1
|
Ning Y, Liu Z, Liu J, Qi R, Xia P, Yuan X, Xu H, Chen L. Comparative transcriptomics analysis of tolerant and sensitive genotypes reveals genes involved in the response to cold stress in bitter gourd (Momordica charantia L.). Sci Rep 2024; 14:16564. [PMID: 39019887 PMCID: PMC11255239 DOI: 10.1038/s41598-024-58754-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/02/2024] [Indexed: 07/19/2024] Open
Abstract
Bitter gourd is an economically important horticultural crop for its edible and medicinal value. However, the regulatory mechanisms of bitter gourd in response to cold stress are still poorly elucidated. In this study, phytohormone determination and comparative transcriptome analyses in XY (cold-tolerant) and QF (cold-sensitive) after low temperature treatment were conducted. Under cold stress, the endogenous contents of abscisic acid (ABA), jasmonic acid (JA) and salicylic acid (SA) in XY were significantly increased at 24 h after treatment (HAT), indicating that ABA, JA and SA might function in regulating cold resistance. RNA-seq results revealed that more differentially expressed genes were identified at 6 HAT in QF and 24 HAT in XY, respectively. KEGG analysis suggested that the plant hormone signal transduction pathway was significantly enriched in both genotypes at all the time points. In addition, transcription factors showing different expression patterns between XY and QF were identified, including CBF3, ERF2, NAC90, WRKY51 and WRKY70. Weighted gene co-expression network analysis suggested MARK1, ERF17, UGT74E2, GH3.1 and PPR as hub genes. These results will deepen the understanding of molecular mechanism of bitter gourd in response to cold stress and the identified genes may help to facilitate the genetic improvement of cold-resistant cultivars.
Collapse
Affiliation(s)
- Yu Ning
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Zhiyang Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jing Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Renjie Qi
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Pengfei Xia
- Nanjing Innovation Vegetable Molecular Breeding Research Institute, Nanjing, 211899, China
| | - Xihan Yuan
- Nanjing Innovation Vegetable Molecular Breeding Research Institute, Nanjing, 211899, China
| | - Hai Xu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Longzheng Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
2
|
Han R, Ma L, Terzaghi W, Guo Y, Li J. Molecular mechanisms underlying coordinated responses of plants to shade and environmental stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1893-1913. [PMID: 38289877 DOI: 10.1111/tpj.16653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Shade avoidance syndrome (SAS) is triggered by a low ratio of red (R) to far-red (FR) light (R/FR ratio), which is caused by neighbor detection and/or canopy shade. In order to compete for the limited light, plants elongate hypocotyls and petioles by deactivating phytochrome B (phyB), a major R light photoreceptor, thus releasing its inhibition of the growth-promoting transcription factors PHYTOCHROME-INTERACTING FACTORs. Under natural conditions, plants must cope with abiotic stresses such as drought, soil salinity, and extreme temperatures, and biotic stresses such as pathogens and pests. Plants have evolved sophisticated mechanisms to simultaneously deal with multiple environmental stresses. In this review, we will summarize recent major advances in our understanding of how plants coordinately respond to shade and environmental stresses, and will also discuss the important questions for future research. A deep understanding of how plants synergistically respond to shade together with abiotic and biotic stresses will facilitate the design and breeding of new crop varieties with enhanced tolerance to high-density planting and environmental stresses.
Collapse
Affiliation(s)
- Run Han
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Liang Ma
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - William Terzaghi
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, 18766, USA
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
| |
Collapse
|
3
|
Lu M, Gao P, Hu J, Hou J, Wang D. A classification method of stress in plants using unsupervised learning algorithm and chlorophyll fluorescence technology. FRONTIERS IN PLANT SCIENCE 2023; 14:1202092. [PMID: 37936937 PMCID: PMC10626557 DOI: 10.3389/fpls.2023.1202092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/29/2023] [Indexed: 11/09/2023]
Abstract
Introduction Chilling injury is one of the most common meteorological disasters affecting cucumber production. For implementing remedial measures as soon as possible to minimize production loss, a timely and precise assessment of chilling injury is crucial. Methods To evaluate the possibility of detecting cucumber chilling injury using chlorophyll fluorescence (ChlF) technology, we investigated the continuous changes in ChlF parameters under various low-temperature conditions and created the criteria for evaluating chilling injury. The ChlF induction curves were first collected before low-temperature as unstressed samples and daily 1 to 5 days after low-temperature as chilling injury samples. Principal component analysis was employed to investigate the public information on ChlF parameters and evaluate the differences between samples with different degrees of chilling injury. The parameters (F v/F m, Y(NO), qP, and F o) accounted for a large proportion in the principal components and could characterize chilling injury. Uniform manifold approximation and projection method was employed to extract new features (Feature 1, Feature 2, Feature 3, and Feature 4) from ChlF parameters for subsequent classification model. Taking four features as input, a classification model based on the Fuzzy C-means clustering algorithm was constructed in order to identify the chilling injury classes of cucumber seedlings. The cucumber seedlings with different chilling injury classes were analyzed for ChlF images, rapid light curves, and malondialdehyde content. Results and discussion The results demonstrated that the variations in these indicators among the different chilling injury classes supported the validity of the classification model. Our findings provide a better understanding of the relationship between ChlF parameters and the impact of low-temperature treatment on cucumber seedlings. This finding offers an additional perspective that can be used to evaluate the responses and damage that plants experience under stress.
Collapse
Affiliation(s)
- Miao Lu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Pan Gao
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin Hu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
- College of Information Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, China
| | - Junying Hou
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, China
| | - Dong Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Sharma N, Nagar S, Thakur M, Suriyakumar P, Kataria S, Shanker A, Landi M, Anand A. Photosystems under high light stress: throwing light on mechanism and adaptation. PHOTOSYNTHETICA 2023; 61:250-263. [PMID: 39650670 PMCID: PMC11515824 DOI: 10.32615/ps.2023.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/15/2023] [Indexed: 12/11/2024]
Abstract
High light stress decreases the photosynthetic rate in plants due to photooxidative damage to photosynthetic apparatus, photoinhibition of PSII, and/or damage to PSI. The dissipation of excess energy by nonphotochemical quenching and degradation of the D1 protein of PSII and its repair cycle help against photooxidative damage. Light stress also activates stress-responsive nuclear genes through the accumulation of phosphonucleotide-3'-phosphoadenosine-5'-phosphate, methylerythritol cyclodiphosphate, and reactive oxygen species which comprise the chloroplast retrograde signaling pathway. Additionally, hormones, such as abscisic acid, cytokinin, brassinosteroids, and gibberellins, play a role in acclimation to light fluctuations. Several alternate electron flow mechanisms, which offset the excess of electrons, include activation of plastid or plastoquinol terminal oxidase, cytochrome b 6/f complex, cyclic electron flow through PSI, Mehler ascorbate peroxidase pathway or water-water cycle, mitochondrial alternative oxidase pathway, and photorespiration. In this review, we provided insights into high light stress-mediated damage to photosynthetic apparatus and strategies to mitigate the damage by decreasing antennae size, enhancing NPQ through the introduction of mutants, expression of algal proteins to improve photosynthetic rates and engineering ATP synthase.
Collapse
Affiliation(s)
- N. Sharma
- Department of Basic Sciences, College of Forestry, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, 173230 Solan, India
| | - S. Nagar
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, 110012 New Delhi, India
| | - M. Thakur
- Department of Basic Sciences, College of Horticulture and Forestry, Dr. Y.S. Parmar University of Horticulture and Forestry, Neri, 177001 Hamirpur, India
| | - P. Suriyakumar
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, 110012 New Delhi, India
| | - S. Kataria
- School of Biochemistry, Devi Ahilya University, 452001 Indore, Madhya Pradesh, India
| | - A.K. Shanker
- Division of Crop Sciences, Central Research Institute for Dryland Agriculture, Hyderabad, Telangana, India
| | - M. Landi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - A. Anand
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, 110012 New Delhi, India
| |
Collapse
|
5
|
Dai X, Zhang Y, Xu X, Ran M, Zhang J, Deng K, Ji G, Xiao L, Zhou X. Transcriptome and functional analysis revealed the intervention of brassinosteroid in regulation of cold induced early flowering in tobacco. FRONTIERS IN PLANT SCIENCE 2023; 14:1136884. [PMID: 37063233 PMCID: PMC10102362 DOI: 10.3389/fpls.2023.1136884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Cold environmental conditions may often lead to the early flowering of plants, and the mechanism by cold-induced flowering remains poorly understood. Microscopy analysis in this study demonstrated that cold conditioning led to early flower bud differentiation in two tobacco strains and an Agilent Tobacco Gene Expression microarray was adapted for transcriptomic analysis on the stem tips of cold treated tobacco to gain insight into the molecular process underlying flowering in tobacco. The transcriptomic analysis showed that cold treatment of two flue-cured tobacco varieties (Xingyan 1 and YunYan 85) yielded 4176 and 5773 genes that were differentially expressed, respectively, with 2623 being commonly detected. Functional distribution revealed that the differentially expressed genes (DEGs) were mainly enriched in protein metabolism, RNA, stress, transport, and secondary metabolism. Genes involved in secondary metabolism, cell wall, and redox were nearly all up-regulated in response to the cold conditioning. Further analysis demonstrated that the central genes related to brassinosteroid biosynthetic pathway, circadian system, and flowering pathway were significantly enhanced in the cold treated tobacco. Phytochemical measurement and qRT-PCR revealed an increased accumulation of brassinolide and a decreased expression of the flowering locus c gene. Furthermore, we found that overexpression of NtBRI1 could induce early flowering in tobacco under normal condition. And low-temperature-induced early flowering in NtBRI1 overexpression plants were similar to that of normal condition. Consistently, low-temperature-induced early flowering is partially suppressed in NtBRI1 mutant. Together, the results suggest that cold could induce early flowering of tobacco by activating brassinosteroid signaling.
Collapse
Affiliation(s)
- Xiumei Dai
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Yan Zhang
- Chongqing Tobacco Science Research Institute, Chongqing, China
| | - Xiaohong Xu
- Chongqing Tobacco Science Research Institute, Chongqing, China
| | - Mao Ran
- Chongqing Tobacco Science Research Institute, Chongqing, China
| | - Jiankui Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Kexuan Deng
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Guangxin Ji
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Lizeng Xiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Xue Zhou
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
6
|
Colpo A, Demaria S, Baldisserotto C, Pancaldi S, Brestič M, Živčak M, Ferroni L. Long-Term Alleviation of the Functional Phenotype in Chlorophyll-Deficient Wheat and Impact on Productivity: A Semi-Field Phenotyping Experiment. PLANTS (BASEL, SWITZERLAND) 2023; 12:822. [PMID: 36840171 PMCID: PMC9964019 DOI: 10.3390/plants12040822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Wheat mutants with a reduced chlorophyll synthesis are affected by a defective control of the photosynthetic electron flow, but tend to recover a wild-type phenotype. The sensitivity of some mutants to light fluctuations suggested that cultivation outdoors could significantly impact productivity. Six mutant lines of Triticum durum or Triticum aestivum with their respective wild-type cultivars were cultivated with a regular seasonal cycle (October-May) in a semi-field experiment. Leaf chlorophyll content and fluorescence parameters were analysed at the early (November) and late (May) developmental stages, and checked for correlation with morphometric and grain-production parameters. The alleviation of the phenotype severity concerned primarily the recovery of the photosynthetic-membrane functionality, but not the leaf chlorophyll content. Photosystem II (PSII) was less photoprotected in the mutants, but a moderate PSII photoinhibition could help control the electron flow into the chain. The accumulation of interchain electron carriers was a primary acclimative response towards the naturally fluctuating environment, maximally exploited by the mature durum-wheat mutants. The mutation itself and/or the energy-consuming compensatory mechanisms markedly influenced the plant morphogenesis, leading especially to reduced tillering, which in turn resulted in lower grain production per plant. Consistently with the interrelation between early photosynthetic phenotype and grain-yield per plant, chlorophyll-fluorescence indexes related to the level of photoprotective thermal dissipation (pNPQ), photosystem II antenna size (ABS/RC), and pool of electron carriers (Sm) are proposed as good candidates for the in-field phenotyping of chlorophyll-deficient wheat.
Collapse
Affiliation(s)
- Andrea Colpo
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d’Este 32, 44121 Ferrara, Italy
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Sara Demaria
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d’Este 32, 44121 Ferrara, Italy
| | - Costanza Baldisserotto
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d’Este 32, 44121 Ferrara, Italy
| | - Simonetta Pancaldi
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d’Este 32, 44121 Ferrara, Italy
| | - Marian Brestič
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Marek Živčak
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Lorenzo Ferroni
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d’Este 32, 44121 Ferrara, Italy
| |
Collapse
|
7
|
Cun Z, Xu XZ, Zhang JY, Shuang SP, Wu HM, An TX, Chen JW. Responses of photosystem to long-term light stress in a typically shade-tolerant species Panax notoginseng. FRONTIERS IN PLANT SCIENCE 2023; 13:1095726. [PMID: 36714733 PMCID: PMC9878349 DOI: 10.3389/fpls.2022.1095726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Photosynthetic adaptive strategies vary with the growth irradiance. The potential photosynthetic adaptive strategies of shade-tolerant species Panax notoginseng (Burkill) F. H. Chen to long-term high light and low light remains unclear. Photosynthetic performance, photosynthesis-related pigments, leaves anatomical characteristics and antioxidant enzyme activities were comparatively determined in P. notoginseng grown under different light regimes. The thickness of the upper epidermis, palisade tissue, and lower epidermis were declined with increasing growth irradiance. Low-light-grown leaves were declined in transpiration rate (Tr) and stomatal conductance (Cond), but intercellular CO2 concentration (C i) and net photosynthesis rate (P n) had opposite trends. The maximum photo-oxidation P 700 + (P m) was greatly reduced in 29.8% full sunlight (FL) plants; The maximum quantum yield of photosystem II (F v/F m) in 0.2% FL plants was significantly lowest. Electron transport, thermal dissipation, and the effective quantum yield of PSI [Y(I)] and PSII [Y(II)] were declined in low-light-grown plants compared with high-light-grown P. notoginseng. The minimum value of non-regulated energy dissipation of PSII [Y(NO)] was recorded in 0.2% FL P. notoginseng. OJIP kinetic curve showed that relative variable fluorescence at J-phase (V J) and the ratio of variable fluorescent F K occupying the F J-F O amplitude (W k) were significantly increased in 0.2% FL plants. However, the increase in W k was lower than the increase in V J. In conclusion, PSI photoinhibition is the underlying sensitivity of the typically shade-tolerant species P. notoginseng to high light, and the photodamage to PSII acceptor side might cause the typically shade-tolerant plants to be unsuitable for long-term low light stress.
Collapse
Affiliation(s)
- Zhu Cun
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Xiang-Zeng Xu
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
- Research Center for Collection and Utilization of Tropical Crop Resources, Yunnan Institute of Tropical Crops, Xishuangbanna, China
| | - Jin-Yan Zhang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Sheng-Pu Shuang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Hong-Min Wu
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Tong-Xin An
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Jun-Wen Chen
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
8
|
Song Q, Zhang S, Bai C, Shi Q, Wu D, Liu Y, Han X, Li T, Yong JWH. Exogenous Ca 2+ priming can improve peanut photosynthetic carbon fixation and pod yield under early sowing scenarios in the field. FRONTIERS IN PLANT SCIENCE 2022; 13:1004721. [PMID: 36247552 PMCID: PMC9557924 DOI: 10.3389/fpls.2022.1004721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Harnessing cold-resilient and calcium-enriched peanut production technology are crucial for high-yielding peanut cultivation in high-latitude areas. However, there is limited field data about how exogenous calcium (Ca2+) application would improve peanut growth resilience during exposure to chilling stress at early sowing (ES). To help address this problem, a two-year field study was conducted to assess the effects of exogenous foliar Ca2+ application on photosynthetic carbon fixation and pod yield in peanuts under different sowing scenarios. We measured plant growth indexes, leaf photosynthetic gas exchange, photosystems activities, and yield in peanuts. It was indicated that ES chilling stress at the peanut seedling stage led to the reduction of Pn, gs, Tr, Ls, WUE, respectively, and the excessive accumulation of non-structural carbohydrates in leaves, which eventually induced a chilling-dependent feedback inhibition of photosynthesis due mainly to weaken growth/sink demand. While exogenous Ca2+ foliar application improved the export of nonstructural carbohydrates, and photosynthetic capacity, meanwhile activated cyclic electron flow, thereby enhancing growth and biomass accumulation in peanut seedlings undergoing ES chilling stress. Furthermore, ES combined with exogenous Ca2+ application can significantly enhance plant chilling resistance and peanut yield ultimately in the field. In summary, the above results demonstrated that exogenous foliar Ca2+ application restored the ES-linked feedback inhibition of photosynthesis, enhancing the growth/sink demand and the yield of peanuts.
Collapse
Affiliation(s)
- Qiaobo Song
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Siwei Zhang
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Chunming Bai
- Research Institute of Sorghum, Liaoning Academy of Agricultural Sciences, Shenyang, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Qingwen Shi
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Di Wu
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Yifei Liu
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Xiaori Han
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Tianlai Li
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Jean Wan Hong Yong
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
9
|
Song W, Wei F, Gao S, Dong C, Hao J, Jin L, Li F, Wei P, Guo J, Wang R. Functional characterization and comparison of lycopene epsilon-cyclase genes in Nicotiana tabacum. BMC PLANT BIOLOGY 2022; 22:252. [PMID: 35597910 PMCID: PMC9123772 DOI: 10.1186/s12870-022-03634-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Lycopene epsilon-cyclase (ε-LCY) is a key enzyme in the carotenoid biosynthetic pathway (CBP) of higher plants. In previous work, we cloned two Ntε-LCY genes from allotetraploid tobacco (Nicotiana tabacum), Ntε-LCY2 and Ntε-LCY1, and demonstrated the overall effect of Ntε-LCY genes on carotenoid biosynthesis and stress resistance. However, their genetic and functional characteristics require further research in polyploid plants. RESULTS Here, we used CRISPR/Cas9 to obtain Ntε-LCY2 and Ntε-LCY1 mutants in allotetraploid N.tabacum K326. Ntε-LCY2 and Ntε-LCY1 had similar promoter cis-acting elements, including light-responsive elements. The Ntε-LCY genes were expressed in roots, stems, leaves, flowers, and young fruit, and their highest expression levels were found in leaves. Ntε-LCY2 and Ntε-LCY1 genes responded differently to normal light and high light stress. Both the Ntε-LCY2 and the Ntε-LCY1 mutants had a more rapid leaf growth rate, especially ntε-lcy2-1. The expression levels of CBP genes were increased in the ntε-lcy mutants, and their total carotenoid content was higher. Under both normal light and high light stress, the ntε-lcy mutants had higher photosynthetic capacities and heat dissipation levels than the wild type, and this was especially true of ntε-lcy2-1. The reactive oxygen species content was lower in leaves of the ntε-lcy mutants. CONCLUSION In summary, the expression patterns and biological functions of the Ntε-LCY genes Ntε-LCY1 and Ntε-LCY2 differed in several respects. The mutation of Ntε-LCY2 was associated with a greater increase in the content of chlorophyll and various carotenoid components, and it enhanced the stress resistance of tobacco plants under high light.
Collapse
Affiliation(s)
- Weina Song
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Fang Wei
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Shuwen Gao
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, Henan, China
| | - Chen Dong
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, China
| | - Jianfeng Hao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Lifeng Jin
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, Henan, China
| | - Feng Li
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, Henan, China
| | - Pan Wei
- Zhengzhou Tobacco Research Institute, Zhengzhou, 450001, Henan, China
| | - Jinggong Guo
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, Henan, China
| | - Ran Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
10
|
Dhokne K, Pandey J, Yadav RM, Ramachandran P, Rath JR, Subramanyam R. Change in the photochemical and structural organization of thylakoids from pea (Pisum sativum) under salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 177:46-60. [PMID: 35255419 DOI: 10.1016/j.plaphy.2022.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Salt can induce adverse effects, primarily on the photosynthetic process, ultimately influencing plant productivity. Still, the impact of salt on the photosynthesis process in terms of supercomplexes organization of thylakoid structure and function is not understood in Pea (Pisum sativum). To understand the structure and function in the leaves and thylakoids under salt (NaCl) treatment, we used various biophysical and biochemical techniques like infrared gas analyzer, chlorophyll a fluorescence, circular dichroism, electron microscopy, blue native gels, and western blots. The net photosynthetic rate, transpiration rate, and stomatal conductance were reduced significantly, whereas the water use efficiency was enhanced remarkably under high salt conditions (200 mM NaCl). The photochemical efficiency of both photosystem (PS) I and II was reduced in high salt by inhibiting their donor and acceptor sides. Interestingly the non-photochemical quenching (NPQ) is reduced in high salt; however, the non-regulated energy dissipation (NO) of PSII increased, leading to inactivation of PSII. The obtained results exhibit inhibition of NAD(P)H dehydrogenase (NDH) mediated pathway-dependent cyclic electron transport under salinity caused a decrease in proton motive force of ΔpH and Δψ. Further, the electron micrographs show the disorganization of grana thylakoids under salt stress. Furthermore, the macro-organization and supercomplexes of thylakoids were significantly affected by high salt. Specifically, the mega complexes, PSII-LHCII, PSI-LHCI, and NDH complexes were notably reduced, ultimately altering the electron transport. The reaction center proteins of oxygen-evolving complexes, D1 and D2 proteins were affected to high salt indicating changes in photochemical activities.
Collapse
Affiliation(s)
- Kunal Dhokne
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India; Department of Botany, Shri Vitthal Rukmini College, Sawana, Yavatmal, 445001, India
| | - Jayendra Pandey
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Ranay Mohan Yadav
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Pavithra Ramachandran
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Jyoti Ranjan Rath
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
11
|
Cun Z, Wu HM, Zhang JY, Shuang SP, Hong J, Chen JW. Responses of Linear and Cyclic Electron Flow to Nitrogen Stress in an N-Sensitive Species Panax notoginseng. FRONTIERS IN PLANT SCIENCE 2022; 13:796931. [PMID: 35242152 PMCID: PMC8885595 DOI: 10.3389/fpls.2022.796931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) is a primary factor limiting leaf photosynthesis. However, the mechanism of N-stress-driven photoinhibition of the photosystem I (PSI) and photosystem II (PSII) is still unclear in the N-sensitive species such as Panax notoginseng, and thus the role of electron transport in PSII and PSI photoinhibition needs to be further understood. We comparatively analyzed photosystem activity, photosynthetic rate, excitation energy distribution, electron transport, OJIP kinetic curve, P700 dark reduction, and antioxidant enzyme activities in low N (LN), moderate N (MN), and high N (HN) leaves treated with linear electron flow (LEF) inhibitor [3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU)] and cyclic electron flow (CEF) inhibitor (methyl viologen, MV). The results showed that the increased application of N fertilizer significantly enhance leaf N contents and specific leaf N (SLN). Net photosynthetic rate (P n) was lower in HN and LN plants than in MN ones. Maximum photochemistry efficiency of PSII (F v/F m), maximum photo-oxidation P700+ (P m), electron transport rate of PSI (ETRI), electron transport rate of PSII (ETRII), and plastoquinone (PQ) pool size were lower in the LN plants. More importantly, K phase and CEF were higher in the LN plants. Additionally, there was not a significant difference in the activity of antioxidant enzyme between the MV- and H2O-treated plants. The results obtained suggest that the lower LEF leads to the hindrance of the formation of ΔpH and ATP in LN plants, thereby damaging the donor side of the PSII oxygen-evolving complex (OEC). The over-reduction of PSI acceptor side is the main cause of PSI photoinhibition under LN condition. Higher CEF and antioxidant enzyme activity not only protected PSI from photodamage but also slowed down the damage rate of PSII in P. notoginseng grown under LN.
Collapse
Affiliation(s)
- Zhu Cun
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Hong-Min Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Jin-Yan Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Sheng-Pu Shuang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Jie Hong
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Jun-Wen Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
12
|
Lima-Melo Y, Kılıç M, Aro EM, Gollan PJ. Photosystem I Inhibition, Protection and Signalling: Knowns and Unknowns. FRONTIERS IN PLANT SCIENCE 2021; 12:791124. [PMID: 34925429 PMCID: PMC8671627 DOI: 10.3389/fpls.2021.791124] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/11/2021] [Indexed: 05/22/2023]
Abstract
Photosynthesis is the process that harnesses, converts and stores light energy in the form of chemical energy in bonds of organic compounds. Oxygenic photosynthetic organisms (i.e., plants, algae and cyanobacteria) employ an efficient apparatus to split water and transport electrons to high-energy electron acceptors. The photosynthetic system must be finely balanced between energy harvesting and energy utilisation, in order to limit generation of dangerous compounds that can damage the integrity of cells. Insight into how the photosynthetic components are protected, regulated, damaged, and repaired during changing environmental conditions is crucial for improving photosynthetic efficiency in crop species. Photosystem I (PSI) is an integral component of the photosynthetic system located at the juncture between energy-harnessing and energy consumption through metabolism. Although the main site of photoinhibition is the photosystem II (PSII), PSI is also known to be inactivated by photosynthetic energy imbalance, with slower reactivation compared to PSII; however, several outstanding questions remain about the mechanisms of damage and repair, and about the impact of PSI photoinhibition on signalling and metabolism. In this review, we address the knowns and unknowns about PSI activity, inhibition, protection, and repair in plants. We also discuss the role of PSI in retrograde signalling pathways and highlight putative signals triggered by the functional status of the PSI pool.
Collapse
Affiliation(s)
- Yugo Lima-Melo
- Post-graduation Programme in Cellular and Molecular Biology (PPGBCM), Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mehmet Kılıç
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Peter J. Gollan
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| |
Collapse
|
13
|
Jiang Y, Feng X, Wang H, Chen Y, Sun Y. Heat-induced down-regulation of photosystem II protects photosystem I in honeysuckle (Lonicera japonica). JOURNAL OF PLANT RESEARCH 2021; 134:1311-1321. [PMID: 34351552 DOI: 10.1007/s10265-021-01336-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Honeysuckle (Lonicera japonica Thunb.) is a traditional medicinal plant in China which is often threatened by high temperature at midday during summer. Heat-induced effects on the photosynthetic apparatus in honeysuckle are associated with a depression of the photosystem II (PSII) photochemical efficiency. However, very limited information is available on regulation of photosynthetic electron flow in PSI photoprotection in heat-stressed honeysuckle. Simultaneous analyses of chlorophyll fluorescence and the change in absorbance of P700 showed that energy transformation and electron transfer activity in PSII decreased under heat stress, but the fraction of photo-oxidizable PSI (Pm) remained stable. With treatments at 38 and 42 °C, the photochemical electron transport in PSII was suppressed, whereas the cyclic electron flow (CEF) around PSI was induced. In addition, the levels of high energy state quenching (qE) and P700 oxidation increased significantly with increasing temperature. However, a decline of qE in antimycin A (AA)- or 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-treated leaves after heat treatment was observed, while P700 oxidation decreased only in the presence of AA. The results indicate that heat-induced inhibition of PSII and induction of CEF cooperatively protect PSI from ROS damages through moderate down-regulation of photosynthetic electron flow from PSII to PSI.
Collapse
Affiliation(s)
- Ying Jiang
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Xin Feng
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Hui Wang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
| | - Yuqing Chen
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Yongjiang Sun
- Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
14
|
Almeida GM, Costa AC, Batista PF, Junqueira VB, Rodrigues AA, Santos ECD, Vieira DA, de Oliveira MM, Silva AA. Can light intensity modulate the physiological, anatomical, and reproductive responses of soybean plants to water deficit? PHYSIOLOGIA PLANTARUM 2021; 172:1301-1320. [PMID: 33554371 DOI: 10.1111/ppl.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/10/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Little is known about the role of light intensity in modulating plant responses to stress due to water deficit (WD). Thus, the objective of this study was to determine the WD and contrasting irradiance effects on the physiology, anatomy, and grain yield of soybean plants. The experimental design was a randomized block in a growth chamber and a 2 × 2 factorial treatment arrangement: 90% (well-watered, WW) and 40% (WD) of soil field capacities (FC); and 750 (medium irradiance, MI) and 1500 (higher irradiance, HI) μmol (photons) m-2 s-1 irradiance. The WD caused a lower photosynthetic rate - as well as observed in the light curve and in the relative parameters, such as apparent quantum efficiency -, less investment in shoot biomass and pollen grain germination, resulting in lower grain yield. However, there was an increase in non-photochemical energy dissipation, a higher concentration of total soluble sugars, proline, and malondialdehyde. The WD + MI-soybean plants developed thicker spongy parenchyma (related to higher mesophilic conductance of CO2 ). In the WW + HI condition the palisade parenchyma was thicker, conferring maintenance of photosynthetic efficiency. In addition, there was an increase in the activity of superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase antioxidant enzymes in leaves due to HI, regardless of FC. This induced higher energy expenditure, reflected in the reduction of the number of leaf and branches, leaf area, dry mass of leaves and stem in the WW + HI. Interestingly, these strategies of osmotic adjustment, photoprotection, and antioxidant defenses act together in the WD + HI.
Collapse
Affiliation(s)
- Gabriel Martins Almeida
- Laboratório de Ecofisiologia e Produtividade Vegetal, Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Rio Verde, Rio Verde, Brazil
| | - Alan Carlos Costa
- Laboratório de Ecofisiologia e Produtividade Vegetal, Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Rio Verde, Rio Verde, Brazil
| | - Priscila Ferreira Batista
- Laboratório de Ecofisiologia e Produtividade Vegetal, Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Rio Verde, Rio Verde, Brazil
| | - Verônica Barbosa Junqueira
- Laboratório de Ecofisiologia e Produtividade Vegetal, Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Rio Verde, Rio Verde, Brazil
| | - Arthur Almeida Rodrigues
- Laboratório de Sementes, Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Rio Verde, Rio Verde, Brazil
| | - Emily Carolina Duarte Santos
- Laboratório de Ecofisiologia e Produtividade Vegetal, Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Rio Verde, Rio Verde, Brazil
| | - Dheynne Alves Vieira
- Laboratório de Ecofisiologia e Produtividade Vegetal, Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Rio Verde, Rio Verde, Brazil
| | - Mariela Melo de Oliveira
- Laboratório de Ecofisiologia e Produtividade Vegetal, Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Rio Verde, Rio Verde, Brazil
| | - Adinan Alves Silva
- Laboratório de Ecofisiologia e Produtividade Vegetal, Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Rio Verde, Rio Verde, Brazil
| |
Collapse
|
15
|
Ma M, Liu Y, Bai C, Yong JWH. The Significance of Chloroplast NAD(P)H Dehydrogenase Complex and Its Dependent Cyclic Electron Transport in Photosynthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:661863. [PMID: 33968117 PMCID: PMC8102782 DOI: 10.3389/fpls.2021.661863] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/22/2021] [Indexed: 05/11/2023]
Abstract
Chloroplast NAD(P)H dehydrogenase (NDH) complex, a multiple-subunit complex in the thylakoid membranes mediating cyclic electron transport, is one of the most important alternative electron transport pathways. It was identified to be essential for plant growth and development during stress periods in recent years. The NDH-mediated cyclic electron transport can restore the over-reduction in stroma, maintaining the balance of the redox system in the electron transfer chain and providing the extra ATP needed for the other biochemical reactions. In this review, we discuss the research history and the subunit composition of NDH. Specifically, the formation and significance of NDH-mediated cyclic electron transport are discussed from the perspective of plant evolution and physiological functionality of NDH facilitating plants' adaptation to environmental stress. A better understanding of the NDH-mediated cyclic electron transport during photosynthesis may offer new approaches to improving crop yield.
Collapse
Affiliation(s)
- Mingzhu Ma
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Yifei Liu
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Chunming Bai
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Jean Wan Hong Yong
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
16
|
Gómez R, Figueroa N, Melzer M, Hajirezaei MR, Carrillo N, Lodeyro AF. Photosynthetic characterization of flavodoxin-expressing tobacco plants reveals a high light acclimation-like phenotype. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2020; 1861:148211. [PMID: 32315624 DOI: 10.1016/j.bbabio.2020.148211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/17/2020] [Accepted: 04/14/2020] [Indexed: 01/15/2023]
Abstract
Flavodoxins are electron carrier flavoproteins present in bacteria and photosynthetic microorganisms which duplicate the functional properties of iron-sulphur containing ferredoxins and replace them under adverse environmental situations that lead to ferredoxin decline. When expressed in plant chloroplasts, flavodoxin complemented ferredoxin deficiency and improved tolerance to multiple sources of biotic, abiotic and xenobiotic stress. Analysis of flavodoxin-expressing plants grown under normal conditions, in which the two carriers are present, revealed phenotypic effects unrelated to ferredoxin replacement. Flavodoxin thus provided a tool to alter the chloroplast redox poise in a customized way and to investigate its consequences on plant physiology and development. We describe herein the effects exerted by the flavoprotein on the function of the photosynthetic machinery. Pigment analysis revealed significant increases in chlorophyll a, carotenoids and chlorophyll a/b ratio in flavodoxin-expressing tobacco lines. Results suggest smaller antenna size in these plants, supported by lower relative contents of light-harvesting complex proteins. Chlorophyll a fluorescence and P700 spectroscopy measurements indicated that transgenic plants displayed higher quantum yields for both photosystems, a more oxidized plastoquinone pool under steady-state conditions and faster plastoquinone dark oxidation after a pulse of saturating light. Many of these effects resemble the phenotypes exhibited by leaves adapted to high irradiation, a most common environmental hardship faced by plants growing in the field. The results suggest that flavodoxin-expressing plants would be better prepared to cope with this adverse situation, and concur with earlier observations reporting that hundreds of stress-responsive genes were induced in the absence of stress in these lines.
Collapse
Affiliation(s)
- Rodrigo Gómez
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000 Rosario, Argentina
| | - Nicolás Figueroa
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000 Rosario, Argentina
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Corrensstrasse 3, D-06466 Stadt Seeland, Germany
| | - Mohammad-Reza Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Corrensstrasse 3, D-06466 Stadt Seeland, Germany
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000 Rosario, Argentina
| | - Anabella F Lodeyro
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000 Rosario, Argentina.
| |
Collapse
|
17
|
Pál M, Janda T, Majláth I, Szalai G. Involvement of Salicylic Acid and Other Phenolic Compounds in Light-Dependent Cold Acclimation in Maize. Int J Mol Sci 2020; 21:ijms21061942. [PMID: 32178416 PMCID: PMC7139356 DOI: 10.3390/ijms21061942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 11/16/2022] Open
Abstract
The exposure of plants to non-lethal low temperatures may increase their tolerance to a subsequent severe chilling stress. To some extent, this is also true for cold-sensitive species, including maize. In the present work, based on our previous microarray experiment, the differentially expressed genes with phenylpropanoid pathways in the focus were further investigated in relation to changes in certain phenolic compounds and other plant growth regulators. Phenylalanine ammonia lyase (PAL) was mainly activated under limited light conditions. However, light-induced anthocyanin accumulation occurred both in the leaves and roots. Chilling stress induced the accumulation of salicylic acid (SA), but this accumulation was moderated in the cold-acclimated plants. Acclimation also reduced the accumulation of jasmonic acid (JA) in the leaves, which was rather induced in the roots. The level of abscisic acid (ABA) is mainly related to the level of the stress, and less indicated the level of the acclimation. The highest glutathione (GSH) amount was observed during the recovery period in the leaves of plants that were cold acclimated at growth light, while their precursors started to accumulate GSH even during the chilling. In conclusion, different light conditions during the cold acclimation period differentially affected certain stress-related mechanisms in young maize plants and changes were also light-dependent in the root, not only in the leaves.
Collapse
|
18
|
Wang F, Yan J, Ahammed GJ, Wang X, Bu X, Xiang H, Li Y, Lu J, Liu Y, Qi H, Qi M, Li T. PGR5/PGRL1 and NDH Mediate Far-Red Light-Induced Photoprotection in Response to Chilling Stress in Tomato. FRONTIERS IN PLANT SCIENCE 2020; 11:669. [PMID: 32547581 PMCID: PMC7270563 DOI: 10.3389/fpls.2020.00669] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 04/29/2020] [Indexed: 05/19/2023]
Abstract
Plants experience low ambient temperature and low red to far-red ratios (L-R/FR) of light due to vegetative shading and longer twilight durations in cool seasons. Low temperature induce photoinhibition through inactivation of the photosynthetic apparatus, however, the role of light quality on photoprotection during cold stress remains poorly understood. Here, we report that L-R/FR significantly prevents the overreduction of the entire intersystem electron transfer chain and the limitation of photosystem I (PSI) acceptor side, eventually alleviating the cold-induced photoinhibition. During cold stress, L-R/FR activated cyclic electron flow (CEF), enhanced protonation of PSII subunit S (PsbS) and de-epoxidation state of the xanthophyll cycle, and promoted energy-dependent quenching (qE) component of non-photochemical quenching (NPQ), enzyme activity of Foyer-Halliwell-Asada cycle and D1 proteins accumulation. However, L-R/FR -induced photoprotection pathways were compromised in tomato PROTON GRADIENT REGULATION5 (PGR5) and PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1A (PGRL1A) co-silenced plants and NADH DEHYDROGENASE-LIKE COMPLEX M (NDHM) -silenced plants during cold stress. Our results demonstrate that both PGR5/PGRL1- and NDH-dependent CEF mediate L-R/FR -induced cold tolerance by enhancing the thermal dissipation and the repair of photodamaged PSII, thereby mitigating the overreduction of electron carriers and the accumulation of reactive oxygen species. The study indicates that there is an anterograde link between photoreception and photoprotection in tomato plants during cold stress.
Collapse
Affiliation(s)
- Feng Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, China
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, China
- *Correspondence: Feng Wang, ;
| | - Jiarong Yan
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Golam Jalal Ahammed
- College of Forestry, Henan University of Science and Technology, Luoyang, China
| | - Xiujie Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xin Bu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Hengzuo Xiang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yanbing Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Jiazhi Lu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yufeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, China
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, China
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, China
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, China
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, China
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, China
- Tianlai Li,
| |
Collapse
|
19
|
Teng K, Teng W, Wen H, Yue Y, Guo W, Wu J, Fan X. PacBio single-molecule long-read sequencing shed new light on the complexity of the Carex breviculmis transcriptome. BMC Genomics 2019; 20:789. [PMID: 31664898 PMCID: PMC6821003 DOI: 10.1186/s12864-019-6163-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 10/09/2019] [Indexed: 12/19/2022] Open
Abstract
Background Carex L., a grass genus commonly known as sedges, is distributed worldwide and contributes constructively to turf management, forage production, and ecological conservation. The development of next-generation sequencing (NGS) technologies has considerably improved our understanding of transcriptome complexity of Carex L. and provided a valuable genetic reference. However, the current transcriptome is not satisfactory mainly because of the enormous difficulty in obtaining full-length transcripts. Results In this study, we employed PacBio single-molecule long-read sequencing (SMRT) technology for whole-transcriptome profiling in Carex breviculmis. We generated 60,353 high-confidence non-redundant transcripts with an average length of 2302-bp. A total of 3588 alternative splicing events, and 1273 long non-coding RNAs were identified. Furthermore, 40,347 complete coding sequences were predicted, providing an informative reference transcriptome. In addition, the transcriptional regulation mechanism of C. breviculmis in response to shade stress was further explored by mapping the NGS data to the reference transcriptome constructed by SMRT sequencing. Conclusions This study provided a full-length reference transcriptome of C. breviculmis using the SMRT sequencing method for the first time. The transcriptome atlas obtained will not only facilitate future functional genomics studies but also pave the way for further selective and genic engineering breeding projects for C. breviculmis.
Collapse
Affiliation(s)
- Ke Teng
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Wenjun Teng
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Haifeng Wen
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Yuesen Yue
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Weier Guo
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
| | - Juying Wu
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China.
| | - Xifeng Fan
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China.
| |
Collapse
|
20
|
Lima-Melo Y, Alencar VTCB, Lobo AKM, Sousa RHV, Tikkanen M, Aro EM, Silveira JAG, Gollan PJ. Photoinhibition of Photosystem I Provides Oxidative Protection During Imbalanced Photosynthetic Electron Transport in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 10:916. [PMID: 31354779 PMCID: PMC6640204 DOI: 10.3389/fpls.2019.00916] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/28/2019] [Indexed: 05/22/2023]
Abstract
Photosynthesis involves the conversion of sunlight energy into stored chemical energy, which is achieved through electron transport along a series of redox reactions. Excess photosynthetic electron transport might be dangerous due to the risk of molecular oxygen reduction, generating reactive oxygen species (ROS) over-accumulation. Avoiding excess ROS production requires the rate of electron transport to be coordinated with the capacity of electron acceptors in the chloroplast stroma. Imbalance between the donor and acceptor sides of photosystem I (PSI) can lead to inactivation, which is called PSI photoinhibition. We used a light-inducible PSI photoinhibition system in Arabidopsis thaliana to resolve the time dynamics of inhibition and to investigate its impact on ROS production and turnover. The oxidation state of the PSI reaction center and rates of CO2 fixation both indicated strong and rapid PSI photoinhibition upon donor side/acceptor side imbalance, while the rate of inhibition eased during prolonged imbalance. PSI photoinhibition was not associated with any major changes in ROS accumulation or antioxidant activity; however, a lower level of lipid oxidation correlated with lower abundance of chloroplast lipoxygenase in PSI-inhibited leaves. The results of this study suggest that rapid activation of PSI photoinhibition under severe photosynthetic imbalance protects the chloroplast from over-reduction and excess ROS formation.
Collapse
Affiliation(s)
- Yugo Lima-Melo
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Vicente T. C. B. Alencar
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Ana K. M. Lobo
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Rachel H. V. Sousa
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Mikko Tikkanen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| | - Joaquim A. G. Silveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Peter J. Gollan
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
21
|
Yang YJ, Zhang SB, Huang W. Chloroplastic ATP Synthase Alleviates Photoinhibition of Photosystem I in Tobacco Illuminated at Chilling Temperature. FRONTIERS IN PLANT SCIENCE 2018; 9:1648. [PMID: 30487806 PMCID: PMC6246715 DOI: 10.3389/fpls.2018.01648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/23/2018] [Indexed: 05/22/2023]
Abstract
Chloroplastic ATP synthase plays a significant role in the regulation of proton motive force (pmf) and proton gradient (ΔpH) across the thylakoid membranes. However, the regulation of chloroplastic ATP synthase at chilling temperature and its role in photoprotection are little known. In our present study, we examined the chlorophyll fluorescence, P700 signal, and electrochromic shift signal at 25°C, and 6°C in tobacco (Nicotiana tabacum L. cv. Samsun). Although photosynthetic electron flow through both PSI and PSII were severely inhibited at 6°C, non-photochemical quenching and P700 oxidation ratio were largely increased. During the photosynthetic induction under high light, the formation of pmf at 6°C was similar to that at 25°C. However, the ΔpH was significantly higher at 6°C, owing to the decreased activity of chloroplastic ATP synthase (g H +). During illumination at 6°C and high light, a high ΔpH made PSI to be highly oxidized, preventing PSI from photoinhibition. These results indicate that the down-regulation of g H + is critical to the buildup of ΔpH at low temperature, adjusting the redox state of PSI, and thus preventing photodamage to PSI. Our findings highlight the importance of chloroplastic ATP synthase in photoprotection at chilling temperature.
Collapse
Affiliation(s)
- Ying-Jie Yang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Wei Huang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
22
|
Moustaka J, Ouzounidou G, Sperdouli I, Moustakas M. Photosystem II Is More Sensitive than Photosystem I to Al 3+ Induced Phytotoxicity. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1772. [PMID: 30235794 PMCID: PMC6165523 DOI: 10.3390/ma11091772] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/09/2018] [Accepted: 09/17/2018] [Indexed: 12/22/2022]
Abstract
Aluminium (Al) the most abundant metal in the earth's crust is toxic in acid soils (pH < 5.5) mainly in the ionic form of Al3+ species. The ability of crops to overcome Al toxicity varies among crop species and cultivars. Here, we report for a first time the simultaneous responses of photosystem II (PSII) and photosystem I (PSI) to Al3+ phytotoxicity. The responses of PSII and PSI in the durum wheat (Triticum turgidum L. cv. 'Appulo E') and the triticale (X Triticosecale Witmark cv. 'Dada') were evaluated by chlorophyll fluorescence quenching analysis and reflection spectroscopy respectively, under control (-Al, pH 6.5) and 148 μM Al (+Al, pH 4.5) conditions. During control growth conditions the high activity of PSII in 'Appulo E' led to a rather higher electron flow to PSI, which induced a higher PSI excitation pressure in 'Appulo E' than in 'Dada' that presented a lower PSII activity. However, under 148 μM Al the triticale 'Dada' presented a lower PSII and PSI excitation pressure than 'Appulo E'. In conclusion, both photosystems of 'Dada' displayed a superior performance than 'Appulo E' under Al exposure, while in both cultivars PSII was more affected than PSI from Al3+ phytotoxicity.
Collapse
Affiliation(s)
- Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| | - Georgia Ouzounidou
- Institute of Food Technology, Hellenic Agricultural Organization-Demeter, 1 S. Venizelou Str., GR-14123 Lycovrissi, Greece.
| | - Ilektra Sperdouli
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation⁻Demeter, Thermi, GR-57001 Thessaloniki, Greece.
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
- Division of Botany, Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey.
| |
Collapse
|
23
|
Huang W, Zhang SB, Liu T. Moderate Photoinhibition of Photosystem II Significantly Affects Linear Electron Flow in the Shade-Demanding Plant Panax notoginseng. FRONTIERS IN PLANT SCIENCE 2018; 9:637. [PMID: 29868090 PMCID: PMC5962726 DOI: 10.3389/fpls.2018.00637] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 04/25/2018] [Indexed: 05/17/2023]
Abstract
Although photoinhibition of photosystem II (PSII) frequently occurs under natural growing conditions, knowledge about the effect of moderate photoinhibition on linear electron flow (LEF) remains controversial. Furthermore, mechanisms underlying the decrease in LEF upon PSII photoinhibition are not well clarified. We examined how selective PSII photoinhibition influenced LEF in the attached leaves of shade-demanding plant Panax notoginseng. After leaves were exposed to a high level of light (2258 μmol photons m-2 s-1) for 30 and 60 min, the maximum quantum yield of PSII (Fv/Fm) decreased by 17 and 23%, respectively, whereas the maximum photo-oxidizable P700 (Pm) remained stable. Therefore, this species displayed selective PSII photodamage under strong illumination. After these treatments, LEF was significantly decreased under all light levels but acidification of the thylakoid lumen changed only slightly. Furthermore, the decrease in LEF under low light was positively correlated with the extent of PSII photoinhibition. Thus, the decline in LEF was not caused by the enhancement of lumenal acidification, but was induced by a decrease in PSII activity. These results indicate that residual PSII activity is an important determinant of LEF in this shade-adapted species, and they provide new insight into how strong illumination affects the growth of shade-demanding plants.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Tao Liu
- National Local Joint Engineering Research Center on Germplasm Utilization and Innovation of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
24
|
Huang W, Yang YJ, Zhang SB, Liu T. Cyclic Electron Flow around Photosystem I Promotes ATP Synthesis Possibly Helping the Rapid Repair of Photodamaged Photosystem II at Low Light. FRONTIERS IN PLANT SCIENCE 2018; 9:239. [PMID: 29535751 PMCID: PMC5834426 DOI: 10.3389/fpls.2018.00239] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/09/2018] [Indexed: 05/03/2023]
Abstract
In higher plants, moderate photoinhibition of photosystem II (PSII) leads to a stimulation of cyclic electron flow (CEF) at low light, which is accompanied by an increase in the P700 oxidation ratio. However, the specific role of CEF stimulation at low light is not well known. Furthermore, the mechanism underlying this increase in P700 oxidation ratio at low light is unclear. To address these questions, intact leaves of the shade-adapted plant Panax notoginseng were treated at 2258 μmol photons m-2 s-1 for 30 min to induce PSII photoinhibition. Before and after this high-light treatment, PSI and PSII activity, the energy quenching in PSII, the redox state of PSI and proton motive force (pmf) at a low light of 54 μmol photons m-2 s-1 were determined at the steady state. After high-light treatment, electron flow through PSII (ETRII) significantly decreased but CEF was remarkably stimulated. The P700 oxidation ratio significantly increased but non-photochemical quenching changed negligibly. Concomitantly, the total pmf decreased significantly and the proton gradient (ΔpH) across the thylakoid membrane remained stable. Furthermore, the P700 oxidation ratio was negatively correlated with the value of ETRII. These results suggest that upon PSII photoinhibition, CEF is stimulated to increase the ATP synthesis, facilitating the rapid repair of photodamaged PSII. The increase in P700 oxidation ratio at low light cannot be explained by the change in pmf, but is primarily controlled by electron transfer from PSII.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ying-Jie Yang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Tao Liu
- National-Local Joint Engineering Research Center on Germplasm Utilization and Innovation of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
25
|
Liu X, Zhou Y, Xiao J, Bao F. Effects of Chilling on the Structure, Function and Development of Chloroplasts. FRONTIERS IN PLANT SCIENCE 2018; 9:1715. [PMID: 30524465 PMCID: PMC6262076 DOI: 10.3389/fpls.2018.01715] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/05/2018] [Indexed: 05/18/2023]
Abstract
Chloroplasts are the organelles that perform energy transformation in plants. The normal physiological functions of chloroplasts are essential for plant growth and development. Chilling is a common environmental stress in nature that can directly affect the physiological functions of chloroplasts. First, chilling can change the lipid membrane state and enzyme activities in chloroplasts. Then, the efficiency of photosynthesis declines, and excess reactive oxygen species (ROS) are produced. On one hand, excess ROS can damage the chloroplast lipid membrane; on the other hand, ROS also represent a stress signal that can alter gene expression in both the chloroplast and nucleus to help regenerate damaged proteins, regulate lipid homeostasis, and promote plant adaptation to low temperatures. Furthermore, plants assume abnormal morphology, including chlorosis and growth retardation, with some even exhibiting severe necrosis under chilling stress. Here, we review the response of chloroplasts to low temperatures and focus on photosynthesis, redox regulation, lipid homeostasis, and chloroplast development to elucidate the processes involved in plant responses and adaptation to chilling stress.
Collapse
Affiliation(s)
- Xiaomin Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yunlin Zhou
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Jianwei Xiao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Fei Bao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
- *Correspondence: Fei Bao,
| |
Collapse
|
26
|
Huang W, Yang YJ, Zhang JL, Hu H, Zhang SB. Superoxide generated in the chloroplast stroma causes photoinhibition of photosystem I in the shade-establishing tree species Psychotria henryi. PHOTOSYNTHESIS RESEARCH 2017; 132:293-303. [PMID: 28432538 DOI: 10.1007/s11120-017-0389-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/15/2017] [Indexed: 05/07/2023]
Abstract
Our previous studies indicated that high light induced significant photoinhibition of photosystem I (PSI) in the shade-establishing tree species Psychotria henryi. However, the underlying mechanism has not been fully clarified. In the present study, in order to investigate the mechanism of PSI photoinhibition in P. henryi, we treated detached leaves with constant high light in the presence of methyl viologen (MV) or a soluble α-tocopherol analog, 2,2,5,7,8-pentamethyl-6-chromanol (PMC). We found that MV significantly depressed photochemical quantum yields in PSI and PSII when compared to PMC. On condition that no PSI photoinhibition happened, although cyclic electron flow (CEF) was abolished in the MV-treated samples, P700 oxidation ratio was maintain at higher levels than the PMC-treated samples. In the presence of PMC, PSI photoinhibition little changed but PSII photoinhibition was significantly alleviated. Importantly, PSI photoinhibition was largely accelerated in the presence of MV, which stimulates the production of superoxide and subsequently other reactive oxygen species at the chloroplast stroma by accepting electrons from PSI. Furthermore, MV largely aggravated PSII photoinhibition when compared to control. These results suggest that high P700 oxidation ratio cannot prevent PSI photoinhibition in P. henryi. Furthermore, the superoxide produced in the chloroplast stroma is critical for PSI photoinhibition in the higher plant P. henryi, which is opposite to the mechanism underlying PSI photoinhibition in Arabidopsis thaliana and spinach. These findings highlight a new mechanism of PSI photoinhibition in higher plants.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Ying-Jie Yang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jiao-Lin Zhang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Hong Hu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
27
|
Sun Y, Geng Q, Du Y, Yang X, Zhai H. Induction of cyclic electron flow around photosystem I during heat stress in grape leaves. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 256:65-71. [PMID: 28167040 DOI: 10.1016/j.plantsci.2016.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/30/2016] [Accepted: 12/08/2016] [Indexed: 05/11/2023]
Abstract
Photosystem II (PSII) in plants is susceptible to high temperatures. The cyclic electron flow (CEF) around PSI is thought to protect both PSII and PSI from photodamage. However, the underlying physiological mechanisms of the photosynthetic electron transport process and the role of CEF in grape at high temperatures remain unclear. To investigate this issue, we examined the responses of PSII energy distribution, the P700 redox state and CEF to high temperatures in grape leaves. After exposing 'Cabernet Sauvignon' leaves to various temperatures (25, 30, 35, 40 and 45°C) in the light (600μmol photons m-2s-1) for 4h, the maximum quantum yield of PSII (Fv/Fm) significantly decreased at high temperatures (40 and 45°C), while the maximum photo-oxidizable P700 (Pm) was not affected. As the temperature increased, higher initial rates of increase in post-illumination Chl fluorescence were detected, which were accompanied by an increase in high energy state quenching (qE). The chloroplast NAD(P)H dehydrogenase-dependent CEF (NDH-dependent CEF) activities were different among grape cultivators. 'Gold Finger' with greater susceptibility to photoinhibition, exhibited lower NDH-dependent CEF activities under acute heat stress than a more heat tolerant 'Cabernet Sauvignon'. These results suggest that overclosure of PSII reaction centers at high temperature resulted in the photoinhibition of PSII, while the stimulation of CEF in grape played an important role in the photoprotection of PSII and PSI at high temperatures through contributing to the generation of a proton gradient.
Collapse
Affiliation(s)
- Yongjiang Sun
- State Key Lab of Crop Biology, Tai'an 271018, Shandong, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Qingwei Geng
- State Key Lab of Crop Biology, Tai'an 271018, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Yuanpeng Du
- State Key Lab of Crop Biology, Tai'an 271018, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Xinghong Yang
- State Key Lab of Crop Biology, Tai'an 271018, Shandong, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Heng Zhai
- State Key Lab of Crop Biology, Tai'an 271018, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| |
Collapse
|
28
|
Kanazawa A, Ostendorf E, Kohzuma K, Hoh D, Strand DD, Sato-Cruz M, Savage L, Cruz JA, Fisher N, Froehlich JE, Kramer DM. Chloroplast ATP Synthase Modulation of the Thylakoid Proton Motive Force: Implications for Photosystem I and Photosystem II Photoprotection. FRONTIERS IN PLANT SCIENCE 2017; 8:719. [PMID: 28515738 PMCID: PMC5413553 DOI: 10.3389/fpls.2017.00719] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/19/2017] [Indexed: 05/18/2023]
Abstract
In wild type plants, decreasing CO2 lowers the activity of the chloroplast ATP synthase, slowing proton efflux from the thylakoid lumen resulting in buildup of thylakoid proton motive force (pmf). The resulting acidification of the lumen regulates both light harvesting, via the qE mechanism, and photosynthetic electron transfer through the cytochrome b6f complex. Here, we show that the cfq mutant of Arabidopsis, harboring single point mutation in its γ-subunit of the chloroplast ATP synthase, increases the specific activity of the ATP synthase and disables its down-regulation under low CO2. The increased thylakoid proton conductivity (gH+) in cfq results in decreased pmf and lumen acidification, preventing full activation of qE and more rapid electron transfer through the b6f complex, particularly under low CO2 and fluctuating light. These conditions favor the accumulation of electrons on the acceptor side of PSI, and result in severe loss of PSI activity. Comparing the current results with previous work on the pgr5 mutant suggests a general mechanism where increased PSI photodamage in both mutants is caused by loss of pmf, rather than inhibition of CEF per se. Overall, our results support a critical role for ATP synthase regulation in maintaining photosynthetic control of electron transfer to prevent photodamage.
Collapse
Affiliation(s)
- Atsuko Kanazawa
- MSU-DOE Plant Research Lab, Michigan State University, East LansingMI, USA
- Chemistry, Michigan State University, East LansingMI, USA
| | | | - Kaori Kohzuma
- MSU-DOE Plant Research Lab, Michigan State University, East LansingMI, USA
| | - Donghee Hoh
- MSU-DOE Plant Research Lab, Michigan State University, East LansingMI, USA
- Cell and Molecular Biology, Michigan State University, East LansingMI, USA
| | - Deserah D. Strand
- MSU-DOE Plant Research Lab, Michigan State University, East LansingMI, USA
| | - Mio Sato-Cruz
- MSU-DOE Plant Research Lab, Michigan State University, East LansingMI, USA
| | - Linda Savage
- MSU-DOE Plant Research Lab, Michigan State University, East LansingMI, USA
| | - Jeffrey A. Cruz
- MSU-DOE Plant Research Lab, Michigan State University, East LansingMI, USA
- Biochemistry and Molecular Biology, Michigan State University, East LansingMI, USA
| | - Nicholas Fisher
- MSU-DOE Plant Research Lab, Michigan State University, East LansingMI, USA
| | - John E. Froehlich
- MSU-DOE Plant Research Lab, Michigan State University, East LansingMI, USA
- Biochemistry and Molecular Biology, Michigan State University, East LansingMI, USA
| | - David M. Kramer
- MSU-DOE Plant Research Lab, Michigan State University, East LansingMI, USA
- Biochemistry and Molecular Biology, Michigan State University, East LansingMI, USA
- *Correspondence: David M. Kramer,
| |
Collapse
|
29
|
Lu T, Meng Z, Zhang G, Qi M, Sun Z, Liu Y, Li T. Sub-high Temperature and High Light Intensity Induced Irreversible Inhibition on Photosynthesis System of Tomato Plant ( Solanum lycopersicum L.). FRONTIERS IN PLANT SCIENCE 2017; 8:365. [PMID: 28360922 PMCID: PMC5352666 DOI: 10.3389/fpls.2017.00365] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/01/2017] [Indexed: 05/18/2023]
Abstract
High temperature and high light intensity is a common environment posing a great risk to organisms. This study aimed to elucidate the effects of sub-high temperature and high light intensity stress (HH, 35°C, 1000 μmol⋅m-2⋅s-1) and recovery on the photosynthetic mechanism, photoinhibiton of photosystem II (PSII) and photosystem I (PSI), and reactive oxygen (ROS) metabolism of tomato seedlings. The results showed that with prolonged stress time, net photosynthetic rate (Pn), Rubisco activity, maximal photochemistry efficiency (Fv/Fm), efficient quantum yield and electron transport of PSII [Y(II) and ETR(II)] and PSI [Y(I) and ETR(I)] decreased significantly whereas yield of non-regulated and regulated energy dissipation of PSII [Y(NO) and Y(NPQ)] increased sharply. The donor side limitation of PSI [Y(ND)] increased but the acceptor side limitation of PSI [Y(NA)] decreased. Content of malondialdehyde (MDA) and hydrogen peroxide (H2O2) were increased while activity of superoxide dismutase (SOD) and peroxidase (POD) were significantly inhibited compared with control. HH exposure affected photosynthetic carbon assimilation, multiple sites in PSII and PSI, ROS accumulation and elimination of Solanum lycopersicum L.
Collapse
Affiliation(s)
- Tao Lu
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning ProvinceShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf RegionShenyang, China
| | - Zhaojuan Meng
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning ProvinceShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf RegionShenyang, China
| | - Guoxian Zhang
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning ProvinceShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf RegionShenyang, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning ProvinceShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf RegionShenyang, China
| | - Zhouping Sun
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning ProvinceShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf RegionShenyang, China
| | - Yufeng Liu
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning ProvinceShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf RegionShenyang, China
- *Correspondence: Yufeng Liu, Tianlai Li,
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning ProvinceShenyang, China
- Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf RegionShenyang, China
- *Correspondence: Yufeng Liu, Tianlai Li,
| |
Collapse
|
30
|
Huang W, Yang YJ, Hu H, Zhang SB. Responses of Photosystem I Compared with Photosystem II to Fluctuating Light in the Shade-Establishing Tropical Tree Species Psychotria henryi. FRONTIERS IN PLANT SCIENCE 2016; 7:1549. [PMID: 27799937 PMCID: PMC5065958 DOI: 10.3389/fpls.2016.01549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/03/2016] [Indexed: 05/07/2023]
Abstract
Shade-establishing plants growing in the forest understory are exposed to constant high light or fluctuating light when gaps are created by fallen trees. Our previous studies indicate that photosystem I (PSI) is sensitive to constant high light in shade-establishing tree species, however, the effects of fluctuating light on PSI and photosystem II (PSII) in shade-establishing species are little known. In the present study, we examined the responses of PSI and PSII to fluctuating light in comparison to constant high light in the shade-establishing species Psychotria henryi. Accompanying with significant activation of cyclic electron flow (CEF), the P700 oxidation ratio was maintained at high levels when exposed to strong light either under fluctuating light or constant high light. Under moderate fluctuating light, PSI and PSII activities were remained stable in P. henryi. Interestingly, PSI was insusceptible to fluctuating light but sensitive to constant high light in P. henryi. Furthermore, both PSI and PSII were more sensitive to constant high light than fluctuating light. These results suggest that CEF is essential for photoprotection of PSI under fluctuating light in P. henryi. Furthermore, photoinhibition of PSI under high light in P. henryi is more related to the accumulation of reactive oxygen species rather than to P700 redox state, which is different from the mechanisms of PSI photoinhibition in Arabidopsis thaliana and rice. Taking together, PSI is a key determiner of photosynthetic responses to fluctuating light and constant high light in the shade-establishing species P. henryi.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesYunnan, China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
| | - Ying-Jie Yang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
| | - Hong Hu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
| |
Collapse
|
31
|
Huang W, Yang YJ, Hu H, Zhang SB. Seasonal variations in photosystem I compared with photosystem II of three alpine evergreen broad-leaf tree species. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 165:71-79. [PMID: 27768955 DOI: 10.1016/j.jphotobiol.2016.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/09/2016] [Accepted: 10/12/2016] [Indexed: 12/22/2022]
Abstract
Low temperature associated with high light can induce photoinhibition of photosystem I (PSI) and photosystem II (PSII). However, the photosynthetic electron flow and specific photoprotective responses in alpine evergreen broad-leaf plants in winter is unclear. We analyzed seasonal changes in PSI and PSII activities, and energy quenching in PSI and PSII in three alpine broad-leaf tree species, Quercus guyavifolia (Fagaceae), Rhododendron decorum (Ericaceae), Euonymus tingens (Celastraceae). In winter, PSII activity remained stable in Q. guyavifolia but decreased significantly in R. decorum and E. tingens. Q. guyavifolia showed much higher capacities of cyclic electron flow (CEF), water-water cycle (WWC), non-photochemical quenching (NPQ) than R. decorum and E. tingens in winter. These results indicated that in alpine evergreen broad-leaf tree species the PSII activity in winter was closely related to these photoprotective mechanisms. Interestingly, unlike PSII, PSI activity was maintained stable in winter in the three species. Meanwhile, photosynthetic electron flow from PSII to PSI (ETRII) was much higher in Q. guyavifolia, suggesting that the mechanisms protecting PSI activity against photoinhibition in winter differed among the three species. A high level of CEF contributed the stability of PSI activity in Q. guyavifolia. By comparison, R. decorum and E. tingens prevented PSI photoinhibition through depression of electron transport to PSI. Taking together, CEF, WWC and NPQ played important roles in coping with excess light energy in winter for alpine evergreen broad-leaf tree species.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Ying-Jie Yang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Hong Hu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|