRA Centre Grand Est-Nancy, F-54280 Champenoux, France; and
| | - Benjamin Petre
- 1 INRA/Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, INRA Centre Grand Est-Nancy, F-54280 Champenoux, France; and
- 2 The Sainsbury Laboratory, Norwich Research Park, NR4 7UH, Norwich, U.K
| | - Arnaud Hecker
- 1 INRA/Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, INRA Centre Grand Est-Nancy, F-54280 Champenoux, France; and
| | - Pascal Frey
- 1 INRA/Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, INRA Centre Grand Est-Nancy, F-54280 Champenoux, France; and
| | - Sébastien Duplessis
- 1 INRA/Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, INRA Centre Grand Est-Nancy, F-54280 Champenoux, France; and
| |
Collapse
|
15
|
Qi M, Grayczyk JP, Seitz JM, Lee Y, Link TI, Choi D, Pedley KF, Voegele RT, Baum TJ, Whitham SA. Suppression or Activation of Immune Responses by Predicted Secreted Proteins of the Soybean Rust Pathogen Phakopsora pachyrhizi. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:163-174. [PMID: 29144203 DOI: 10.1094/mpmi-07-17-0173-fi] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Rust fungi, such as the soybean rust pathogen Phakopsora pachyrhizi, are major threats to crop production. They form specialized haustoria that are hyphal structures intimately associated with host-plant cell membranes. These haustoria have roles in acquiring nutrients and secreting effector proteins that manipulate host immune systems. Functional characterization of effector proteins of rust fungi is important for understanding mechanisms that underlie their virulence and pathogenicity. Hundreds of candidate effector proteins have been predicted for rust pathogens, but it is not clear how to prioritize these effector candidates for further characterization. There is a need for high-throughput approaches for screening effector candidates to obtain experimental evidence for effector-like functions, such as the manipulation of host immune systems. We have focused on identifying effector candidates with immune-related functions in the soybean rust fungus P. pachyrhizi. To facilitate the screening of many P. pachyrhizi effector candidates (named PpECs), we used heterologous expression systems, including the bacterial type III secretion system, Agrobacterium infiltration, a plant virus, and a yeast strain, to establish an experimental pipeline for identifying PpECs with immune-related functions and establishing their subcellular localizations. Several PpECs were identified that could suppress or activate immune responses in nonhost Nicotiana benthamiana, N. tabacum, Arabidopsis, tomato, or pepper plants.
Collapse
Affiliation(s)
- Mingsheng Qi
- 1 Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011, U.S.A
| | - James P Grayczyk
- 1 Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011, U.S.A
| | - Janina M Seitz
- 2 Institut für Phytomedizin, Universität Hohenheim, Otto-Sander-Straße 5, 70599 Stuttgart, Germany
| | - Youngsill Lee
- 3 Department of Plant Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Korea; and
| | - Tobias I Link
- 2 Institut für Phytomedizin, Universität Hohenheim, Otto-Sander-Straße 5, 70599 Stuttgart, Germany
| | - Doil Choi
- 3 Department of Plant Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Korea; and
| | - Kerry F Pedley
- 4 Foreign Disease-Weed Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Ft. Detrick, MD 21702, U.S.A
| | - Ralf T Voegele
- 2 Institut für Phytomedizin, Universität Hohenheim, Otto-Sander-Straße 5, 70599 Stuttgart, Germany
| | - Thomas J Baum
- 1 Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011, U.S.A
| | - Steven A Whitham
- 1 Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011, U.S.A
| |
Collapse
|
16
|
Sperschneider J, Dodds PN, Taylor JM, Duplessis S. Computational Methods for Predicting Effectors in Rust Pathogens. Methods Mol Biol 2017; 1659:73-83. [PMID: 28856642 DOI: 10.1007/978-1-4939-7249-4_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Lower costs and improved sequencing technologies have led to a large number of high-quality rust pathogen genomes and deeper characterization of gene expression profiles during early and late infection stages. However, the set of secreted proteins expressed during infection is too large for experimental investigations and contains not only effectors but also proteins that play a role in niche colonization or in fighting off competing microbes. Therefore, accurate computational prediction is essential for identifying high-priority rust effector candidates from secretomes.
Collapse
Affiliation(s)
- Jana Sperschneider
- Centre for Environmental and Life Sciences, CSIRO Agriculture and Food, Underwood Avenue, Floreat, WA, Australia.
| | - Peter N Dodds
- Black Mountain Laboratories, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Jennifer M Taylor
- Black Mountain Laboratories, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Sébastien Duplessis
- INRA, Unité Mixte de Recherche INRA/Université de Lorraine 1136 Interactions Arbres-Microorganismes, INRA Centre Grand Est - Nancy, Champenoux, France
| |
Collapse
|
17
|
Phylogenetics and Phylogenomics of Rust Fungi. FUNGAL PHYLOGENETICS AND PHYLOGENOMICS 2017; 100:267-307. [DOI: 10.1016/bs.adgen.2017.09.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
McCotter SW, Horianopoulos LC, Kronstad JW. Regulation of the fungal secretome. Curr Genet 2016; 62:533-45. [DOI: 10.1007/s00294-016-0578-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/04/2016] [Accepted: 02/06/2016] [Indexed: 02/07/2023]
|