1
|
Cammareri M, Frary A, Frary A, Grandillo S. Genetic and Biotechnological Approaches to Improve Fruit Bioactive Content: A Focus on Eggplant and Tomato Anthocyanins. Int J Mol Sci 2024; 25:6811. [PMID: 38928516 PMCID: PMC11204163 DOI: 10.3390/ijms25126811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Anthocyanins are a large group of water-soluble flavonoid pigments. These specialized metabolites are ubiquitous in the plant kingdom and play an essential role not only in plant reproduction and dispersal but also in responses to biotic and abiotic stresses. Anthocyanins are recognized as important health-promoting and chronic-disease-preventing components in the human diet. Therefore, interest in developing food crops with improved levels and compositions of these important nutraceuticals is growing. This review focuses on work conducted to elucidate the genetic control of the anthocyanin pathway and modulate anthocyanin content in eggplant (Solanum melongena L.) and tomato (Solanum lycopersicum L.), two solanaceous fruit vegetables of worldwide relevance. While anthocyanin levels in eggplant fruit have always been an important quality trait, anthocyanin-based, purple-fruited tomato cultivars are currently a novelty. As detailed in this review, this difference in the anthocyanin content of the cultivated germplasm has largely influenced genetic studies as well as breeding and transgenic approaches to improve the anthocyanin content/profile of these two important solanaceous crops. The information provided should be of help to researchers and breeders in devising strategies to address the increasing consumer demand for nutraceutical foods.
Collapse
Affiliation(s)
- Maria Cammareri
- Institute of Biosciences and BioResources (IBBR), Research Division Portici, National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy;
| | - Amy Frary
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA;
| | - Anne Frary
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir 35433, Turkey
| | - Silvana Grandillo
- Institute of Biosciences and BioResources (IBBR), Research Division Portici, National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy;
| |
Collapse
|
2
|
Villanueva G, Vilanova S, Plazas M. Characterization of Browning, Chlorogenic Acid Content, and Polyphenol Oxidase Activity in Different Varietal Types of Eggplant ( Solanum melongena) for Improving Visual and Nutritional Quality. PLANTS (BASEL, SWITZERLAND) 2024; 13:1059. [PMID: 38674468 PMCID: PMC11054883 DOI: 10.3390/plants13081059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024]
Abstract
Eggplant (Solanum melongena L.) breeding for fruit quality has mostly focused on visual traits and nutritional and bioactive compounds, including chlorogenic acid. However, higher contents of chlorogenic acid may lead to more pronounced fruit flesh browning. We examined a diverse collection of 59 eggplant accessions across five varietal types ('black oval', 'striped', 'anthocyanin-free', 'purple', and 'black elongated') to evaluate the degree of browning, polyphenol oxidase (PPO) activity, and chlorogenic acid (CGA) content. The results reveal moderate correlations among these traits, with no clear differences among the varietal types, suggesting that other factors, including genetic variation, might significantly influence these traits. Notably, 'black oval' accessions demonstrated higher browning and PPO activity, whereas 'striped' accessions showed low variability. The identification of genotypes with lower browning and higher CGA content highlights opportunities for targeted genotype selection to improve eggplant chlorogenic acid content while maintaining low or moderate browning, pointing towards the importance of genetic considerations in breeding strategies to reduce browning and enhance nutritional value.
Collapse
Affiliation(s)
- Gloria Villanueva
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain; (S.V.); (M.P.)
| | | | | |
Collapse
|
3
|
Luo L, Molthoff J, Li Q, Liu Y, Luo S, Li N, Xuan S, Wang Y, Shen S, Bovy AG, Zhao J, Chen X. Identification of candidate genes associated with less-photosensitive anthocyanin phenotype using an EMS mutant ( pind) in eggplant ( Solanum melongena L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1282661. [PMID: 38169942 PMCID: PMC10758619 DOI: 10.3389/fpls.2023.1282661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024]
Abstract
Eggplant (Solanum melongena L.) is a highly nutritious and economically important vegetable crop. However, the fruit peel of eggplant often shows poor coloration owing to low-light intensity during cultivation, especially in the winter. The less-photosensitive varieties produce anthocyanin in low light or even dark conditions, making them valuable breeding materials. Nevertheless, genes responsible for anthocyanin biosynthesis in less-photosensitive eggplant varieties are not characterized. In this study, an EMS mutant, named purple in the dark (pind), was used to identify the key genes responsible for less-photosensitive coloration. Under natural conditions, the peel color and anthocyanin content in pind fruits were similar to that of wildtype '14-345'. The bagged pind fruits were light purple, whereas those of '14-345' were white; and the anthocyanin content in the pind fruit peel was significantly higher than that in '14-345'. Genetic analysis revealed that the less-photosensitive trait was controlled by a single dominant gene. The candidate gene was mapped on chromosome 10 in the region 7.72 Mb to 11.71 Mb. Thirty-five differentially expressed genes, including 12 structural genes, such as CHS, CHI, F3H, DFR, ANS, and UFGT, and three transcription factors MYB113, GL3, and TTG2, were identified in pind using RNA-seq. Four candidate genes EGP21875 (myb domain protein 113), EGP21950 (unknown protein), EGP21953 (CAAX amino-terminal protease family protein), and EGP21961 (CAAX amino-terminal protease family protein) were identified as putative genes associated with less-photosensitive anthocyanin biosynthesis in pind. These findings may clarify the molecular mechanisms underlying less-photosensitive anthocyanin biosynthesis in eggplant.
Collapse
Affiliation(s)
- Lei Luo
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Jos Molthoff
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Qiang Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Ying Liu
- Horticulture and Product Physiology, Wageningen University and Research, Wageningen, Netherlands
| | - Shuangxia Luo
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Na Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuxin Xuan
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yanhua Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuxing Shen
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Arnaud G. Bovy
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xueping Chen
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
4
|
Gramazio P, Alonso D, Arrones A, Villanueva G, Plazas M, Toppino L, Barchi L, Portis E, Ferrante P, Lanteri S, Rotino GL, Giuliano G, Vilanova S, Prohens J. Conventional and new genetic resources for an eggplant breeding revolution. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6285-6305. [PMID: 37419672 DOI: 10.1093/jxb/erad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/05/2023] [Indexed: 07/09/2023]
Abstract
Eggplant (Solanum melongena) is a major vegetable crop with great potential for genetic improvement owing to its large and mostly untapped genetic diversity. It is closely related to over 500 species of Solanum subgenus Leptostemonum that belong to its primary, secondary, and tertiary genepools and exhibit a wide range of characteristics useful for eggplant breeding, including traits adaptive to climate change. Germplasm banks worldwide hold more than 19 000 accessions of eggplant and related species, most of which have yet to be evaluated. Nonetheless, eggplant breeding using the cultivated S. melongena genepool has yielded significantly improved varieties. To overcome current breeding challenges and for adaptation to climate change, a qualitative leap forward in eggplant breeding is necessary. The initial findings from introgression breeding in eggplant indicate that unleashing the diversity present in its relatives can greatly contribute to eggplant breeding. The recent creation of new genetic resources such as mutant libraries, core collections, recombinant inbred lines, and sets of introgression lines will be another crucial element and will require the support of new genomics tools and biotechnological developments. The systematic utilization of eggplant genetic resources supported by international initiatives will be critical for a much-needed eggplant breeding revolution to address the challenges posed by climate change.
Collapse
Affiliation(s)
- Pietro Gramazio
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - David Alonso
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Andrea Arrones
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Gloria Villanueva
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Mariola Plazas
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Laura Toppino
- CREA Research Centre for Genomics and Bioinformatics, Via Paullese 28, 26836 Montanaso Lombardo, LO, Italy
| | - Lorenzo Barchi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, TO, Italy
| | - Ezio Portis
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, TO, Italy
| | - Paola Ferrante
- Agenzia Nazionale Per Le Nuove Tecnologie, L'energia e Lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome, Italy
| | - Sergio Lanteri
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, TO, Italy
| | - Giuseppe Leonardo Rotino
- CREA Research Centre for Genomics and Bioinformatics, Via Paullese 28, 26836 Montanaso Lombardo, LO, Italy
| | - Giovanni Giuliano
- Agenzia Nazionale Per Le Nuove Tecnologie, L'energia e Lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome, Italy
| | - Santiago Vilanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
| |
Collapse
|
5
|
Tan C, Tao L, Xie J, Yu Z, Tian Y, Zhao C. The Effects of Ultrasonic and Gamma Irradiation on the Flavor of Potato Wines Investigated by Sensory Omics. Foods 2023; 12:2821. [PMID: 37569090 PMCID: PMC10417215 DOI: 10.3390/foods12152821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/08/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Aroma is one of the most fascinating and least-known mysteries of Baijiu research. The volatile compounds (VOCs) of potato wine were evaluated by sensory omics techniques in order to comprehend their overall flavor characteristics and investigate the effects of ultrasonic treatment and gamma irradiation therapy on the aroma of the wine. The findings revealed that a total of 14 flavor compounds were identified by GC-MS. Isoamyl alcohol, ethyl octanoate, and 1,1-diethoxyethane were the key aroma components, according to GC-O analysis. A total of 50 volatile substances were identified by GC-IMS. After being subjected to irradiation and ultrasonic treatment, the alcohol level of the potato wine reduced while the esters content increased. By calculating the relative odor activity value, a total of 29 aroma components were classified as key aroma compounds (ROAV > 1). According to the results of the sensory evaluation-fruity, Fen-flavor, and sweet-and the acceptability of the irradiated and ultrasonicated potato wine were improved. Therefore, the use of ultrasonic and irradiation therapy in potato wine, as well as the overall aroma building of potato wine, can be supported theoretically by this study.
Collapse
Affiliation(s)
- Chunlei Tan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.T.); (L.T.); (J.X.); (Z.Y.)
| | - Liang Tao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.T.); (L.T.); (J.X.); (Z.Y.)
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.T.); (L.T.); (J.X.); (Z.Y.)
| | - Zhijin Yu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.T.); (L.T.); (J.X.); (Z.Y.)
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.T.); (L.T.); (J.X.); (Z.Y.)
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming 650201, China
- Pu’er University, Pu’er 665000, China
| | - Cunchao Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.T.); (L.T.); (J.X.); (Z.Y.)
- Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
6
|
Bulut M, Alseekh S, Fernie AR. Natural variation of respiration-related traits in plants. PLANT PHYSIOLOGY 2023; 191:2120-2132. [PMID: 36546766 PMCID: PMC10069898 DOI: 10.1093/plphys/kiac593] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Plant respiration is one of the greatest global metabolic fluxes, but rates of respiration vary massively both within different cell types as well as between different individuals and different species. Whilst this is well known, few studies have detailed population-level variation of respiration until recently. The last 20 years have seen a renaissance in studies of natural variance. In this review, we describe how experimental breeding populations and collections of large populations of accessions can be used to determine the genetic architecture of plant traits. We further detail how these approaches have been used to study the rate of respiration per se as well as traits that are intimately associated with respiration. The review highlights specific breakthroughs in these areas but also concludes that the approach should be more widely adopted in the study of respiration per se as opposed to the more frequently studied respiration-related traits.
Collapse
Affiliation(s)
- Mustafa Bulut
- Department of Root Biology and Symbiosis, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Saleh Alseekh
- Department of Root Biology and Symbiosis, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
- Center for Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | | |
Collapse
|
7
|
Rosa-Martínez E, Bovy A, Plazas M, Tikunov Y, Prohens J, Pereira-Dias L. Genetics and breeding of phenolic content in tomato, eggplant and pepper fruits. FRONTIERS IN PLANT SCIENCE 2023; 14:1135237. [PMID: 37025131 PMCID: PMC10070870 DOI: 10.3389/fpls.2023.1135237] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Phenolic acids and flavonoids are large groups of secondary metabolites ubiquitous in the plant kingdom. They are currently in the spotlight due to the numerous health benefits associated with their consumption, as well as for their vital roles in plant biological processes and in plant-environment interaction. Tomato, eggplant and pepper are in the top ten most consumed vegetables in the world, and their fruit accumulation profiles have been extensively characterized, showing substantial differences. A broad array of genetic and genomic tools has helped to identify QTLs and candidate genes associated with the fruit biosynthesis of phenolic acids and flavonoids. The aim of this review was to synthesize the available information making it easily available for researchers and breeders. The phenylpropanoid pathway is tightly regulated by structural genes, which are conserved across species, along with a complex network of regulatory elements like transcription factors, especially of MYB family, and cellular transporters. Moreover, phenolic compounds accumulate in tissue-specific and developmental-dependent ways, as different paths of the metabolic pathway are activated/deactivated along with fruit development. We retrieved 104 annotated putative orthologues encoding for key enzymes of the phenylpropanoid pathway in tomato (37), eggplant (29) and pepper (38) and compiled 267 QTLs (217 for tomato, 16 for eggplant and 34 for pepper) linked to fruit phenolic acids, flavonoids and total phenolics content. Combining molecular tools and genetic variability, through both conventional and genetic engineering strategies, is a feasible approach to improve phenolics content in tomato, eggplant and pepper. Finally, although the phenylpropanoid biosynthetic pathway has been well-studied in the Solanaceae, more research is needed on the identification of the candidate genes behind many QTLs, as well as their interactions with other QTLs and genes.
Collapse
Affiliation(s)
- Elena Rosa-Martínez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Arnaud Bovy
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Mariola Plazas
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Yury Tikunov
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Leandro Pereira-Dias
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
- Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
8
|
Gaccione L, Martina M, Barchi L, Portis E. A Compendium for Novel Marker-Based Breeding Strategies in Eggplant. PLANTS (BASEL, SWITZERLAND) 2023; 12:1016. [PMID: 36903876 PMCID: PMC10005326 DOI: 10.3390/plants12051016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The worldwide production of eggplant is estimated at about 58 Mt, with China, India and Egypt being the major producing countries. Breeding efforts in the species have mainly focused on increasing productivity, abiotic and biotic tolerance/resistance, shelf-life, the content of health-promoting metabolites in the fruit rather than decreasing the content of anti-nutritional compounds in the fruit. From the literature, we collected information on mapping quantitative trait loci (QTLs) affecting eggplant's traits following a biparental or multi-parent approach as well as genome-wide association (GWA) studies. The positions of QTLs were lifted according to the eggplant reference line (v4.1) and more than 700 QTLs were identified, here organized into 180 quantitative genomic regions (QGRs). Our findings thus provide a tool to: (i) determine the best donor genotypes for specific traits; (ii) narrow down QTL regions affecting a trait by combining information from different populations; (iii) pinpoint potential candidate genes.
Collapse
|
9
|
You Q, Li H, Wu J, Li T, Wang Y, Sun G, Li Z, Sun B. Mapping and validation of the epistatic D and P genes controlling anthocyanin biosynthesis in the peel of eggplant ( Solanum melongena L.) fruit. HORTICULTURE RESEARCH 2023; 10:uhac268. [PMID: 36789254 PMCID: PMC9923212 DOI: 10.1093/hr/uhac268] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/27/2022] [Indexed: 06/18/2023]
Abstract
Fruit color is an important trait influencing the commercial value of eggplant fruits. Three dominant genes (D, P and Y) cooperatively control the anthocyanin coloration in eggplant fruits, but none has been mapped. In this study, two white-fruit accessions (19 141 and 19 147) and their F2 progeny, with 9:7 segregation ratio of anthocyanin pigmented versus non-pigmented fruits, were used for mapping the D and P genes. A high-density genetic map was constructed with 5270 SNPs spanning 1997.98 cM. Three QTLs were identified, including two genes on chromosome 8 and one on chromosome 10. Gene expression analyses suggested that the SmANS on chromosome 8 and SmMYB1 on chromosome 10 were the putative candidate genes for P and D, respectively. We further identified (1) a SNP leading to a premature stop codon within the conserved PLN03176 domain of SmANS in 19 141, (2) a G base InDel in the promoter region leading to an additional cis-regulatory element and (3) a 6-bp InDel within the R2-MYB DNA binding domain of SmMYB1, in 19 147. Subsequently, these three variations were validated by PARMS technology as related to phenotypes in the F2 population. Moreover, silencing of SmANS or SmMYB1 in the purple red fruits of F1 (E3316) led to inhibition of anthocyanin biosynthesis in the peels. Conversely, overexpression of SmANS or SmMYB1 restored anthocyanin biosynthesis in the calli of 19 141 and 19 147 respectively. Our findings demonstrated the epistatic interactions underlying the white color of eggplant fruits, which can be potentially applied to breeding of eggplant fruit peel color.
Collapse
Affiliation(s)
| | | | | | - Tao Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Yikui Wang
- Institute of Vegetable, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | | | | | | |
Collapse
|
10
|
Ro N, Haile M, Kim B, Cho GT, Lee J, Lee YJ, Hyun DY. Genome-Wide Association Study for Agro-Morphological Traits in Eggplant Core Collection. PLANTS (BASEL, SWITZERLAND) 2022; 11:2627. [PMID: 36235493 PMCID: PMC9571982 DOI: 10.3390/plants11192627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Eggplant is one of the most economically and nutritionally important vegetables worldwide. The study of the association of phenotypic traits with genetic factors is vital for the rapid and efficient identification and selection of eggplant genetic resources for breeding purposes with desired traits. The eggplant resources (587) collected from different countries, including Korea, were used for establishing the core collection. A total of 288 accessions were selected from 587 Solanum accessions based on 52 single nucleotide polymorphisms (SNPs) markers together with 17 morphological traits. This core collection was further used to analyze the genetic associations of eggplant morphological variations. A large variation was found among the evaluated eggplant accessions for some agro-morphological traits. Stem prickles and leaf prickles showed a significant positive correlation (r = 0.83***), followed by days to flowering and days to maturity (r = 0.64***). A total of 114,981 SNPs were filtered and used for phylogenetic tree analysis, population structure analysis, and genome-wide association study (GWAS). Among the agro-morphological traits, significantly associated SNPs were found for six traits. A total of 377 significantly associated SNPs with six agro-morphological traits were identified. These six traits and the number of SNPs were: days to maturity (51), flower size (121), fruit width (20), harvest fruit color (42), leaf prickles (38), and stem prickles (105). The largest fraction of significant SNPs (11.94%) was obtained on chromosome Ch01, followed by Ch07 and Ch06 with 11.67% and 10.08%, respectively. This study will help to develop markers linked to the most important agro-morphological traits of eggplant genetic resources and support the selection of desirable traits for eggplant breeding programs.
Collapse
Affiliation(s)
- Nayoung Ro
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (M.H.); (B.K.); (G.-T.C.); (J.L.); (Y.-J.L.)
| | - Mesfin Haile
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (M.H.); (B.K.); (G.-T.C.); (J.L.); (Y.-J.L.)
| | - Bichsaem Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (M.H.); (B.K.); (G.-T.C.); (J.L.); (Y.-J.L.)
| | - Gyu-Taek Cho
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (M.H.); (B.K.); (G.-T.C.); (J.L.); (Y.-J.L.)
| | - Jungro Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (M.H.); (B.K.); (G.-T.C.); (J.L.); (Y.-J.L.)
| | - Yoon-Jung Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (M.H.); (B.K.); (G.-T.C.); (J.L.); (Y.-J.L.)
| | - Do Yoon Hyun
- Department of Crops and Forestry, Korea National University of Agriculture and Fisheries, Jeonju 54874, Korea;
| |
Collapse
|
11
|
Tassone MR, Bagnaresi P, Desiderio F, Bassolino L, Barchi L, Florio FE, Sunseri F, Sirangelo TM, Rotino GL, Toppino L. A Genomic BSAseq Approach for the Characterization of QTLs Underlying Resistance to Fusarium oxysporum in Eggplant. Cells 2022; 11:2548. [PMID: 36010625 PMCID: PMC9406753 DOI: 10.3390/cells11162548] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Eggplant (Solanum melongena L.), similar to many other crops, suffers from soil-borne diseases, including Fusarium oxysporum f. sp. melongenae (Fom), causing wilting and heavy yield loss. To date, the genetic factors underlying plant responses to Fom are not well known. We previously developed a Recombinant Inbred Lines (RILs) population using as a female parent the fully resistant line '305E40' and as a male parent the partially resistant line '67/3'. The fully resistant trait to Fom was introgressed from the allied species S. aethiopicum. In this work, the RIL population was assessed for the responses to Fom and by using a genomic mapping approach, two major QTLs on chromosomes CH02 and CH11 were identified, associated with the full and partial resistance trait to Fom, respectively. A targeted BSAseq procedure in which Illumina reads bulks of RILs grouped according to their resistance score was aligned to the appropriate reference genomes highlighted differentially enriched regions between resistant/susceptible progeny in the genomic regions underlying both QTLs. The characterization of such regions allowed us to identify the most reliable candidate genes for the two resistance traits. With the aim of revealing exclusive species-specific contigs and scaffolds inherited from the allied species and thus associated with the full resistance trait, a draft de-novo assembly of available Illumina sequences of the '305E40' parent was developed to better resolve the non-recombining genomic region on its CH02 carrying the introgressed Fom resistance locus from S. aethiopicum.
Collapse
Affiliation(s)
- Maria Rosaria Tassone
- Council for Agricultural Research and Economics, Genomics and Bioinformatics Research Center, 26836 Montanaso Lombardo, Italy
- Department of Agricultural Science, University Mediterranea of Reggio Calabria, 89124 Reggio Calabria, Italy
| | - Paolo Bagnaresi
- Council for Agricultural Research and Economics, Genomics and Bioinformatics Research Center, 29017 Fiorenzuola d’Arda, Italy
| | - Francesca Desiderio
- Council for Agricultural Research and Economics, Genomics and Bioinformatics Research Center, 29017 Fiorenzuola d’Arda, Italy
| | - Laura Bassolino
- Council for Agricultural Research and Economics, Genomics and Bioinformatics Research Center, 26836 Montanaso Lombardo, Italy
- Council for Agricultural Research and Economics, Cereal and Industrial Crops Research Center, 40128 Bologna, Italy
| | - Lorenzo Barchi
- DISAFA, Plant Genetics and Breeding, University of Turin, 10095 Grugliasco, Italy
| | - Francesco Elia Florio
- Council for Agricultural Research and Economics, Genomics and Bioinformatics Research Center, 26836 Montanaso Lombardo, Italy
| | - Francesco Sunseri
- Department of Agricultural Science, University Mediterranea of Reggio Calabria, 89124 Reggio Calabria, Italy
| | - Tiziana Maria Sirangelo
- Council for Agricultural Research and Economics, Genomics and Bioinformatics Research Center, 26836 Montanaso Lombardo, Italy
| | - Giuseppe Leonardo Rotino
- Council for Agricultural Research and Economics, Genomics and Bioinformatics Research Center, 26836 Montanaso Lombardo, Italy
| | - Laura Toppino
- Council for Agricultural Research and Economics, Genomics and Bioinformatics Research Center, 26836 Montanaso Lombardo, Italy
| |
Collapse
|
12
|
Wang X, Chen X, Luo S, Ma W, Li N, Zhang W, Tikunov Y, Xuan S, Zhao J, Wang Y, Zheng G, Yu P, Bai Y, Bovy A, Shen S. Discovery of a DFR gene that controls anthocyanin accumulation in the spiny Solanum group: roles of a natural promoter variant and alternative splicing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1096-1109. [PMID: 35749258 DOI: 10.1111/tpj.15877] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Anthocyanins are important pigments that impart color in plants. In Solanum, different species display various fruit or flower colors due to varying degrees of anthocyanin accumulation. Here we identified two anthocyanin-free mutants from an ethylmethane sulfonate-induced mutant library and naturally occurring mutants in Solanum melongena, with mutations in the 5' splicing site of the second intron of dihydroflavonol-4-reductase (DFR) - leading to altered splicing. Further study revealed that alternative splicing of the second intron was closely related to anthocyanin accumulation in 17 accessions from three cultivated species: S. melongena, Solanum macrocarpon and Solanum aethiopicum, and their wild related species. Analysis of natural variations of DFR, using an expanded population including 282 accessions belonging to the spiny Solanum group, identified a single-nucleotide polymorphism in the MYB recognition site in the promoter region, which causes differential expression of DFR and affects anthocyanin accumulation in fruits of the detected accessions. Our study suggests that, owing to years of domestication, the natural variation in the DFR promoter region and the alternative splicing of the DFR gene account for altered anthocyanin accumulation during spiny Solanum domestication.
Collapse
Affiliation(s)
- Xing Wang
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xueping Chen
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuangxia Luo
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Wei Ma
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Na Li
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Weiwei Zhang
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yury Tikunov
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Shuxin Xuan
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Jianjun Zhao
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yanhua Wang
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Gengdi Zheng
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Ping Yu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yuling Bai
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Arnaud Bovy
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Shuxing Shen
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
13
|
He Y, Li S, Dong Y, Zhang X, Li D, Liu Y, Chen H. Fine mapping and characterization of the dominant gene SmFTSH10 conferring non-photosensitivity in eggplant (Solanum melongena L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2187-2196. [PMID: 35668203 DOI: 10.1007/s00122-022-04078-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/07/2022] [Indexed: 06/15/2023]
Abstract
A candidate non photosensitive gene S m F TS H10 was identified by combining bulked segregant analysis and map‑based cloning. Low light condition often leads to poor coloration of photosensitive eggplant. Here, we obtained a non-photosensitive eggplant that can synthesize large amount of anthocyanin under shading conditions. Genetic analysis of F1 and F2 populations revealed that the phenotype of non-photosensitivity was regulated by a single dominant nuclear gene, herein temporarily designated SmFTSH10. Through Bulked segregant analysis (BSA), SNP haplotyping and fine genetic mapping delimited SmFTSH10 to a 290 kb region of eggplant chromosome 10 flanking by markers dCAPS21 and dCAPS32. Sequence analysis revealed C-base deletion in the fourth exon of SmFTSH10 resulted in premature termination of translation. The expression level of SmFTSH10 decreased significantly in anthocyanin-rich parts of mutant '145' compared with the wild-type 'LSHX'. Sequencing of 10 recombinants revealed that the C-base deletion in the 4th exon of SmFTSH10 was co-segregated with the non-photosensitive phenotype, and the sequencing analysis of the natural population of eggplant also showed that the Indel in SmFTSH10 had a high accuracy in the identification of the photosensitivity of eggplant. Light-responsive expression patterns analysis suggests that it has the same expression trend as the genes involved in eggplant anthocyanin biosynthesis, which supports SmFTSH10 as the most possible candidate gene of non-photosensitivity. These findings provide a new insight into understanding the molecular mechanisms of anthocyanin biosynthesis in non-photosensitive eggplant.
Collapse
Affiliation(s)
- YongJun He
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - ShaoHang Li
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - YanXiao Dong
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - XinTong Zhang
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - DaLu Li
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Yang Liu
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| | - HuoYing Chen
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| |
Collapse
|
14
|
Qian Z, Ji Y, Li R, Lanteri S, Chen H, Li L, Jia Z, Cui Y. Identifying Quantitative Trait Loci for Thousand Grain Weight in Eggplant by Genome Re-Sequencing Analysis. Front Genet 2022; 13:841198. [PMID: 35664340 PMCID: PMC9157640 DOI: 10.3389/fgene.2022.841198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Eggplant (Solanum melongena L.; 2n = 24) is one of the most important Solanaceae vegetables and is primarily cultivated in China (approximately 42% of world production) and India (approximately 39%). Thousand-grain weight (TGW) is an important trait that affects eggplant breeding cost and variety promotion. This trait is controlled by quantitative trait loci (QTLs); however, no quantitative trait loci (QTL) has been reported for TGW in eggplant so far, and its potential genetic basis remain unclear. In this study, two eggplant lines, 17C01 (P1, wild resource, small seed) and 17C02 (P2, cultivar, large seed), were crossed to develop F1, F2 (308 lines), BC1P1 (44 lines), and BC1P2 (44 lines) populations for quantitative trait association analysis. The TGWs of P1, P2 and F1 were determined as 3.00, 3.98 and 3.77 g, respectively. The PG-ADI (polygene-controlled additive-dominance-epistasis) genetic model was identified as the optimal model for TGW and the polygene heritability value in the F2 generation was as high as 80.87%. A high-quality genetic linkage bin map was constructed with resequencing analysis. The map contained 3,918 recombination bins on 12 chromosomes, and the total length was 1,384.62 cM. A major QTL (named as TGW9.1) located on chromosome 9 was identified to be strongly associated with eggplant TGW, with a phenotypic variance explanation of 20.51%. A total of 45 annotated genes were identified in the genetic region of TGW9.1. Based on the annotation of Eggplant genome V3 and orthologous genes in Arabidopsis thaliana, one candidate gene SMEL_009g329850 (SmGTS1, encoding a putative ubiquitin ligase) contains 4 SNPs and 2 Indels consecutive intron mutations in the flank of the same exon in P1. SmGTS1 displayed significantly higher expression in P1 and was selected as a potential candidate gene controlling TGW in eggplant. The present results contribute to shed light on the genetic basis of the traits exploitable in future eggplant marker-assisted selection (MAS) breeding.
Collapse
Affiliation(s)
- Zongwei Qian
- National Engineering Research Center for Vegetables, Vegetable Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Yanhai Ji
- National Engineering Research Center for Vegetables, Vegetable Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Ranhong Li
- College of Life Sciences and Technology, Mudanjiang Normal University, Mudanjiang, China
| | - Sergio Lanteri
- DISAFA, Plant Genetics and Breeding, University of Turin, Grugliasco, Italy
| | - Haili Chen
- National Engineering Research Center for Vegetables, Vegetable Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Longfei Li
- Jingyan Yinong (Beijing) Seed Sci-Tech Co. Ltd., Beijing, China
| | - Zhiyang Jia
- Jingyan Yinong (Beijing) Seed Sci-Tech Co. Ltd., Beijing, China
| | - Yanling Cui
- National Engineering Research Center for Vegetables, Vegetable Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| |
Collapse
|
15
|
Sabatino L, Consentino BB, Ntatsi G, La Bella S, Baldassano S, Rouphael Y. Stand-Alone or Combinatorial Effects of Grafting and Microbial and Non-Microbial Derived Compounds on Vigour, Yield and Nutritive and Functional Quality of Greenhouse Eggplant. PLANTS (BASEL, SWITZERLAND) 2022; 11:1175. [PMID: 35567179 PMCID: PMC9105124 DOI: 10.3390/plants11091175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
The current research investigated the effects of endophytic fungi such as Trichoderma atroviride (Ta) or Ascophyllum nodosum seaweed extract (An) and their combination on growth, yield, nutritive and functional features, and mineral profile of 'Birgah' F1 eggplant either ungrafted, self-grafted or grafted onto the Solanum torvum rootstock. Eggplant exposed to An or An+Ta had a significant increase in root collar diameter 50 days after transplanting (RCD50), total yield (TY), marketable yield (MY), ascorbic acid (AA) content, Mg, Cu, and Zn concentration, and a reduction in glycoalkaloids (GLY) compared with the control. Furthermore, grafted plants had a higher TY, MY, number of marketable fruits (NMF), RCD50, AA, Cu, and Zn and a lower SSC, GLY, and Mg than the ungrafted plants. The combination of grafting and An+Ta significantly improved mean weight of marketable fruits (MF), plant height 50 days after transplanting (PH50), number of leaves 50 days after transplanting (NL50), fruit dry matter (FDM), chlorogenic acid (ClA), proteins, and K and Fe concentration. This combination also produced fruits of high premium quality as evidenced by the higher AA and ClA concentration, the lower GLY concentration, and an overall improved mineral profile.
Collapse
Affiliation(s)
- Leo Sabatino
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy; (B.B.C.); (S.L.B.)
| | - Beppe Benedetto Consentino
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy; (B.B.C.); (S.L.B.)
| | - Georgia Ntatsi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Salvatore La Bella
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy; (B.B.C.); (S.L.B.)
| | - Sara Baldassano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy;
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| |
Collapse
|
16
|
Colak N, Kurt-Celebi A, Gruz J, Strnad M, Hayirlioglu-Ayaz S, Choung MG, Esatbeyoglu T, Ayaz FA. The Phenolics and Antioxidant Properties of Black and Purple versus White Eggplant Cultivars. Molecules 2022; 27:molecules27082410. [PMID: 35458607 PMCID: PMC9030419 DOI: 10.3390/molecules27082410] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
The total phenolic content, anthocyanins, phenolic acids, antioxidant capacity and α-amylase inhibitory activity of black (Aydin Siyahi), purple (Kadife Kemer) and white (Trabzon Kadife) eggplants grown in Turkey were subjected to a comparative investigation. The black cultivar exhibited the highest total phenolic (17,193 and 6552 mg gallic acid equivalent/kg fw), flavonoid (3019 and 1160 quercetin equivalent/kg fw) and anthocyanin (1686 and 6167 g delphinidin-3-O-glucoside equivalent/kg fw) contents in crude extracts of the peel and pulp. The majority of the caffeic acid was identified in the ester (2830 mg/kg fw) and ester-bound (2594 mg/kg fw) forms in the peel of ‘Kadife Kemer’ and in the glycoside form (611.9 mg/kg fw) in ‘Aydin Siyahi’, as well as in the pulp of these two eggplants. ‘Kadife Kemer’ (purple eggplant) contained the majority of the chlorogenic acid in free form (27.55 mg/kg fw), compared to ‘Aydin Siyahi’ in the ester (7.82 mg/kg fw), glycoside (294.1 mg/kg dw) and ester-bound (2.41 mg/kg fw) forms. The eggplant cultivars (peel and pulp, mg/kg fw) exhibited a relatively high delphinidin-3-O-rutinoside concentration in the peel of ‘Aydin Siyahi’ (avg. 1162), followed by ‘Kadife Kemer’ (avg. 336.6), and ‘Trabzon Kadife’ (avg. 215.1). The crude phenolic extracts of the eggplants exhibited the highest antioxidant capacity values (peel and pulp, µmoL Trolox equivalent/kg fw) of 2,2-diphenyl-1-picrylhydrazyl (DPPH, 8156 and 2335) and oxygen radical absorbance capacity (ORAC, 37,887 and 17,648). The overall results indicate that black and purple eggplants are the cultivars with greater potential benefits in terms of their phenolics and antioxidant values than the white eggplant.
Collapse
Affiliation(s)
- Nesrin Colak
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon 61080, Turkey; (N.C.); (A.K.-C.); (S.H.-A.)
| | - Aynur Kurt-Celebi
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon 61080, Turkey; (N.C.); (A.K.-C.); (S.H.-A.)
| | - Jiri Gruz
- Department of Experimental Biology, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic;
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacky University & Institute of Experimental Botany AS CR, Slechtitelu 27, 783 71 Olomouc, Czech Republic;
| | - Sema Hayirlioglu-Ayaz
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon 61080, Turkey; (N.C.); (A.K.-C.); (S.H.-A.)
| | - Myoung-Gun Choung
- Department of Herbal Medicine Resource, Dogye Campus, Kangwon National University, Hwangjori 3, Dogye-up, Samcheok 25949, Korea;
| | - Tuba Esatbeyoglu
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
- Correspondence: (T.E.); (F.A.A.); Tel.: +49-511-762-5589 (T.E.); +90-462-377-3712 (F.A.A.)
| | - Faik Ahmet Ayaz
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon 61080, Turkey; (N.C.); (A.K.-C.); (S.H.-A.)
- Correspondence: (T.E.); (F.A.A.); Tel.: +49-511-762-5589 (T.E.); +90-462-377-3712 (F.A.A.)
| |
Collapse
|
17
|
Mangino G, Arrones A, Plazas M, Pook T, Prohens J, Gramazio P, Vilanova S. Newly Developed MAGIC Population Allows Identification of Strong Associations and Candidate Genes for Anthocyanin Pigmentation in Eggplant. FRONTIERS IN PLANT SCIENCE 2022; 13:847789. [PMID: 35330873 PMCID: PMC8940277 DOI: 10.3389/fpls.2022.847789] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/20/2022] [Indexed: 05/17/2023]
Abstract
Multi-parent advanced generation inter-cross (MAGIC) populations facilitate the genetic dissection of complex quantitative traits in plants and are valuable breeding materials. We report the development of the first eggplant MAGIC population (S3 Magic EGGplant InCanum, S3MEGGIC; 8-way), constituted by the 420 S3 individuals developed from the intercrossing of seven cultivated eggplant (Solanum melongena) and one wild relative (S. incanum) parents. The S3MEGGIC recombinant population was genotyped with the eggplant 5k probes SPET platform and phenotyped for anthocyanin presence in vegetative plant tissues (PA) and fruit epidermis (FA), and for the light-insensitive anthocyanic pigmentation under the calyx (PUC). The 7,724 filtered high-confidence single-nucleotide polymorphisms (SNPs) confirmed a low residual heterozygosity (6.87%), a lack of genetic structure in the S3MEGGIC population, and no differentiation among subpopulations carrying a cultivated or wild cytoplasm. Inference of haplotype blocks of the nuclear genome revealed an unbalanced representation of the founder genomes, suggesting a cryptic selection in favour or against specific parental genomes. Genome-wide association study (GWAS) analysis for PA, FA, and PUC detected strong associations with two myeloblastosis (MYB) genes similar to MYB113 involved in the anthocyanin biosynthesis pathway, and with a COP1 gene which encodes for a photo-regulatory protein and may be responsible for the PUC trait. Evidence was found of a duplication of an ancestral MYB113 gene with a translocation from chromosome 10 to chromosome 1 compared with the tomato genome. Parental genotypes for the three genes were in agreement with the identification of the candidate genes performed in the S3MEGGIC population. Our new eggplant MAGIC population is the largest recombinant population in eggplant and is a powerful tool for eggplant genetics and breeding studies.
Collapse
Affiliation(s)
- Giulio Mangino
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Andrea Arrones
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Mariola Plazas
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Torsten Pook
- Animal Breeding and Genetics Group, Department of Animal Sciences, Center for Integrated Breeding Research, University of Göttingen, Göttingin, Germany
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Pietro Gramazio
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Santiago Vilanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
18
|
Lo Scalzo R, Florio FE, Fibiani M, Speranza G, Rabuffetti M, Gattolin S, Toppino L, Rotino GL. Scrapped but not neglected: Insights into the composition, molecular modulation and antioxidant capacity of phenols in peel of eggplant (Solanum melongena L.) fruits at different developmental stages. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:678-690. [PMID: 34488153 DOI: 10.1016/j.plaphy.2021.08.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/20/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Eggplant fruits are normally harvested and marketed when they reach the commercial maturity, that precedes the physiological ripening when dramatic changes in taste, composition and peel color take place. The biochemical changes in fruit peel across the developmental stages, characterized also by a sizeable decrement of anthocyanins, were studied in four eggplant genotypes differing for fruit pigmentation. HPLC-DAD, HPLC-ESI-MS and NMR analyses identified naringenin chalcone and naringenin 7-O-glucoside as the main phenolic compounds in extracts from the physiological ripe stage, along with compounds tentatively identified as glycosylated naringenin chalcone, naringenin and kaempferol. On average, the levels of anthocyanins, responsible for the peel pigmentation, dropped by 75% during development, while, surprisingly, the level of total phenols showed a slight decrease of 16%, with a final concentration of more than 1000 mg/100g dw. RT-qPCR expression profiling of nine genes coding for enzymes putatively acting at different steps of the involved pathways showed modulation mostly consistent with the observed changes in phenolic composition, with a remarkable decrease in the activity of flavonol reductase and an increase in flavonol synthase during berry development. Antioxidant activity monitored by peroxyl scavenging was similar at all developmental stages while Fremy's analysis evidenced a slight decrement at full physiological ripening. These results are valuable to address the improvement of eggplant commercial fruit quality and the valorization of unmarketable physiological ripe fruits, especially for the newly accumulation of the health-promoting compounds chalcones and flavanones.
Collapse
Affiliation(s)
- Roberto Lo Scalzo
- CREA Research Centre for Engineering and Agro-food Processing, via G. Venezian 26, 20133, Milano, Italy.
| | - Francesco E Florio
- CREA Research Centre for Genomics and Bioinformatics, via Paullese 28, 26836, Montanaso Lombardo (LO), Italy
| | - Marta Fibiani
- CREA Research Centre for Engineering and Agro-food Processing, via G. Venezian 26, 20133, Milano, Italy
| | - Giovanna Speranza
- Department of Chemistry, University of Milan, via Golgi 19, 20133, Milano, Italy
| | - Marco Rabuffetti
- Department of Chemistry, University of Milan, via Golgi 19, 20133, Milano, Italy
| | - Stefano Gattolin
- CREA Research Centre for Genomics and Bioinformatics, via Paullese 28, 26836, Montanaso Lombardo (LO), Italy; CNR - National Research Council of Italy, Institute of Agricultural Biology and Biotechnology (IBBA), via Bassini 15, 20133, Milano, Italy
| | - Laura Toppino
- CREA Research Centre for Genomics and Bioinformatics, via Paullese 28, 26836, Montanaso Lombardo (LO), Italy
| | - Giuseppe L Rotino
- CREA Research Centre for Genomics and Bioinformatics, via Paullese 28, 26836, Montanaso Lombardo (LO), Italy
| |
Collapse
|
19
|
Ban Q, Liu T, Ning K, Fan J, Cui Q, Guo Y, Zai X. Effect of calcium treatment on the browning of harvested eggplant fruits and its relation to the metabolisms of reactive oxygen species (ROS) and phenolics. Food Sci Nutr 2021; 9:5567-5574. [PMID: 34646526 PMCID: PMC8498068 DOI: 10.1002/fsn3.2517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 11/10/2022] Open
Abstract
Eggplant is a popular vegetable in Asia; however, it has a short storage life and considerable economic losses have resulted from eggplant browning. Calcium has been reported to play a key role in the postharvest storage of plants. Here, we found that exogenous calcium application could delay eggplant fruit browning and maintain higher storage quality. The increased browning index (BI), relative electrolytic leakage (REL), and water loss were suppressed by calcium treatment during storage. Delayed browning with calcium treatment might result from a higher phenolic level and suppressed the activity of polyphenol oxidase (PPO). Less H2O2 and O2 - but more activated reactive oxygen species (ROS) scavenging enzymes accumulated in calcium-treated fruits than in H2O-treated fruits. Moreover, the nonenzymatic antioxidant, ascorbic acid (AsA), was accumulated more in calcium-treated eggplant fruits. Taken together, our data demonstrated that exogenous calcium application delayed eggplant fruit browning by regulating phenol metabolism and enhancing antioxidant systems.
Collapse
Affiliation(s)
- Qiuyan Ban
- College of HorticultureJinling Institute of TechnologyNanjingChina
| | - Tongjin Liu
- College of HorticultureJinling Institute of TechnologyNanjingChina
| | - Kun Ning
- College of HorticultureJinling Institute of TechnologyNanjingChina
| | - Junjun Fan
- College of HorticultureJinling Institute of TechnologyNanjingChina
| | - Qunxiang Cui
- College of HorticultureJinling Institute of TechnologyNanjingChina
| | - Yanle Guo
- College of HorticultureJinling Institute of TechnologyNanjingChina
| | - Xueming Zai
- College of HorticultureJinling Institute of TechnologyNanjingChina
| |
Collapse
|
20
|
Florio FE, Gattolin S, Toppino L, Bassolino L, Fibiani M, Lo Scalzo R, Rotino GL. A SmelAAT Acyltransferase Variant Causes a Major Difference in Eggplant ( Solanum melongena L.) Peel Anthocyanin Composition. Int J Mol Sci 2021; 22:ijms22179174. [PMID: 34502081 PMCID: PMC8431300 DOI: 10.3390/ijms22179174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 12/15/2022] Open
Abstract
Eggplant berries are rich in anthocyanins like delphinidin-3-rutinoside (D3R) and nasunin (NAS), which are accumulated at high amounts in the peel. NAS is derived by D3R through acylation and glycosylation steps. The presence of D3R or NAS is usually associated with black-purple or lilac fruit coloration of the most cultivated varieties, respectively. Building on QTL mapping position, a candidate gene approach was used to investigate the involvement of a BAHD anthocyanin acyltransferase (SmelAAT) in determining anthocyanin type. The cDNA sequence comparison revealed the presence of a single-base deletion in D3R-type line ‘305E40’ (305E40_aat) with respect to the NAS-type reference line ‘67/3’. This is predicted to cause a frame shift mutation, leading to a loss of SmelAAT function and, thus, D3R retention. RT-qPCR analyses confirmed SmelAAT and 305E40_aat expression during berry maturation. In D3R-type lines, ‘305E40’ and ‘DR2’, overexpressing the functional SmelAAT allele from ‘67/3’, the transcript levels of the transgene correlated with the accumulation of NAS in fruit peel. Furthermore, it was also found a higher expression of the transcript for glucosyltransferase Smel5GT1, putatively involved with SmelAAT in the last steps of anthocyanin decoration. Finally, an indel marker matching with anthocyanin type in the ‘305E40’ × ’67/3’ segregating population was developed and validated in a wide number of accessions, proving its usefulness for breeding purposes.
Collapse
Affiliation(s)
- Francesco Elia Florio
- CREA, Research Centre for Genomics and Bioinformatics, 26836 Montanaso Lombardo, Italy; (F.E.F.); (L.T.); (L.B.)
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, 20133 Milan, Italy
| | - Stefano Gattolin
- CREA, Research Centre for Genomics and Bioinformatics, 26836 Montanaso Lombardo, Italy; (F.E.F.); (L.T.); (L.B.)
- CNR—National Research Council of Italy, Institute of Agricultural Biology and Biotechnology (IBBA), 20133 Milan, Italy
- Correspondence: (S.G.); (G.L.R.); Tel.: +39-037-1466-2507 (S.G.); +39-33-9548-4825 (G.L.R.)
| | - Laura Toppino
- CREA, Research Centre for Genomics and Bioinformatics, 26836 Montanaso Lombardo, Italy; (F.E.F.); (L.T.); (L.B.)
| | - Laura Bassolino
- CREA, Research Centre for Genomics and Bioinformatics, 26836 Montanaso Lombardo, Italy; (F.E.F.); (L.T.); (L.B.)
- CREA, Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy
| | - Marta Fibiani
- CREA, Research Centre for Engineering and Agro-Food Processing, 20133 Milan, Italy; (M.F.); (R.L.S.)
| | - Roberto Lo Scalzo
- CREA, Research Centre for Engineering and Agro-Food Processing, 20133 Milan, Italy; (M.F.); (R.L.S.)
| | - Giuseppe Leonardo Rotino
- CREA, Research Centre for Genomics and Bioinformatics, 26836 Montanaso Lombardo, Italy; (F.E.F.); (L.T.); (L.B.)
- Correspondence: (S.G.); (G.L.R.); Tel.: +39-037-1466-2507 (S.G.); +39-33-9548-4825 (G.L.R.)
| |
Collapse
|
21
|
Abstract
Eggplant is one of the most important vegetable crops known for its nutritive benefits due to the abundance of various bioactive compounds, which include proteins, vitamins, minerals, carbohydrates, phenolics, and dry matter content. In addition, eggplant has significant pharmaceutical properties that have been recently recognized. Eggplant produces secondary metabolites, including glycoalkaloids, antioxidant compounds, and vitamins, which appear to be the major source of its health benefits. It has been reported that there is a considerable correlation between the regular use of phytochemicals and the defense against diseases. Therefore, researchers must analyze the biochemical composition of eggplants to obtain more information about their nutritional quality and health benefits. In this review, an attempt is made to explain the qualitative and quantitative aspects of different biochemicals present in eggplant, in addition to their beneficial health effects.
Collapse
|
22
|
Barchi L, Rabanus‐Wallace MT, Prohens J, Toppino L, Padmarasu S, Portis E, Rotino GL, Stein N, Lanteri S, Giuliano G. Improved genome assembly and pan-genome provide key insights into eggplant domestication and breeding. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:579-596. [PMID: 33964091 PMCID: PMC8453987 DOI: 10.1111/tpj.15313] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 05/20/2023]
Abstract
Eggplant (Solanum melongena L.) is an important horticultural crop and one of the most widely grown vegetables from the Solanaceae family. It was domesticated from a wild, prickly progenitor carrying small, round, non-anthocyanic fruits. We obtained a novel, highly contiguous genome assembly of the eggplant '67/3' reference line, by Hi-C retrofitting of a previously released short read- and optical mapping-based assembly. The sizes of the 12 chromosomes and the fraction of anchored genes in the improved assembly were comparable to those of a chromosome-level assembly. We resequenced 23 accessions of S. melongena representative of the worldwide phenotypic, geographic, and genetic diversity of the species, and one each from the closely related species Solanum insanum and Solanum incanum. The eggplant pan-genome contained approximately 51.5 additional megabases and 816 additional genes compared with the reference genome, while the pan-plastome showed little genetic variation. We identified 53 selective sweeps related to fruit color, prickliness, and fruit shape in the nuclear genome, highlighting selection leading to the emergence of present-day S. melongena cultivars from its wild ancestors. Candidate genes underlying the selective sweeps included a MYBL1 repressor and CHALCONE ISOMERASE (for fruit color), homologs of Arabidopsis GLABRA1 and GLABROUS INFLORESCENCE STEMS2 (for prickliness), and orthologs of tomato FW2.2, OVATE, LOCULE NUMBER/WUSCHEL, SUPPRESSOR OF OVATE, and CELL SIZE REGULATOR (for fruit size/shape), further suggesting that selection for the latter trait relied on a common set of orthologous genes in tomato and eggplant.
Collapse
Affiliation(s)
- Lorenzo Barchi
- DISAFA – Plant geneticsUniversity of TurinGrugliasco (TO)10095Italy
| | | | - Jaime Prohens
- COMAVUniversitat Politècnica de ValènciaCamino de Vera 14Valencia46022Spain
| | - Laura Toppino
- CREA Research Centre for Genomics and BioinformaticsVia Paullese 28Montanaso LombardoLO26836Italy
| | - Sudharsan Padmarasu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstr. 3Seeland06466Germany
| | - Ezio Portis
- DISAFA – Plant geneticsUniversity of TurinGrugliasco (TO)10095Italy
| | - Giuseppe Leonardo Rotino
- CREA Research Centre for Genomics and BioinformaticsVia Paullese 28Montanaso LombardoLO26836Italy
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstr. 3Seeland06466Germany
- Department of Crop SciencesCenter for Integrated Breeding Research (CiBreed)Georg‐August‐UniversityVon Siebold Str. 8Göttingen37075Germany
| | - Sergio Lanteri
- DISAFA – Plant geneticsUniversity of TurinGrugliasco (TO)10095Italy
| | | |
Collapse
|
23
|
Agregán R, Munekata PE, Feng X, Astray G, Gullón B, Lorenzo JM. Recent advances in the extraction of polyphenols from eggplant and their application in foods. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Page AML, Chapman MA. Identifying genomic regions targeted during eggplant domestication using transcriptome data. J Hered 2021; 112:519-525. [PMID: 34130314 PMCID: PMC8634079 DOI: 10.1093/jhered/esab035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/11/2021] [Indexed: 11/15/2022] Open
Abstract
Identifying genes and traits that have diverged during domestication provides key information of importance for maintaining and even increasing yield and nutrients in existing crops. A “bottom-up” population genetics approach was used to identify signatures of selection across the eggplant genome, to better understand the process of domestication. RNA-seq data were obtained for 4 wild eggplants (Solanum insanum L.) and 16 domesticated eggplants (S. melongena L.) and mapped to the eggplant genome. Single-nucleotide polymorphism (SNPs) exhibiting signatures of selection in domesticates were identified as those exhibiting high FST between the 2 populations (evidence of significant divergence) and low π for the domesticated population (indicative of a selective sweep). Some of these regions appear to overlap with previously identified quantitative trait loci for domestication traits. Genes in regions of linkage disequilibrium surrounding these SNPs were searched against the Arabidopsis thaliana and tomato genomes to find orthologs. Subsequent gene ontology (GO) enrichment analysis identified over-representation of GO terms related to photosynthesis and response to the environment. This work reveals genomic changes involved in eggplant domestication and improvement, and how this compares to observed changes in the tomato genome, revealing shared chromosomal regions involved in the domestication of both species.
Collapse
Affiliation(s)
- Anna M L Page
- Biological Sciences, University of Southampton, Southampton, UK
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
25
|
Mauceri A, Abenavoli MR, Toppino L, Panda S, Mercati F, Aci MM, Aharoni A, Sunseri F, Rotino GL, Lupini A. Transcriptomics reveal new insights into molecular regulation of nitrogen use efficiency in Solanum melongena. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4237-4253. [PMID: 33711100 DOI: 10.1093/jxb/erab121] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Nitrogen-use efficiency (NUE) is a complex trait of great interest in breeding programs because through its improvement, high crop yields can be maintained whilst N supply is reduced. In this study, we report a transcriptomic analysis of four NUE-contrasting eggplant (Solanum melongena) genotypes following short- and long-term exposure to low N, to identify key genes related to NUE in the roots and shoots. The differentially expressed genes in the high-NUE genotypes are involved in the light-harvesting complex and receptor, a ferredoxin-NADP reductase, a catalase and WRKY33. These genes were then used as bait for a co-expression gene network analysis in order to identify genes with the same trends in expression. This showed that up-regulation of WRKY33 triggered higher expression of a cluster of 21 genes and also of other genes, many of which were related to N-metabolism, that were able to improve both nitrogen uptake efficiency and nitrogen utilization efficiency, the two components of NUE. We also conducted an independent de novo experiment to validate the significantly higher expression of WRKY33 and its gene cluster in the high-NUE genotypes. Finally, examination of an Arabidopsis transgenic 35S::AtWRKY33 overexpression line showed that it had a bigger root system and was more efficient at taking up N from the soil, confirming the pivotal role of WRKY33 for NUE improvement.
Collapse
Affiliation(s)
- Antonio Mauceri
- Dipartimento Agraria, Università degli Studi Mediterranea di Reggio Calabria, Loc. Feo di Vito, Reggio Calabria, Italy
| | - Maria Rosa Abenavoli
- Dipartimento Agraria, Università degli Studi Mediterranea di Reggio Calabria, Loc. Feo di Vito, Reggio Calabria, Italy
| | - Laura Toppino
- CREA - Research Centre for Genomics and Bioinformatics, Via Paullese 28, Montanaso Lombardo, Italy
| | - Sayantan Panda
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Francesco Mercati
- Istituto di Bioscienze e Biorisorse CNR - Consiglio Nazionale Ricerche, Corso Calatafimi 414, Palermo, Italy
| | - Meriem Miyassa Aci
- Dipartimento Agraria, Università degli Studi Mediterranea di Reggio Calabria, Loc. Feo di Vito, Reggio Calabria, Italy
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Francesco Sunseri
- Dipartimento Agraria, Università degli Studi Mediterranea di Reggio Calabria, Loc. Feo di Vito, Reggio Calabria, Italy
| | - Giuseppe Leonardo Rotino
- CREA - Research Centre for Genomics and Bioinformatics, Via Paullese 28, Montanaso Lombardo, Italy
| | - Antonio Lupini
- Dipartimento Agraria, Università degli Studi Mediterranea di Reggio Calabria, Loc. Feo di Vito, Reggio Calabria, Italy
| |
Collapse
|
26
|
Sulli M, Barchi L, Toppino L, Diretto G, Sala T, Lanteri S, Rotino GL, Giuliano G. An Eggplant Recombinant Inbred Population Allows the Discovery of Metabolic QTLs Controlling Fruit Nutritional Quality. FRONTIERS IN PLANT SCIENCE 2021; 12:638195. [PMID: 34079565 PMCID: PMC8166230 DOI: 10.3389/fpls.2021.638195] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/22/2021] [Indexed: 06/02/2023]
Abstract
Eggplant (Solanum melongena L.) represents the third most important crop of the Solanaceae family and is an important component of our daily diet. A population of 164 F6 recombinant inbred lines (RILs), derived from two eggplant lines differing with respect to several key agronomic traits, "305E40" and "67/3," was grown to the commercial maturation stage, and fruits were harvested, separated into peel and flesh, and subjected to liquid chromatography Liquid Chromatography/Mass Spectrometry (LC/MS) analysis. Through a combination of untargeted and targeted metabolomics approaches, a number of metabolites belonging to the glycoalkaloid, anthocyanin, and polyamine classes and showing a differential accumulation in the two parental lines and F1 hybrid were identified. Through metabolic profiling of the RILs, we identified several metabolomic quantitative trait loci (mQTLs) associated with the accumulation of those metabolites. Each of the metabolic traits proved to be controlled by one or more quantitative trait loci (QTLs); for most of the traits, one major mQTL (phenotypic variation explained [PVE] ≥ 10%) was identified. Data on mQTL mapping and dominance-recessivity relationships of measured compounds in the parental lines and F1 hybrid, as well as an analysis of the candidate genes underlying the QTLs and of their sequence differences in the two parental lines, suggested a series of candidate genes underlying the traits under study.
Collapse
Affiliation(s)
- Maria Sulli
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Rome, Italy
| | - Lorenzo Barchi
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics and Breeding, University of Turin, Grugliasco, Italy
| | - Laura Toppino
- CREA, Council for Agricultural and Economics Research, Research Centre for Genomics and Bioinformatics, Montanaso Lombardo, Italy
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Rome, Italy
| | - Tea Sala
- CREA, Council for Agricultural and Economics Research, Research Centre for Genomics and Bioinformatics, Montanaso Lombardo, Italy
| | - Sergio Lanteri
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics and Breeding, University of Turin, Grugliasco, Italy
| | - Giuseppe Leonardo Rotino
- CREA, Council for Agricultural and Economics Research, Research Centre for Genomics and Bioinformatics, Montanaso Lombardo, Italy
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Rome, Italy
| |
Collapse
|
27
|
Qian Z, Zhang B, Chen H, Lu L, Duan M, Zhou J, Cui Y, Li D. Identification of Quantitative Trait Loci Controlling the Development of Prickles in Eggplant by Genome Re-sequencing Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:731079. [PMID: 34567042 PMCID: PMC8457335 DOI: 10.3389/fpls.2021.731079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/06/2021] [Indexed: 05/17/2023]
Abstract
Eggplant (Solanum melongena L.) is the third most important crop in the family of Solanaceae. Prickles are considered as the undesirable traits during the plantation of eggplant and the transportation of fruits. In this study, we constructed a high-quality genetic linkage Bin map derived from the re-sequencing analysis on a cross of a prickly wild landrace, 17C01, and a cultivated variety, 17C02. The major quantitative trait locus (QTL) controlling the development of prickles on the calyx (explained 30.42% of the phenotypic variation), named as qPC.12, was identified on a ~7 kb region on chromosome 12. A gene within qPC.12, which encodes a WUSCHEL-related homeobox-like protein, with higher expression levels in 17C01 calyx and 22-bp deletion in 17C02 was probably the functional gene for prickle formation. Results from this study would ultimately facilitate uncovering the molecular regulatory mechanisms underlying the development of a prickle in eggplant.
Collapse
Affiliation(s)
- Zongwei Qian
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing, China
| | - Bin Zhang
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing, China
| | - Haili Chen
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing, China
| | - Lei Lu
- College of Life Science and Technology, Jining Normal University, Ulanqab, China
| | - Mengqi Duan
- Turf Research Institute, Beijing Forestry University, Beijing, China
| | - Jun Zhou
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yanling Cui
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing, China
- *Correspondence: Yanling Cui
| | - Dayong Li
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing, China
- College of Life Sciences, Shandong Normal University, Jinan, China
- Dayong Li
| |
Collapse
|
28
|
Wei Q, Wang J, Wang W, Hu T, Hu H, Bao C. A high-quality chromosome-level genome assembly reveals genetics for important traits in eggplant. HORTICULTURE RESEARCH 2020; 7:153. [PMID: 33024567 PMCID: PMC7506008 DOI: 10.1038/s41438-020-00391-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 05/04/2023]
Abstract
Eggplant (Solanum melongena L.) is an economically important vegetable crop in the Solanaceae family, with extensive diversity among landraces and close relatives. Here, we report a high-quality reference genome for the eggplant inbred line HQ-1315 (S. melongena-HQ) using a combination of Illumina, Nanopore and 10X genomics sequencing technologies and Hi-C technology for genome assembly. The assembled genome has a total size of ~1.17 Gb and 12 chromosomes, with a contig N50 of 5.26 Mb, consisting of 36,582 protein-coding genes. Repetitive sequences comprise 70.09% (811.14 Mb) of the eggplant genome, most of which are long terminal repeat (LTR) retrotransposons (65.80%), followed by long interspersed nuclear elements (LINEs, 1.54%) and DNA transposons (0.85%). The S. melongena-HQ eggplant genome carries a total of 563 accession-specific gene families containing 1009 genes. In total, 73 expanded gene families (892 genes) and 34 contraction gene families (114 genes) were functionally annotated. Comparative analysis of different eggplant genomes identified three types of variations, including single-nucleotide polymorphisms (SNPs), insertions/deletions (indels) and structural variants (SVs). Asymmetric SV accumulation was found in potential regulatory regions of protein-coding genes among the different eggplant genomes. Furthermore, we performed QTL-seq for eggplant fruit length using the S. melongena-HQ reference genome and detected a QTL interval of 71.29-78.26 Mb on chromosome E03. The gene Smechr0301963, which belongs to the SUN gene family, is predicted to be a key candidate gene for eggplant fruit length regulation. Moreover, we anchored a total of 210 linkage markers associated with 71 traits to the eggplant chromosomes and finally obtained 26 QTL hotspots. The eggplant HQ-1315 genome assembly can be accessed at http://eggplant-hq.cn. In conclusion, the eggplant genome presented herein provides a global view of genomic divergence at the whole-genome level and powerful tools for the identification of candidate genes for important traits in eggplant.
Collapse
Affiliation(s)
- Qingzhen Wei
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, 30021 China
| | - Jinglei Wang
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, 30021 China
| | - Wuhong Wang
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, 30021 China
| | - Tianhua Hu
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, 30021 China
| | - Haijiao Hu
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, 30021 China
| | - Chonglai Bao
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, 30021 China
| |
Collapse
|
29
|
Miyatake K, Saito T, Nunome T, Yamaguchi H, Negoro S, Ohyama A, Wu J, Katayose Y, Fukuoka H. Fine mapping of a major locus representing the lack of prickles in eggplant revealed the availability of a 0.5-kb insertion/deletion for marker-assisted selection. BREEDING SCIENCE 2020; 70:438-448. [PMID: 32968346 PMCID: PMC7495204 DOI: 10.1270/jsbbs.20004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/02/2020] [Indexed: 05/29/2023]
Abstract
As prickles cause labour inefficiency during cultivation and scratches on the skin of fruits during transportation, they are considered undesirable traits of eggplant (Solanum melongena L.). Because the molecular basis of prickle emergence has not been entirely revealed in plants, we mapped an eggplant semi-dominant Prickle (Pl) gene locus, which causes the absence of prickles, on chromosome 6 of a linkage map of the F2 population derived from crossing the no-prickly cultivar 'Togenashi-senryo-nigo' and the prickly line LS1934. By performing synteny mapping with tomato, the genomic region corresponding to the eggplant Pl locus was identified. Through bacterial artificial chromosome (BAC) screening, positive BAC clones and the contig sequence that harbour the Pl locus in the prickly eggplant genome were revealed. The BAC contig length was 133 kb, and it contained 16 predicted genes. Among them, a characteristic 0.5-kb insertion/deletion was detected. As the 0.5-kb insertion was commonly identified with the prickly phenotype worldwide, a primer pair that amplifies the insertion/deletion could be used for marker-assisted selection of the no-prickly phenotype. Such findings contribute to map-based-cloning of the Pl gene and the understanding of gene function, ultimately providing new insights into the regulatory molecular mechanisms underlying prickle emergence in plants.
Collapse
Affiliation(s)
- Koji Miyatake
- Institute of Vegetable and Floriculture Science (NIVFS), National Agriculture and Food Research Organization (NARO), 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| | - Takeo Saito
- Institute of Vegetable and Floriculture Science (NIVFS), National Agriculture and Food Research Organization (NARO), 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| | - Tsukasa Nunome
- Institute of Vegetable and Floriculture Science (NIVFS), National Agriculture and Food Research Organization (NARO), 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| | - Hirotaka Yamaguchi
- Institute of Vegetable and Floriculture Science (NIVFS), National Agriculture and Food Research Organization (NARO), 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| | - Satomi Negoro
- Institute of Vegetable and Floriculture Science (NIVFS), National Agriculture and Food Research Organization (NARO), 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| | - Akio Ohyama
- Institute of Vegetable and Floriculture Science (NIVFS), National Agriculture and Food Research Organization (NARO), 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| | - Jianzhong Wu
- Institute of Crop Science (NICS), National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Yuichi Katayose
- Institute of Crop Science (NICS), National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Hiroyuki Fukuoka
- Institute of Vegetable and Floriculture Science (NIVFS), National Agriculture and Food Research Organization (NARO), 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| |
Collapse
|
30
|
A New Intra-Specific and High-Resolution Genetic Map of Eggplant Based on a RIL Population, and Location of QTLs Related to Plant Anthocyanin Pigmentation and Seed Vigour. Genes (Basel) 2020; 11:genes11070745. [PMID: 32635424 PMCID: PMC7397344 DOI: 10.3390/genes11070745] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022] Open
Abstract
Eggplant is the second most important solanaceous berry-producing crop after tomato. Despite mapping studies based on bi-parental progenies and GWAS approaches having been performed, an eggplant intraspecific high-resolution map is still lacking. We developed a RIL population from the intraspecific cross ‘305E40’, (androgenetic introgressed line carrying the locus Rfo-Sa1 conferring Fusarium resistance) x ‘67/3’ (breeding line whose genome sequence was recently released). One hundred and sixty-three RILs were genotyped by a genotype-by-sequencing (GBS) approach, which allowed us to identify 10,361 polymorphic sites. Overall, 267 Gb of sequencing data were generated and ~773 M Illumina paired end (PE) reads were mapped against the reference sequence. A new linkage map was developed, including 7249 SNPs assigned to the 12 chromosomes and spanning 2169.23 cM, with iaci@liberoan average distance of 0.4 cM between adjacent markers. This was used to elucidate the genetic bases of seven traits related to anthocyanin content in different organs recorded in three locations as well as seed vigor. Overall, from 7 to 17 QTLs (at least one major QTL) were identified for each trait. These results demonstrate that our newly developed map supplies valuable information for QTL fine mapping, candidate gene identification, and the development of molecular markers for marker assisted selection (MAS) of favorable alleles.
Collapse
|
31
|
Calumpang CLF, Saigo T, Watanabe M, Tohge T. Cross-Species Comparison of Fruit-Metabolomics to Elucidate Metabolic Regulation of Fruit Polyphenolics Among Solanaceous Crops. Metabolites 2020; 10:E209. [PMID: 32438728 PMCID: PMC7281770 DOI: 10.3390/metabo10050209] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/03/2020] [Accepted: 05/14/2020] [Indexed: 11/24/2022] Open
Abstract
Many solanaceous crops are an important part of the human daily diet. Fruit polyphenolics are plant specialized metabolites that are recognized for their human health benefits and their defensive role against plant abiotic and biotic stressors. Flavonoids and chlorogenates are the major polyphenolic compounds found in solanaceous fruits that vary in quantity, physiological function, and structural diversity among and within plant species. Despite their biological significance, the elucidation of metabolic shifts of polyphenols during fruit ripening in different fruit tissues, has not yet been well-characterized in solanaceous crops, especially at a cross-species and cross-cultivar level. Here, we performed a cross-species comparison of fruit-metabolomics to elucidate the metabolic regulation of fruit polyphenolics from three representative crops of Solanaceae (tomato, eggplant, and pepper), and a cross-cultivar comparison among different pepper cultivars (Capsicum annuum cv.) using liquid chromatography-mass spectrometry (LC-MS). We observed a metabolic trade-off between hydroxycinnamates and flavonoids in pungent pepper and anthocyanin-type pepper cultivars and identified metabolic signatures of fruit polyphenolics in each species from each different tissue-type and fruit ripening stage. Our results provide additional information for metabolomics-assisted crop improvement of solanaceous fruits towards their improved nutritive properties and enhanced stress tolerance.
Collapse
Affiliation(s)
| | | | | | - Takayuki Tohge
- Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan; (C.L.F.C.); (T.S.); (M.W.)
| |
Collapse
|
32
|
Andrea M, Francesco EF, Sergio I, Alessandra G, Maria AM, Cinzia C, Lorenzo B, Arianna M, Cecilia C, Patrizia R, Laura T, Giuseppe LR, Sergio L, Laura B. Identification of a new R3 MYB type repressor and functional characterization of the members of the MBW transcriptional complex involved in anthocyanin biosynthesis in eggplant (S. melongena L.). PLoS One 2020; 15:e0232986. [PMID: 32407419 PMCID: PMC7224497 DOI: 10.1371/journal.pone.0232986] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
Here we focus on the highly conserved MYB-bHLH-WD repeat (MBW) transcriptional complex model in eggplant, which is pivotal in the transcriptional regulation of the anthocyanin biosynthetic pathway. Through a genome-wide approach performed on the recently released Eggplant Genome (cv. 67/3) previously identified, and reconfirmed by us, members belonging to the MBW complex (SmelANT1, SmelAN2, SmelJAF13, SmelAN1) were functionally characterized. Furthermore, a regulatory R3 MYB type repressor (SmelMYBL1), never reported before, was identified and characterized as well. Through a qPCR approach, we revealed specific transcriptional patterns of candidate genes in different plant tissue/organs at two stages of fruit development. Two strategies were adopted for investigating the interactions of bHLH partners (SmelAN1, SmelJAF13) with MYB counterparts (SmelANT1, SmelAN2 and SmelMYBL1): Yeast Two Hybrid (Y2H) and Bimolecular Fluorescent Complementation (BiFC) in A. thaliana mesophylls protoplast. Agro-infiltration experiments highlighted that N. benthamiana leaves transiently expressing SmelANT1 and SmelAN2 showed an anthocyanin-pigmented phenotype, while their co-expression with SmelMYBL1 prevented anthocyanin accumulation. Our results suggest that SmelMYBL1 may inhibits the MBW complex via the competition with MYB activators for bHLH binding site, although this hypothesis requires further elucidation.
Collapse
Affiliation(s)
- Moglia Andrea
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, Grugliasco (TO), Italy
| | - Elia Florio Francesco
- CREA, Research Centre for Genomics and Bioinformatics, Montanaso Lombardo (LO), Italy
| | - Iacopino Sergio
- PlantLab, Scuola Superiore Sant'Anna, Institute of Life Sciences, Ghezzano (PI), Italy
- Department of Biology, University of Pisa, Pisa (PI), Italy
| | - Guerrieri Alessandra
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, The Netherlands
| | - Anna Milani Maria
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, Grugliasco (TO), Italy
| | - Comino Cinzia
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, Grugliasco (TO), Italy
| | - Barchi Lorenzo
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, Grugliasco (TO), Italy
| | - Marengo Arianna
- Department of Drug Science and Technology, University of Torino, Torino (TO), Italy
| | - Cagliero Cecilia
- Department of Drug Science and Technology, University of Torino, Torino (TO), Italy
| | - Rubiolo Patrizia
- Department of Drug Science and Technology, University of Torino, Torino (TO), Italy
| | - Toppino Laura
- CREA, Research Centre for Genomics and Bioinformatics, Montanaso Lombardo (LO), Italy
| | | | - Lanteri Sergio
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, Grugliasco (TO), Italy
| | - Bassolino Laura
- CREA, Research Centre for Genomics and Bioinformatics, Montanaso Lombardo (LO), Italy
- CREA, Research Centre for Cereal and Industrial Crops, Bologna, Italy
| |
Collapse
|
33
|
Mauceri A, Bassolino L, Lupini A, Badeck F, Rizza F, Schiavi M, Toppino L, Abenavoli MR, Rotino GL, Sunseri F. Genetic variation in eggplant for Nitrogen Use Efficiency under contrasting NO 3 - supply. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:487-508. [PMID: 31087763 DOI: 10.1111/jipb.12823] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/08/2019] [Indexed: 05/03/2023]
Abstract
Eggplant (Solanum melongena L.) yield is highly sensitive to N fertilization, the excessive use of which is responsible for environmental and human health damage. Lowering N input together with the selection of improved Nitrogen-Use-Efficiency (NUE) genotypes, more able to uptake, utilize, and remobilize N available in soils, can be challenging to maintain high crop yields in a sustainable agriculture. The aim of this study was to explore the natural variation among eggplant accessions from different origins, in response to Low (LN) and High (HN) Nitrate (NO3 - ) supply, to identify NUE-contrasting genotypes and their NUE-related traits, in hydroponic and greenhouse pot experiments. Two eggplants, AM222 and AM22, were identified as N-use efficient and inefficient, respectively, in hydroponic, and these results were confirmed in a pot experiment, when crop yield was also evaluated. Overall, our results indicated the key role of N-utilization component (NUtE) to confer high NUE. The remobilization of N from leaves to fruits may be a strategy to enhance NUtE, suggesting glutamate synthase as a key enzyme. Further, omics technologies will be used for focusing on C-N metabolism interacting networks. The availability of RILs from two other selected NUE-contrasting genotypes will allow us to detect major genes/quantitative trait loci related to NUE.
Collapse
Affiliation(s)
- Antonio Mauceri
- Dipartimento Agraria, Università degli Studi Mediterranea di Reggio Calabria, I-89124, Reggio Calabria, Italy
| | - Laura Bassolino
- CREA Centro di ricerca Genomica e Bioinformatica, I-26836, Montanaso Lombardo, Italy
| | - Antonio Lupini
- Dipartimento Agraria, Università degli Studi Mediterranea di Reggio Calabria, I-89124, Reggio Calabria, Italy
| | - Franz Badeck
- CREA Centro di ricerca Genomica e Bioinformatica, I-29017, Fiorenzuola d'Arda, Italy
| | - Fulvia Rizza
- CREA Centro di ricerca Genomica e Bioinformatica, I-29017, Fiorenzuola d'Arda, Italy
| | - Massimo Schiavi
- CREA Centro di ricerca Genomica e Bioinformatica, I-26836, Montanaso Lombardo, Italy
| | - Laura Toppino
- CREA Centro di ricerca Genomica e Bioinformatica, I-26836, Montanaso Lombardo, Italy
| | - Maria Rosa Abenavoli
- Dipartimento Agraria, Università degli Studi Mediterranea di Reggio Calabria, I-89124, Reggio Calabria, Italy
| | - Giuseppe L Rotino
- CREA Centro di ricerca Genomica e Bioinformatica, I-26836, Montanaso Lombardo, Italy
| | - Francesco Sunseri
- Dipartimento Agraria, Università degli Studi Mediterranea di Reggio Calabria, I-89124, Reggio Calabria, Italy
| |
Collapse
|
34
|
Wei Q, Wang W, Hu T, Hu H, Wang J, Bao C. Construction of a SNP-Based Genetic Map Using SLAF-Seq and QTL Analysis of Morphological Traits in Eggplant. Front Genet 2020; 11:178. [PMID: 32218801 PMCID: PMC7078336 DOI: 10.3389/fgene.2020.00178] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/13/2020] [Indexed: 01/09/2023] Open
Abstract
Eggplant (Solanum melongena; 2n = 24) is an economically important fruit crop of the family Solanaceae that was domesticated in India and Southeast Asia. Construction of a high-resolution genetic map and map-based gene mining in eggplant have lagged behind other crops within the family such as tomato and potato. In this study, we conducted high-throughput single nucleotide polymorphism (SNP) discovery in the eggplant genome using specific length amplified fragment (SLAF) sequencing and constructed a high-density genetic map for the quantitative trait locus (QTL) analysis of multiple traits. An interspecific F2 population of 121 individuals was developed from the cross between cultivated eggplant "1836" and the wild relative S. linnaeanum "1809." Genomic DNA extracted from parental lines and the F2 population was subjected to high-throughput SLAF sequencing. A total of 111.74 Gb of data and 487.53 million pair-end reads were generated. A high-resolution genetic map containing 2,122 SNP markers and 12 linkage groups was developed for eggplant, which spanned 1530.75 cM, with an average distance of 0.72 cM between adjacent markers. A total of 19 QTLs were detected for stem height and fruit and leaf morphology traits of eggplant, explaining 4.08-55.23% of the phenotypic variance. These QTLs were distributed on nine linkage groups (LGs), but not on LG2, 4, and 9. The number of SNPs ranged from 2 to 11 within each QTL, and the genetic interval varied from 0.15 to 10.53 cM. Overall, the results establish a foundation for the fine mapping of complex QTLs, candidate gene identification, and marker-assisted selection of favorable alleles in eggplant breeding.
Collapse
Affiliation(s)
| | | | | | | | | | - Chonglai Bao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
35
|
Can H, Kal U, Ozyigit II, Paksoy M, Turkmen O. Construction, characteristics and high throughput molecular screening methodologies in some special breeding populations: a horticultural perspective. J Genet 2019; 98:86. [PMID: 31544799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Advanced marker technologies are widely used for evaluation of genetic diversity in cultivated crops, wild ancestors, landraces or any special plant genotypes. Developing agricultural cultivars requires the following steps: (i) determining desired characteristics to be improved, (ii) screening genetic resources to help find a superior cultivar, (iii) intercrossing selected individuals, (iv) generating genetically hybrid populations and screening them for agro-morphological or molecular traits, (v) evaluating the superior cultivar candidates, (vi) testing field performance at different locations, and (vii) certifying. In the cultivar development process valuable genes can be identified by creating special biparental or multiparental populations and analysing their association using suitable markers in given populations. These special populations and advanced marker technologies give us a deeper knowledge about the inherited agronomic characteristics. Unaffected by the changing environmental conditions, these provide a higher understanding of genome dynamics in plants. The last decade witnessed new applications for advanced molecular techniques in the area of breeding,with low costs per sample. These, especially, include next-generation sequencing technologies like reduced representation genome sequencing (genotyping by sequencing, restriction site-associated DNA). These enabled researchers to develop new markers, such as simple sequence repeat and single- nucleotide polymorphism, for expanding the qualitative and quantitative information onpopulation dynamics. Thus, the knowledge acquired from novel technologies is a valuable asset for the breeding process and to better understand the population dynamics, their properties, and analysis methods.
Collapse
Affiliation(s)
- Hasan Can
- Faculty of Agriculture, Department of Field Crops and Horticulture, Kyrgyz-Turkish Manas University, Bishkek 720038, Kyrgyzstan.
| | | | | | | | | |
Collapse
|
36
|
Genetic Analysis for Fruit Phenolics Content, Flesh Color, and Browning Related Traits in Eggplant ( Solanum melongena). Int J Mol Sci 2019; 20:ijms20122990. [PMID: 31248080 PMCID: PMC6628304 DOI: 10.3390/ijms20122990] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 12/16/2022] Open
Abstract
Eggplant varieties rich in bioactive chlorogenic acid along with less browning are preferred by consumers. Therefore, genetics of fruit phenolics, fruit flesh colour, and browning related traits were studied in the genotypes of eggplant, comprising of nine cultivated varieties and one accession of eggplant‘s primary genepool wild relative Solanum insanum (INS2). These accessions were genotyped based on the 7335 polymorphic single-nucleotide polymorphisms (SNP) markers. After that, genotypes were crossed in half diallel fashion to produce 45 hybrids. The INS2 displayed the highest values for the total phenolics and chlorogenic acid content (CGA). For all of the biochemical traits studied, significant values of general and specific combining ability (GCA and SCA) effects were determined. The baker ratio estimates were high (>0.75) for all of the traits. Highly significant and positive heterosis (%) was determined for the dry matter, total phenolics, CGA, and area (%) of CGA content. The phenolics content of the fruit (total phenolics and CGA) was not significantly correlated with flesh colour and browning related traits. However, when the path coefficient analysis was performed considering the CGA as a dependent variable, it was determined that the flesh colour related traits most considerably affected the CGA. The genetic distance showed a diminutive correlation with the hybrid means, heterosis, and SCA values. Overall, this study provides important information regarding the underlying genetics of important biochemical traits of eggplant fruit.
Collapse
|
37
|
Scorsatto M, Rosa G, Raggio Luiz R, da Rocha Pinheiro Mulder A, Junger Teodoro A, Moraes de Oliveira GM. Effect of Eggplant Flour (
Solanum melongena
L.) associated with hypoenergetic diet on antioxidant status in overweight women ‐ a randomised clinical trial. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mauara Scorsatto
- Department of Medicine Federal University of Rio de Janeiro Rio de Janeiro 22430‐210 Brazil
| | - Glorimar Rosa
- Josué de Castro Nutrition Institute Federal University of Rio de Janeiro Rio de Janeiro 21941‐902 Brazil
| | - Ronir Raggio Luiz
- Institute for Collective Health Studies Federal University of Rio de Janeiro Rio de Janeiro 21941‐598 Brazil
| | | | - Anderson Junger Teodoro
- Nutrition Biochemistry Core Laboratory of Functional Foods Federal University of the State of Rio de Janeiro Rio de Janeiro 22290?240 Brazil
| | | |
Collapse
|
38
|
Solanum aethiopicum gr. gilo and Its Interspecific Hybrid with S. melongena as Alternative Rootstocks for Eggplant: Effects on Vigor, Yield, and Fruit Physicochemical Properties of Cultivar ′Scarlatti′. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9050223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Grafting is generally considered effective in ameliorating vegetable crop tolerance to biotic and abiotic stresses. The use of interspecific hybrid as rootstock for eggplant may represent a valid alternative approach to enhance eggplant performance. However, studies on the effects of different rootstocks on eggplant plant vigor, yield, and fruit quality traits often show conflicting results. Thus, an experiment was performed in two spring–summer growing seasons (2014 and 2015) by grafting eggplant ′Scarlatti′ F1 hybrid on two accessions of S. aethiopicum gr. gilo and on the interspecific hybrid S. melongena × S. aehtiopicumgr. gilo in comparison to the most common eggplant rootstock S. torvum. Results indicate that S. melongena × S. aethiopicum gr. gilo interspecific hybrid and S. torvum improved grafting success, plant vigor, early flowering and yield in ′Scarlatti′ F1 scion. All rootstocks tested did not negatively influence fruit apparent quality traits and fruit quality composition. Moreover, fruit glycoalkaloids content remained below the recommended threshold value. These findings suggest that the use of S. melongena × S. aethiopicum gr. gilo interspecific hybrid as rootstock may be a good alternative to the most commonly used S. torvum.
Collapse
|
39
|
|
40
|
Gramazio P, Yan H, Hasing T, Vilanova S, Prohens J, Bombarely A. Whole-Genome Resequencing of Seven Eggplant ( Solanum melongena) and One Wild Relative ( S. incanum) Accessions Provides New Insights and Breeding Tools for Eggplant Enhancement. FRONTIERS IN PLANT SCIENCE 2019; 10:1220. [PMID: 31649694 PMCID: PMC6791922 DOI: 10.3389/fpls.2019.01220] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/04/2019] [Indexed: 05/20/2023]
Abstract
Whole-genome resequencing provides information of great relevance for crop genetics, evolution, and breeding. Here, we present the first whole-genome resequencing study using seven eggplant (Solanum melongena) and one wild relative (Solanum incanum) accessions. These eight accessions were selected for displaying a high phenotypic and genetic diversity and for being the founder parents of an eggplant multiparent advanced generation intercrosses population. By resequencing at an average depth of 19.8× and comparing to the high-quality reference genome "67/3" over 10 million high-reliable polymorphisms were discovered, of which over 9 million (84.5%) were single nucleotide polymorphisms and more than 700,000 (6.5%) InDels. However, while for the S. melongena accessions, the variants identified ranged from 0.8 to 1.3 million, over 9 million were detected for the wild S. incanum. This confirms the narrow genetic diversity of the domesticated eggplant and suggests that introgression breeding using wild relatives can efficiently contribute to broadening the genetic basis of this crop. Differences were observed among accessions for the enrichment in genes regulating important biological processes. By analyzing the distribution of the variants, we identified the potential footprints of old introgressions from wild relatives that can help to unravel the unclear domestication and breeding history. The comprehensive annotation of these eight genomes and the information provided in this study represents a landmark in eggplant genomics and allows the development of tools for eggplant genetics and breeding.
Collapse
Affiliation(s)
- Pietro Gramazio
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
- *Correspondence: Pietro Gramazio,
| | - Haidong Yan
- School of Plant and Environmental Sciences (SPES), Virginia Tech, Blacksburg, VA, United States
| | - Tomas Hasing
- School of Plant and Environmental Sciences (SPES), Virginia Tech, Blacksburg, VA, United States
| | - Santiago Vilanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Aureliano Bombarely
- School of Plant and Environmental Sciences (SPES), Virginia Tech, Blacksburg, VA, United States
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
41
|
Di Sotto A, Di Giacomo S, Amatore D, Locatelli M, Vitalone A, Toniolo C, Rotino GL, Lo Scalzo R, Palamara AT, Marcocci ME, Nencioni L. A Polyphenol Rich Extract from Solanum melongena L. DR2 Peel Exhibits Antioxidant Properties and Anti-Herpes Simplex Virus Type 1 Activity In Vitro. Molecules 2018; 23:E2066. [PMID: 30126139 PMCID: PMC6222547 DOI: 10.3390/molecules23082066] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022] Open
Abstract
DR2B and DR2C extracts, obtained by ethanolic maceration of peel from commercially and physiologically ripe aubergine berries, were studied for the antioxidative cytoprotective properties and anti-HSV-1 activity, in line with the evidence that several antioxidants can impair viral replication by maintaining reducing conditions in host cells. The antioxidative cytoprotective effects against tBOOH-induced damage were assessed in Caco2 cells, while antiviral activity was studied in Vero cells; polyphenolic fingerprints were characterized by integrated phytochemical methods. Results highlighted different compositions of the extracts, with chlorogenic acid and delphinidin-3-rutinoside as the major constituents; other peculiar phytochemicals were also identified. Both samples reduced reactive oxygen species (ROS) production and exhibited scavenging and chelating properties. DR2C partly counteracted the tBOOH-induced cytotoxicity, with a remarkable lowering of lactate metabolism under both normoxia and hypoxia; interestingly, it increased intracellular GSH levels. Furthermore, DR2C inhibited the HSV-1 replication when added for 24 h after viral adsorption, as also confirmed by the reduction of many viral proteins' expression. Since DR2C was able to reduce NOX4 expression during HSV-1 infection, its antiviral activity may be correlated to its antioxidant properties. Although further studies are needed to better characterize DR2C activity, the results suggest this extract as a promising new anti-HSV-1 agent.
Collapse
Affiliation(s)
- Antonella Di Sotto
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Donatella Amatore
- Department of Public Health and Infectious Diseases, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Marcello Locatelli
- Department of Pharmacy, University "G. D'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Annabella Vitalone
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Chiara Toniolo
- Department of Environmental Biology, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Giuseppe Leonardo Rotino
- Research Centre for Genomics and Bioinformatics (CREA-GB), Via Paullese 28, Lodi, 26836 Montanaso Lombardo, Italy.
| | - Roberto Lo Scalzo
- Research Centre for Engineering and Agro-Food Processing (CREA-IT), Via Venezian 26, 20133 Milan, Italy.
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Maria Elena Marcocci
- Department of Public Health and Infectious Diseases, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
42
|
Liu Y, Tikunov Y, Schouten RE, Marcelis LFM, Visser RGF, Bovy A. Anthocyanin Biosynthesis and Degradation Mechanisms in Solanaceous Vegetables: A Review. Front Chem 2018; 6:52. [PMID: 29594099 PMCID: PMC5855062 DOI: 10.3389/fchem.2018.00052] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/22/2018] [Indexed: 12/26/2022] Open
Abstract
Anthocyanins are a group of polyphenolic pigments that are ubiquitously found in the plant kingdom. In plants, anthocyanins play a role not only in reproduction, by attracting pollinators and seed dispersers, but also in protection against various abiotic and biotic stresses. There is accumulating evidence that anthocyanins have health-promoting properties, which makes anthocyanin metabolism an interesting target for breeders and researchers. In this review, the state of the art knowledge concerning anthocyanins in the Solanaceous vegetables, i.e., pepper, tomato, eggplant, and potato, is discussed, including biochemistry and biological function of anthocyanins, as well as their genetic and environmental regulation. Anthocyanin accumulation is determined by the balance between biosynthesis and degradation. Although the anthocyanin biosynthetic pathway has been well-studied in Solanaceous vegetables, more research is needed on the inhibition of biosynthesis and, in particular, the anthocyanin degradation mechanisms if we want to control anthocyanin content of Solanaceous vegetables. In addition, anthocyanin metabolism is distinctly affected by environmental conditions, but the molecular regulation of these effects is poorly understood. Existing knowledge is summarized and current gaps in our understanding are highlighted and discussed, to create opportunities for the development of anthocyanin-rich crops through breeding and environmental management.
Collapse
Affiliation(s)
- Ying Liu
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands.,Horticulture and Product Physiology, Wageningen University and Research, Wageningen, Netherlands.,Graduate School Production Ecology & Resource Conservation, Wageningen University and Research, Wageningen, Netherlands
| | - Yury Tikunov
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Rob E Schouten
- Horticulture and Product Physiology, Wageningen University and Research, Wageningen, Netherlands
| | - Leo F M Marcelis
- Horticulture and Product Physiology, Wageningen University and Research, Wageningen, Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Arnaud Bovy
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
43
|
Xia Z, Zhang S, Wen M, Lu C, Sun Y, Zou M, Wang W. Construction of an ultrahigh-density genetic linkage map for Jatropha curcas L. and identification of QTL for fruit yield. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:3. [PMID: 29321812 PMCID: PMC5759280 DOI: 10.1186/s13068-017-1004-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 12/22/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND As an important biofuel plant, the demand for higher yield Jatropha curcas L. is rapidly increasing. However, genetic analysis of Jatropha and molecular breeding for higher yield have been hampered by the limited number of molecular markers available. RESULTS An ultrahigh-density linkage map for a Jatropha mapping population of 153 individuals was constructed and covered 1380.58 cM of the Jatropha genome, with average marker density of 0.403 cM. The genetic linkage map consisted of 3422 SNP and indel markers, which clustered into 11 linkage groups. With this map, 13 repeatable QTLs (reQTLs) for fruit yield traits were identified. Ten reQTLs, qNF-1, qNF-2a, qNF-2b, qNF-2c, qNF-3, qNF-4, qNF-6, qNF-7a, qNF-7b and qNF-8, that control the number of fruits (NF) mapped to LGs 1, 2, 3, 4, 6, 7 and 8, whereas three reQTLs, qTWF-1, qTWF-2 and qTWF-3, that control the total weight of fruits (TWF) mapped to LGs 1, 2 and 3, respectively. It is interesting that there are two candidate critical genes, which may regulate Jatropha fruit yield. We also identified three pleiotropic reQTL pairs associated with both the NF and TWF traits. CONCLUSION This study is the first to report an ultrahigh-density Jatropha genetic linkage map construction, and the markers used in this study showed great potential for QTL mapping. Thirteen fruit-yield reQTLs and two important candidate genes were identified based on this linkage map. This genetic linkage map will be a useful tool for the localization of other economically important QTLs and candidate genes for Jatropha.
Collapse
Affiliation(s)
- Zhiqiang Xia
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
- Huazhong Agricultural University, Wuhan, China
| | - Shengkui Zhang
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
- Huazhong Agricultural University, Wuhan, China
| | - Mingfu Wen
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Cheng Lu
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Yufang Sun
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Meiling Zou
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
- Huazhong Agricultural University, Wuhan, China
| | - Wenquan Wang
- The Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| |
Collapse
|
44
|
Gramazio P, Prohens J, Plazas M, Mangino G, Herraiz FJ, Vilanova S. Development and Genetic Characterization of Advanced Backcross Materials and An Introgression Line Population of Solanum incanum in a S. melongena Background. FRONTIERS IN PLANT SCIENCE 2017; 8:1477. [PMID: 28912788 PMCID: PMC5582342 DOI: 10.3389/fpls.2017.01477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/09/2017] [Indexed: 05/29/2023]
Abstract
Advanced backcrosses (ABs) and introgression lines (ILs) of eggplant (Solanum melongena) can speed up genetics and genomics studies and breeding in this crop. We have developed the first full set of ABs and ILs in eggplant using Solanum incanum, a wild eggplant that has a relatively high tolerance to drought, as a donor parent. The development of these ABs and IL eggplant populations had a low efficiency in the early stages, because of the lack of molecular markers and genomic tools. However, this dramatically improved after performing genotyping-by-sequencing in the first round of selfing, followed by high-resolution-melting single nucleotide polymorphism genotyping in subsequent selection steps. A set of 73 selected ABs covered 99% of the S. incanum genome, while 25 fixed immortal ILs, each carrying a single introgressed fragment in homozygosis, altogether spanned 61.7% of the S. incanum genome. The introgressed size fragment in the ILs contained between 0.1 and 10.9% of the S. incanum genome, with a mean value of 4.3%. Sixty-eight candidate genes involved in drought tolerance were identified in the set of ILs. This first set of ABs and ILs of eggplant will be extremely useful for the genetic dissection of traits of interest for eggplant, and represents an elite material for introduction into the breeding pipelines for developing new eggplant cultivars adapted to the challenges posed by the climate-change scenario.
Collapse
Affiliation(s)
- Pietro Gramazio
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de ValènciaValencia, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de ValènciaValencia, Spain
| | - Mariola Plazas
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas - Universitat Politècnica de ValènciaValencia, Spain
| | - Giulio Mangino
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de ValènciaValencia, Spain
| | - Francisco J. Herraiz
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de ValènciaValencia, Spain
| | - Santiago Vilanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de ValènciaValencia, Spain
| |
Collapse
|
45
|
Acquadro A, Barchi L, Gramazio P, Portis E, Vilanova S, Comino C, Plazas M, Prohens J, Lanteri S. Coding SNPs analysis highlights genetic relationships and evolution pattern in eggplant complexes. PLoS One 2017; 12:e0180774. [PMID: 28686642 PMCID: PMC5501601 DOI: 10.1371/journal.pone.0180774] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/21/2017] [Indexed: 11/18/2022] Open
Abstract
Brinjal (Solanum melongena), scarlet (S. aethiopicum) and gboma (S. macrocarpon) eggplants are three Old World domesticates. The genomic DNA of a collection of accessions belonging to the three cultivated species, along with a representation of various wild relatives, was characterized for the presence of single nucleotide polymorphisms (SNPs) using a genotype-by-sequencing approach. A total of 210 million useful reads were produced and were successfully aligned to the reference eggplant genome sequence. Out of the 75,399 polymorphic sites identified among the 76 entries in study, 12,859 were associated with coding sequence. A genetic relationships analysis, supported by the output of the FastSTRUCTURE software, identified four major sub-groups as present in the germplasm panel. The first of these clustered S. aethiopicum with its wild ancestor S. anguivi; the second, S. melongena, its wild progenitor S. insanum, and its relatives S. incanum, S. lichtensteinii and S. linneanum; the third, S. macrocarpon and its wild ancestor S. dasyphyllum; and the fourth, the New World species S. sisymbriifolium, S. torvum and S. elaeagnifolium. By applying a hierarchical FastSTRUCTURE analysis on partitioned data, it was also possible to resolve the ambiguous membership of the accessions of S. campylacanthum, S. violaceum, S. lidii, S. vespertilio and S. tomentsum, as well as to genetically differentiate the three species of New World Origin. A principal coordinates analysis performed both on the entire germplasm panel and also separately on the entries belonging to sub-groups revealed a clear separation among species, although not between each of the domesticates and their respective wild ancestors. There was no clear differentiation between either distinct cultivar groups or different geographical provenance. Adopting various approaches to analyze SNP variation provided support for interpretation of results. The genotyping-by-sequencing approach showed to be highly efficient for both quantifying genetic diversity and establishing genetic relationships among and within cultivated eggplants and their wild relatives. The relevance of these results to the evolution of eggplants, as well as to their genetic improvement, is discussed.
Collapse
Affiliation(s)
- Alberto Acquadro
- University of Turin—DISAFA—Plant Genetics and Breeding, University of Turin, Largo Braccini 2, Grugliasco, Torino, Italy
| | - Lorenzo Barchi
- University of Turin—DISAFA—Plant Genetics and Breeding, University of Turin, Largo Braccini 2, Grugliasco, Torino, Italy
| | - Pietro Gramazio
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, Valencia, Spain
| | - Ezio Portis
- University of Turin—DISAFA—Plant Genetics and Breeding, University of Turin, Largo Braccini 2, Grugliasco, Torino, Italy
| | - Santiago Vilanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, Valencia, Spain
| | - Cinzia Comino
- University of Turin—DISAFA—Plant Genetics and Breeding, University of Turin, Largo Braccini 2, Grugliasco, Torino, Italy
| | - Mariola Plazas
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Camino de Vera 14, Valencia, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, Valencia, Spain
| | - Sergio Lanteri
- University of Turin—DISAFA—Plant Genetics and Breeding, University of Turin, Largo Braccini 2, Grugliasco, Torino, Italy
| |
Collapse
|