1
|
Cheng T, Lin J, Zhou X, Wang H, Zhou X, Huang X, Chen T. Integrative metabolomics and transcriptomics profiling reveals differential expression of flavonoid synthesis in Ophiopogon japonicus (L. f.) Ker-Gawl. in adaptation to drought. PLoS One 2025; 20:e0313580. [PMID: 39774546 PMCID: PMC11706389 DOI: 10.1371/journal.pone.0313580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 10/26/2024] [Indexed: 01/11/2025] Open
Abstract
Drought is one of the consequences of climate change that severely affects plant growth and development. Ophiopogon japonicus (L. f.) Ker-Gawl. (Chinese name: Chuanmaidong, abbreviated as CMD) is a commonly used herbaceous plant whose growth and development are strongly affected by drought. Here, we comprehensively analyzed the transcriptomic and metabolic responses of two CMD varieties (EP and CP) to drought stress. CP utilized a small number of differentially expressed genes to regulate a greater number of differential metabolites compared to EP, suggesting that it may be more drought tolerant. In addition, integrated transcriptome and metabolome analyses revealed that transcription factors such as WRKY, TIFY, and C2H2 regulate flavonoid synthesis in CMD. These findings provide ideas for in-depth analysis of the mechanism of CMD against drought stress, and provide a theoretical basis for breeding high-quality drought-tolerant varieties.
Collapse
Affiliation(s)
- Tingting Cheng
- Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Juan Lin
- Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Xia Zhou
- Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Hongsu Wang
- Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Xianjian Zhou
- Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Xiaopeng Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tiezhu Chen
- Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Chengdu, China
| |
Collapse
|
2
|
Fan R, Wang B, Yu H, Wang Y, Kui Y, Chen M, Wang Y, Jia X. De novo assembly of Idesia polycarpa transcriptome and unsaturated fatty acid biosynthesis candidate genes Mining and functional Identification. Heliyon 2024; 10:e38015. [PMID: 39381103 PMCID: PMC11456844 DOI: 10.1016/j.heliyon.2024.e38015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
Unsaturated fatty acids (UFA) in lipids are the key to nutraceutical oil applications, with various potential applications in nutraceutical functional foods and pharmaceutical industries. In Idesia polycarpa (Salicaceae), more than 80 % of UFA have been found in the fruits; yet, the underlying genetic mechanism remains poorly understood. Due to the lack of theoretical research on the genes related to lipid biosynthesis and the complete genetic transformation system of I. polycarpa fruit, the selection and breeding of I. polycarpa, an excellent oil tree, has been severely restricted. In-depth understanding of the molecular mechanism and gene function of lipid biosynthesis of I. polycarpa fruit is therefore of great significance for the development of I. polycarpa resources. This is not only conducive to the genetic improvement of I. polycarpa by molecular breeding technologies but can also provide a reference for the study of the gene functions of other oil plants. In this study, the FA accumulation patterns of I. polycarpa fruits during 8 growth periods were analysed. Fruit from two developmental periods with different UFA levels were analysed for RNA sequencing by an Illumina NovaSeq 6000 HiSeq platform. De novo transcriptome assembly presented 115,350 unigenes and 4382 differentially expressed genes (DEGs). Functional annotation in the KEGG pathway and combined with DEG data revealed candidate genes potentially involved in UFA biosynthesis. Expression analysis of q-PCR of IpDGAT2, IpGPAT, IpKASII, IpSAD, IpFAD2, IpFAD3 and IpFAD8 suggested that these genes are highly involved in UFA biosynthesis. Full-length candidate genes were cloned and analysed by bioinformatic tools, and function analysis of IpSAD and IpFAD3 showed that these genes regulated the products of linoleic acid metabolism. This study provides a foundation for UFA biosynthesis in Idesia polycarpa, facilitating its genetic breeding in the future.
Collapse
Affiliation(s)
- Ruishen Fan
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Haikou, Hainan, China
| | - Boheng Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
- East China Survey and Planning Institute of National Forest and Grassland Administration, Hangzhou, Zhejiang, China
| | - Hang Yu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Yiran Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanpeng Kui
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Minmin Chen
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Haikou, Hainan, China
| | - Yibin Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoming Jia
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Wang H, Cheng K, Li T, Lan X, Shen L, Zhao H, Lü S. A Highly Efficient Agrobacterium rhizogenes-Mediated Hairy Root Transformation Method of Idesia polycarpa and the Generation of Transgenic Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:1791. [PMID: 38999631 PMCID: PMC11244318 DOI: 10.3390/plants13131791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
Idesia polycarpa is a promising woody oilseed species because of its high oil yield. However, its use is greatly limited due to the lack of varieties with good qualities; additionally, gene function has been less studied in this plant because an efficient transformation method has not been established yet. In this study, we established a rapid and efficient hairy root transformation method by infecting the whole seedling, the rootless seedling, and the leaf petiole with Agrobacterium rhizogenes using different infection methods. Among these transformation methods, a higher transformation efficiency was obtained using the whole seedling, which could reach up to 71.91%. Furthermore, we found that the seedling age significantly affected the transformation efficiency, either using whole or rootless seedlings. Additionally, we found that the transgenic roots could regenerate transgenic shoots. Taken together, our study lays the foundation for future study and for genetically modifying wood traits in the future.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (H.W.); (K.C.); (T.L.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Kaimao Cheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (H.W.); (K.C.); (T.L.)
| | - Tongjie Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (H.W.); (K.C.); (T.L.)
| | - Xiaoyu Lan
- Shaanxi Agricultural and Forestry Technology Co., Ltd., Xi’an 710005, China; (X.L.); (L.S.)
| | - Li Shen
- Shaanxi Agricultural and Forestry Technology Co., Ltd., Xi’an 710005, China; (X.L.); (L.S.)
| | - Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (H.W.); (K.C.); (T.L.)
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (H.W.); (K.C.); (T.L.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
4
|
Zhao Y, Sun C, Wang S, Zhang M, Li Y, Xue Q, Guo Q, Lai H. Widely targeted metabolomic, transcriptomic, and metagenomic profiling reveal microbe-plant-metabolic reprogramming patterns mediated by Streptomyces pactum Act12 enhance the fruit quality of Capsicum annuum L. Food Res Int 2023; 166:112587. [PMID: 36914318 DOI: 10.1016/j.foodres.2023.112587] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Plant growth-promoting rhizobacteria, such as Streptomyces pactum Act12, promote crop growth and stress resistance, but their contribution to fruit quality is still poorly understood. Herein we conducted a field experiment to ascertain the effects of S. pactum Act12-mediated metabolic reprogramming and underlying mechanisms in pepper (Capsicum annuum L.) fruit based on widely targeted metabolomic and transcriptomic profiling. We additionally performed metagenomic analysis to elucidate the potential relationship between S. pactum Act12-mediated reshaping of rhizosphere microbial communities and pepper fruit quality. Soil inoculation with S. pactum Act12 considerably increased the accumulation of capsaicinoids, carbohydrates, organic acids, flavonoids, anthraquinones, unsaturated fatty acids, vitamins, and phenolic acids in pepper fruit samples. Consequently, fruit flavor, taste, and color were modified, accompanied by elevated contents of nutrients and bioactive compounds. Increased microbial diversity and recruitment of potentially beneficial taxa were observed in inoculated soil samples, with crosstalk between microbial gene functions and pepper fruit metabolism. The reformed structure and function of rhizosphere microbial communities were closely associated with pepper fruit quality. Our findings indicate that S. pactum Act12-mediated interactions between rhizosphere microbial communities and pepper plants are responsible for intricate fruit metabolic reprogramming patterns, which enhance not only overall fruit quality but also consumer acceptability.
Collapse
Affiliation(s)
- Yisen Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Chenyu Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Suzhen Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Meilin Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yulong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Quanhong Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Qiao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hangxian Lai
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
5
|
Shi R, Bai H, Li B, Liu C, Ying Z, Xiong Z, Wang W. Combined Transcriptome and Lipidomic Analyses of Lipid Biosynthesis in Macadamia ternifolia Nuts. Life (Basel) 2021; 11:1431. [PMID: 34947962 PMCID: PMC8707767 DOI: 10.3390/life11121431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Macadamia nuts are considered a high-quality oil crop worldwide. To date, the lipid diversity and the genetic factors that mediate storage lipid biosynthesis in Macadamia ternifolia are poorly known. Here, we performed a comprehensive transcriptomic and lipidomic data analysis to understand the mechanism of lipid biosynthesis by using young, medium-aged, and mature fruit kernels. Our lipidomic analysis showed that the M. ternifolia kernel was a rich source of unsaturated fatty acids. Moreover, different species of triacylglycerols, diacylglycerol, ceramides, phosphatidylethanolamine, and phosphatidic acid had altered accumulations during the developmental stages. The transcriptome analysis revealed a large percentage of differently expressed genes during the different stages of macadamia growth. Most of the genes with significant differential expression performed functional activity of oxidoreductase and were enriched in the secondary metabolite pathway. The integration of lipidomic and transcriptomic data allowed for the identification of glycerol-3-phosphate acyltransferase, diacylglycerol kinase, phosphatidylinositols, nonspecific phospholipase C, pyruvate kinase 2, 3-ketoacyl-acyl carrier protein reductase, and linoleate 9S-lipoxygenase as putative candidate genes involved in lipid biosynthesis, storage, and oil quality. Our study found comprehensive datasets of lipidomic and transcriptomic changes in the developing kernel of M. ternifolia. In addition, the identification of candidate genes provides essential prerequisites to understand the molecular mechanism of lipid biosynthesis in the kernel of M. ternifolia.
Collapse
Affiliation(s)
- Rui Shi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming 650224, China; (R.S.); (C.L.); (Z.Y.)
| | - Haidong Bai
- Lincang Academy of Forestry, Lincang 677009, China;
| | - Biao Li
- Yuxi Sannong Plateau Characteristic Modern Agriculture Co., Ltd., Chengjiang 652599, China;
| | - Can Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming 650224, China; (R.S.); (C.L.); (Z.Y.)
| | - Zhiping Ying
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming 650224, China; (R.S.); (C.L.); (Z.Y.)
| | - Zhi Xiong
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming 650224, China; (R.S.); (C.L.); (Z.Y.)
| | - Wenlin Wang
- Guangxi South Subtropical Agricultural Science Research Institute, Longzhou 532415, China
| |
Collapse
|
6
|
Wang L, Oh TG, Magida J, Estepa G, Obayomi SMB, Chong LW, Gatchalian J, Yu RT, Atkins AR, Hargreaves D, Downes M, Wei Z, Evans RM. Bromodomain containing 9 (BRD9) regulates macrophage inflammatory responses by potentiating glucocorticoid receptor activity. Proc Natl Acad Sci U S A 2021; 118:e2109517118. [PMID: 34446564 PMCID: PMC8536317 DOI: 10.1073/pnas.2109517118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In macrophages, homeostatic and immune signals induce distinct sets of transcriptional responses, defining cellular identity and functional states. The activity of lineage-specific and signal-induced transcription factors are regulated by chromatin accessibility and other epigenetic modulators. Glucocorticoids are potent antiinflammatory drugs; however, the mechanisms by which they selectively attenuate inflammatory genes are not yet understood. Acting through the glucocorticoid receptor (GR), glucocorticoids directly repress inflammatory responses at transcriptional and epigenetic levels in macrophages. A major unanswered question relates to the sequence of events that result in the formation of repressive regions. In this study, we identify bromodomain containing 9 (BRD9), a component of SWI/SNF chromatin remodeling complex, as a modulator of glucocorticoid responses in macrophages. Inhibition, degradation, or genetic depletion of BRD9 in bone marrow-derived macrophages significantly attenuated their responses to both liposaccharides and interferon inflammatory stimuli. Notably, BRD9-regulated genes extensively overlap with those regulated by the synthetic glucocorticoid dexamethasone. Pharmacologic inhibition of BRD9 potentiated the antiinflammatory responses of dexamethasone, while the genetic deletion of BRD9 in macrophages reduced high-fat diet-induced adipose inflammation. Mechanistically, BRD9 colocalized at a subset of GR genomic binding sites, and depletion of BRD9 enhanced GR occupancy primarily at inflammatory-related genes to potentiate GR-induced repression. Collectively, these findings establish BRD9 as a genomic antagonist of GR at inflammatory-related genes in macrophages, and reveal a potential for BRD9 inhibitors to increase the therapeutic efficacies of glucocorticoids.
Collapse
Affiliation(s)
- Liu Wang
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | - Tae Gyu Oh
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Jason Magida
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Gabriela Estepa
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - S M Bukola Obayomi
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | - Ling-Wa Chong
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Jovylyn Gatchalian
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037
| | - Ruth T Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Annette R Atkins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Diana Hargreaves
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037;
| | - Zong Wei
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, AZ 85259;
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037;
| |
Collapse
|
7
|
Zhou Y, Zhao W, Lai Y, Zhang B, Zhang D. Edible Plant Oil: Global Status, Health Issues, and Perspectives. FRONTIERS IN PLANT SCIENCE 2020; 11:1315. [PMID: 32983204 PMCID: PMC7485320 DOI: 10.3389/fpls.2020.01315] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/11/2020] [Indexed: 05/13/2023]
Abstract
Edible plant oil (EPO) is an indispensable nutritional resource for human health. Various cultivars of oil-bearing plants are grown worldwide, and the chemical compositions of different plant oils are diverse. The extremely complex components in oils lead to diverse standards for evaluating the quality and safety of different EPOs. The environment poses great challenges to the EPO safety and quality during the entire industrial chain, including plant cultivation, harvesting, oil processing, and storage. Environmental risk factors include heavy metal or pesticide residue pollution, insect or harmful microbial infestation, and rancidity. Here, the diverse components in oil and various oil-producing processes are discussed, including plant species, oil yield, and composition complexity, environmental factors that degrade oil quality. Additionally, we propose a whole-industrial-chain monitoring system instead of current single-link-monitoring approach by monitoring and tracking the quality and safety of EPOs during the entire process of plant cultivation, raw materials harvest, oil process, and EPOs storage. This will provide guidance for monitoring the quality and safety of EPOs, which were challenged by the deteriorating environment.
Collapse
Affiliation(s)
- Ying Zhou
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Weiwei Zhao
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Yong Lai
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Dangquan Zhang
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, College of Forestry, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
8
|
Li F, Wu B, Yan L, Hao C, Qin X, Lai J, Song Y. Transcriptional profiling reveals differentially expressed genes involved in lipid biosynthesis during cacao seed development. Sci Rep 2019; 9:17263. [PMID: 31754164 PMCID: PMC6872657 DOI: 10.1038/s41598-019-53959-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/05/2019] [Indexed: 11/09/2022] Open
Abstract
Theobroma cacao is a plant of economic value due to the use of its seed lipid for chocolate, confectionery, and cosmetic industries. The seed lipid contains a stable ratio of saturated and unsaturated fatty acids, which determines its unique melting temperature. However, little is known about the molecular mechanism determining the fatty acid ratio and lipid content in cacao. To gain insight into the unique properties of lipid synthesis in cacao, biochemical and transcriptomic approaches were used to compare the lipid accumulation between high and low lipid content cacao accessions. Lipid accumulation rates and lipid content were different between the two accessions. Moreover, differentially expressed genes were detected between high and low lipid content cacao accessions. The data allowed the identification of distinct candidate genes and furthered our understanding of lipid accumulation, potentially explaining the differences in lipid content between various cacao accessions. The results might be used to develop molecular tools and engineer alternative pathways for cacao breeding with improved lipid production potentials.
Collapse
Affiliation(s)
- Fupeng Li
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, 571533, P.R. China
| | - Baoduo Wu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, 571533, P.R. China
| | - Lin Yan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, 571533, P.R. China
| | - Chaoyun Hao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, 571533, P.R. China
| | - Xiaowei Qin
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, 571533, P.R. China
| | - Jianxiong Lai
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, 571533, P.R. China
| | - Yinghui Song
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, 571533, P.R. China.
| |
Collapse
|
9
|
Transcriptome Analysis of Elm (Ulmus pumila) Fruit to Identify Phytonutrients Associated Genes and Pathways. FORESTS 2019. [DOI: 10.3390/f10090738] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Plant fruit is an important source of natural active phytonutrients that are profitable for human health. Elm (Ulmus pumila) fruit is considered as natural plant food in China that is rich in nutrients. In the present study, high-throughput RNA sequencing was performed in U. pumila edible fruits and leaves and 11,386 unigenes were filtered as dysregulated genes in fruit samples, including 5231 up- and 6155 downregulated genes. Hundreds of pathways were predicted to participate in seed development and phytonutrient biosynthesis in U. pumila by GO, MapMan, and KEGG enrichment analysis, including “seed maturation”, “glycine, serine, and threonine metabolism” and “phenylpropanoid biosynthesis”. ABA-mediated glucose response-related ethylene-activated signaling pathway (e.g., ABI4) were supposed to associate with elm fruit development; unsaturated fatty acids pathway (e.g., ACX2 and SAD) were predicted to participate in determination of fatty acid composition in elm fruit; flavonoid and coumarins biosynthesis (e.g., CYP98A3 and CCoAOMT1) were demonstrated to correlate with the bioactivity of elm fruits in human cancer and inflammation resistance. To provide more information about fruit developmental status, the qRT-PCR analysis for key genes of “phenylpropanoid biosynthesis” and “alpha-Linolenic acid metabolism” were conducted in samples of young fruits, ripe fruit, old fruit, and leaves. Two biosynthetic pathways for unsaturated fatty acid and Jasmonic acid (JA) were deduced to be involved in fruit development in U. pumila and the phenylpropanoid glycoside, syringin, was speculated to accumulate in the early development stages of elm fruit. Our transcriptome data supports molecular clues for seed development and biologically active substances in elm fruits.
Collapse
|
10
|
Li MM, Wang DY, Zhang L, Kang MH, Lu ZQ, Zhu RB, Mao XX, Xi ZX, Tao M. Intergeneric Relationships within the Family Salicaceae s.l. based on Plastid Phylogenomics. Int J Mol Sci 2019; 20:ijms20153788. [PMID: 31382526 PMCID: PMC6696080 DOI: 10.3390/ijms20153788] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022] Open
Abstract
Many Salicaceae s.l. plants are recognized for their important role in the production of products such as wood, oils, and medicines, and as a model organism in life studies. However, the difference in plastid sequence, phylogenetic relationships, and lineage diversification of the family Salicaceae s.l. remain poorly understood. In this study, we compare 24 species representing 18 genera of the family. Simple sequence repeats (SSRs) are considered effective molecular markers for plant species identification and population genetics. Among them, a total of 1798 SSRs were identified, among which mononucleotide repeat was the most common with 1455 accounts representing 80.92% of the total. Most of the SSRs are located in the non-coding region. We also identified five other types of repeats, including 1750 tandems, 434 forward, 407 palindromic, 86 reverse, and 30 complementary repeats. The species in Salicaceae s.l. have a conserved plastid genome. Each plastome presented a typical quadripartite structure and varied in size due to the expansion and contraction of the inverted repeat (IR) boundary, lacking major structural variations, but we identified six divergence hotspot regions. We obtained phylogenetic relationships of 18 genera in Salicaceae s.l. and the 24 species formed a highly supported lineage. Casearia was identified as the basal clade. The divergence time between Salicaceae s.l. and the outgroup was estimated as ~93 Mya; Salix, and Populus diverged around 34 Mya, consistent with the previously reported time. Our research will contribute to a better understanding of the phylogenetic relationships among the members of the Salicaceae s.l.
Collapse
Affiliation(s)
- Meng-Meng Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - De-Yan Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Lei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Ming-Hui Kang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zhi-Qiang Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Ren-Bin Zhu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Xing-Xing Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zhen-Xiang Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Ma Tao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
11
|
Ding J, Ruan C, Du W, Guan Y. RNA-seq data reveals a coordinated regulation mechanism of multigenes involved in the high accumulation of palmitoleic acid and oil in sea buckthorn berry pulp. BMC PLANT BIOLOGY 2019; 19:207. [PMID: 31109294 PMCID: PMC6528223 DOI: 10.1186/s12870-019-1815-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Sea buckthorn is a woody oil crop in which palmitoleic acid (C16:1n7, an omega-7 fatty acid (FA)) contributes approximately 40% of the total FA content in berry pulp (non-seed tissue). However, the molecular mechanisms contributing to the high accumulation of C16:1n7 in developing sea buckthorn berry pulp (SBP) remain poorly understood. RESULTS We identified 1737 unigenes associated with lipid metabolism through RNA-sequencing analysis of the four developmental stages of berry pulp in two sea buckthorn lines, 'Za56' and 'TF2-36'; 139 differentially expressed genes were detected between the different berry pulp developmental stages in the two lines. Analyses of the FA composition showed that the C16:1n7 contents were significantly higher in line 'Za56' than in line 'TF2-36' in the mid-late developmental stages of SBP. Additionally, qRT-PCR analyses of 15 genes involved in FA and triacylglycerol (TAG) biosynthesis in both lines revealed that delta9-ACP-desaturase (ACP-Δ9D) competed with 3-ketoacyl-ACP-synthase II (KASII) for the substrate C16:0-ACP and that ACP-Δ9D and delta9-CoA-desaturase (CoA-Δ9D) gene expression positively correlated with C16:1n7 content; KASII and fatty acid elongation 1 (FAE1) gene expression positively correlated with C18:0 content in developing SBP. Specifically, the abundance of ACP-Δ9D and CoA-Δ9D transcripts in line 'Za56', which had a higher C16:1n7 content than line 'TF2-36', suggests that these two genes play an important role in C16:1n7 biosynthesis. Furthermore, the high expressions of the glycerol-3-phosphate dehydrogenase (GPD1) gene and the WRINKLED1 (WRI1) transcription factor contributed to increased biosynthesis of TAG precursor and FAs, respectively, in the early developmental stages of SBP, and the high expression of the diacylglycerol O-acyltransferase 1 (DGAT1) gene increased TAG assembly in the later developmental stages of SBP. Overall, we concluded that increased ACP-Δ9D and CoA-Δ9D levels coupled with decreased KASII and FAE1 activity is a critical event for high C16:1n7 accumulation and that the coordinated high expression of WRI1, GPD1, and DGAT1 genes resulted in high oil accumulation in SBP. CONCLUSION Our results provide a scientific basis for understanding the mechanism of high C16:1n7 accumulation in berry pulp (non-seed tissue) and are valuable to the genetic breeding programme for achieving a high quality and yield of SBP oil.
Collapse
Affiliation(s)
- Jian Ding
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600 Liaoning China
| | - Chengjiang Ruan
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600 Liaoning China
| | - Wei Du
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600 Liaoning China
| | - Ying Guan
- Institute of Berries, Heilongjiang Academy of Agricultural Sciences, 5 Fansheng Street, Suiling, Heilongjiang, 152230 China
| |
Collapse
|
12
|
Wu P, Zhang L, Feng T, Lu W, Zhao H, Li J, Lü S. A Conserved Glycine Is Identified to be Essential for Desaturase Activity of IpFAD2s by Analyzing Natural Variants from Idesia polycarpa. Int J Mol Sci 2018; 19:E3932. [PMID: 30544564 PMCID: PMC6321622 DOI: 10.3390/ijms19123932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/02/2018] [Accepted: 12/05/2018] [Indexed: 11/25/2022] Open
Abstract
High amounts of polyunsaturated fatty acids (PUFAs) in vegetable oil are not desirable for biodiesel or food oil due to their lower oxidative stability. The oil from Idesia polycarpa fruit contains 65⁻80% (mol%) linoleic acid (C18:2). Therefore, development of Idesia polycarpa cultivars with low PUFAs is highly desirable for Idesia polycarpa oil quality. Fatty acid desaturase 2 (FAD2) is the key enzyme converting oleic acid (C18:1) to C18:2. We isolated four FAD2 homologs from the fruit of Idesia polycarpa. Yeast transformed with IpFAD2-1, IpFAD2-2 and IpFAD2-3 can generate appreciable amounts of hexadecadienoic acid (C16:2) and C18:2, which are not present in wild-type yeast cells, revealing that the proteins encoded by these genes have Δ12 desaturase activity. Only trace amounts of C18:2 and little C16:2 were detected in yeast cells transformed with IpFAD2-4, suggesting IpFAD2-4 displays low activity. We also analyzed the activity of several FAD2 natural variants of Idesia polycarpa in yeast and found that a highly conserved Gly376 substitution caused the markedly reduced products catalyzed by IpFAD2-3. This glycine is also essential for the activity of IpFAD2-1 and IpFAD2-2, but its replacement in other plant FAD2 proteins displays different effects on the desaturase activity, suggesting its distinct roles across plant FAD2s proteins.
Collapse
Affiliation(s)
- Pan Wu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lingling Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Tao Feng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Wenying Lu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huayan Zhao
- Applied Biotechnology Center, Wuhan Institute of Bioengineering, Wuhan 430415, China.
| | - Jianzhong Li
- Tianjin Garrison hangu farm, Tianjin 300480, China.
| | - Shiyou Lü
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
13
|
Transcriptome Analysis Reveals Dynamic Fat Accumulation in the Walnut Kernel. Int J Genomics 2018; 2018:8931651. [PMID: 30622952 PMCID: PMC6304212 DOI: 10.1155/2018/8931651] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/09/2018] [Accepted: 09/16/2018] [Indexed: 01/02/2023] Open
Abstract
Walnut (Juglans regia L.) is an important woody oilseed species cultivated throughout the world. In this study, comparative transcript profiling was performed using high-throughput RNA sequencing technology at the following three stages of walnut fat synthesis in the “Lvling” walnut cultivar: the initial developmental stage (L1), the fast developing stage (L2), and the last developing stage (L3). A total of 68.18 GB of data were obtained on the three developmental stages, and 92% to 94% of clean data were able to be located to the reference genome. Further comparisons of the transcripts in the three libraries revealed that 724, 2027, and 4817 genes were differentially expressed between the L2 and L1 (L2vsL1), L3 and L2 (L3vsL2), and L3 and L1 (L3vsL1) samples, respectively. Through the GO gene enrichment analysis, differentially expressed genes (DEGs) in L2vsL1, L3vsL2, and L3vsL1 were enriched into 3, 0, and 2 functional categories, respectively. According to the KEGG enrichment analysis, DEGs in L2vsL1, L3vsL2, and L3vsL1 were annotated into 77, 110, and 3717 taxonomic metabolic pathways in the KEGG database, respectively. Next, we analyzed expression levels of genes related to fat synthesis. Our results indicated that ACCase, LACS, and FAD7 were the key genes related to fat synthesis. The high-throughput transcriptome sequencing of walnut in different developmental stages has greatly enriched the current genomic available resources. The comparison of DEGs under different developmental stages identified a wealth of candidate genes involved in fat synthesis, which will facilitate further genetic improvement and molecular studies of the walnut.
Collapse
|
14
|
Min X, Wen J, Zhao L, Wang K, Li Q, Huang G, Liu J, Zhao X. Role of hepatoma-derived growth factor in promoting de novo lipogenesis and tumorigenesis in hepatocellular carcinoma. Mol Oncol 2018; 12:1480-1497. [PMID: 30004626 PMCID: PMC6120245 DOI: 10.1002/1878-0261.12357] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 01/05/2023] Open
Abstract
Although identified as a growth factor, the mechanism by which hepatoma‐derived growth factor (HDGF) promotes cancer development remains unclear. We found that nuclear but not cytoplasmic HDGF is closely associated with prognosis of hepatocellular carcinoma (HCC). RNA‐sequencing analysis further demonstrated that the nuclear role of HDGF involved regulation of transcription of lipid metabolism genes. HDGF‐induced expression of lipogenic genes was mainly associated with activation of sterol regulatory element binding protein (SREBP) transcription factor. Coexpression of SREBP‐1 and nuclear HDGF predicts poor prognosis for HCC. In addition, by changing the first amino acid of the PWWP domain from proline to alanine, the type of PWWP domain changed from P‐ to A‐type, resulting in inability to induce SREBP‐1‐mediated gene transcription. The type of PWWP domain affects the recruitment of the C‐terminal binding protein‐1 transcriptional repressor on the promoter of the lipogenic gene. Our data indicate that HDGF acts as a coactivator of SREBP1‐mediated transcription of lipogenic genes. The PWWP domain is crucial for HDGF to promote lipogenesis. Moreover, transcriptional regulation of nuclear HDGF plays important roles in the development of HCC.
Collapse
Affiliation(s)
- Xuejie Min
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Jun Wen
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Li Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Kaiying Wang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Qingli Li
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Gang Huang
- Shanghai University of Medicine & Health Sciences, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| |
Collapse
|
15
|
Zhang L, Xi Z, Wang M, Guo X, Ma T. Plastome phylogeny and lineage diversification of Salicaceae with focus on poplars and willows. Ecol Evol 2018; 8:7817-7823. [PMID: 30250665 PMCID: PMC6145263 DOI: 10.1002/ece3.4261] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/27/2018] [Accepted: 05/17/2018] [Indexed: 11/09/2022] Open
Abstract
Phylogenetic relationships and lineage diversification of the family Salicaceae sensu lato (s.l.) remain poorly understood. In this study, we examined phylogenetic relationships between 42 species from six genera based on the complete plastomes. Phylogenetic analyses of 77 protein coding genes of the plastomes produced good resolution of the interrelationships among most sampled species and the recovered clades. Of the sampled genera from the family, Flacourtia was identified as the most basal and the successive clades comprised both Itoa and Poliothyrsis, Idesia, two genera of the Salicaceae sensu stricto (s.s.) (Populus and Salix). Five major subclades were recovered within the Populus clade. These subclades and their interrelationships are largely inconsistent with morphological classifications and molecular phylogeny based on nuclear internal transcribed spacer sequence variations. Two major subclades were identified for the Salix clade. Molecular dating suggested that species diversification of the major subclades in the Populus and Salix clades occurred mainly within the recent Pliocene. In addition, we found that the rpl32 gene was lost and the rps7 gene evolved into a pseudogene multiple times in the sampled genera of the Salicaceae s.l. Compared with previous studies, our results provide a well-resolved phylogeny from the perspective of the plastomes.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduSichuanChina
| | - Zhenxiang Xi
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduSichuanChina
| | - Mingcheng Wang
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduSichuanChina
| | - Xinyi Guo
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduSichuanChina
| | - Tao Ma
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduSichuanChina
| |
Collapse
|
16
|
Chen C, Xu M, Wang C, Qiao G, Wang W, Tan Z, Wu T, Zhang Z. Characterization of the Lycium barbarum fruit transcriptome and development of EST-SSR markers. PLoS One 2017; 12:e0187738. [PMID: 29125846 PMCID: PMC5695279 DOI: 10.1371/journal.pone.0187738] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/25/2017] [Indexed: 12/17/2022] Open
Abstract
Lycium barbarum, commonly known as goji, is important in Chinese herbal medicine and its fruit is a very important agricultural and biological product. However, the molecular mechanism of formation of its fruit and associated medicinal and nutritional components is unexplored. Moreover, this species lacks SSR markers due to lack of genomic and transcriptomic information. In this study, a total of 139,333 unigenes with average length of 1049 bp and N50 of 1579 bp are obtained by trinity assembly from Illumina sequencing reads. A total of 92,498 (66.38%) unigenes showed similarities in at least one database including Nr (46.15%), Nt (56.56%), KO (15.56%), Swiss-prot (33.34%), Pfam (33.43%), GO (33.62%) and KOG/COG (17.55%). Genes in flavonoid and taurine biosynthesis pathways were found and validated by RT-qPCR. A total of 50,093 EST-SSRs were identified from 38,922 unigenes, and 22,537 EST-SSR primer pairs were designed. Four hundred pairs of SSR markers were randomly selected to validate assembly quality, of which 352 (88%) were successful in PCR amplification of genomic DNA from 11 Lycium accessions and 210 produced polymorphisms. The polymorphic loci showed that the genetic similarity of the 11 Lycium accessions ranged from 0.50 to 0.99 and the accessions could be divided into 4 groups. These results will facilitate investigations of the molecular mechanism of formation of L. barbarum fruit and associated medicinal and nutritional components, and will be of value to novel gene discovery and functional genomic studies. The EST-SSR markers will be useful for genetic diversity evaluation, genetic mapping and marker-assisted breeding.
Collapse
Affiliation(s)
- Chunling Chen
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China.,State Key Laboratory of Seedling Bioengineering, Ningxia Forestry Institute, Yinchuan, China
| | - Meilong Xu
- State Key Laboratory of Seedling Bioengineering, Ningxia Forestry Institute, Yinchuan, China
| | - Cuiping Wang
- State Key Laboratory of Seedling Bioengineering, Ningxia Forestry Institute, Yinchuan, China
| | - Gaixia Qiao
- State Key Laboratory of Seedling Bioengineering, Ningxia Forestry Institute, Yinchuan, China
| | - Wenwen Wang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Zhaoyun Tan
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Tiantian Wu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| | - Zhengsheng Zhang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Lin Z, An J, Wang J, Niu J, Ma C, Wang L, Yuan G, Shi L, Liu L, Zhang J, Zhang Z, Qi J, Lin S. Integrated analysis of 454 and Illumina transcriptomic sequencing characterizes carbon flux and energy source for fatty acid synthesis in developing Lindera glauca fruits for woody biodiesel. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:134. [PMID: 28559925 PMCID: PMC5445305 DOI: 10.1186/s13068-017-0820-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/15/2017] [Indexed: 05/11/2023]
Abstract
BACKGROUND Lindera glauca fruit with high quality and quantity of oil has emerged as a novel potential source of biodiesel in China, but the molecular regulatory mechanism of carbon flux and energy source for oil biosynthesis in developing fruits is still unknown. To better develop fruit oils of L. glauca as woody biodiesel, a combination of two different sequencing platforms (454 and Illumina) and qRT-PCR analysis was used to define a minimal reference transcriptome of developing L. glauca fruits, and to construct carbon and energy metabolic model for regulation of carbon partitioning and energy supply for FA biosynthesis and oil accumulation. RESULTS We first analyzed the dynamic patterns of growth tendency, oil content, FA compositions, biodiesel properties, and the contents of ATP and pyridine nucleotide of L. glauca fruits from seven different developing stages. Comprehensive characterization of transcriptome of the developing L. glauca fruit was performed using a combination of two different next-generation sequencing platforms, of which three representative fruit samples (50, 125, and 150 DAF) and one mixed sample from seven developing stages were selected for Illumina and 454 sequencing, respectively. The unigenes separately obtained from long and short reads (201, and 259, respectively, in total) were reconciled using TGICL software, resulting in a total of 60,031 unigenes (mean length = 1061.95 bp) to describe a transcriptome for developing L. glauca fruits. Notably, 198 genes were annotated for photosynthesis, sucrose cleavage, carbon allocation, metabolite transport, acetyl-CoA formation, oil synthesis, and energy metabolism, among which some specific transporters, transcription factors, and enzymes were identified to be implicated in carbon partitioning and energy source for oil synthesis by an integrated analysis of transcriptomic sequencing and qRT-PCR. Importantly, the carbon and energy metabolic model was well established for oil biosynthesis of developing L. glauca fruits, which could help to reveal the molecular regulatory mechanism of the increased oil production in developing fruits. CONCLUSIONS This study presents for the first time the application of an integrated two different sequencing analyses (Illumina and 454) and qRT-PCR detection to define a minimal reference transcriptome for developing L. glauca fruits, and to elucidate the molecular regulatory mechanism of carbon flux control and energy provision for oil synthesis. Our results will provide a valuable resource for future fundamental and applied research on the woody biodiesel plants.
Collapse
Affiliation(s)
- Zixin Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Jiyong An
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Jia Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Jun Niu
- College of Horticulture and Landscape Architecture, Key Laboratory of Protection and Development Utilization of Tropical Crop Germplasm Resources, Ministry of Education, Hainan University, Haikou, 570228 China
| | - Chao Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Libing Wang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 10091 China
| | - Guanshen Yuan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Lingling Shi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Lili Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Jinsong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Zhixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Ji Qi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Shanzhi Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| |
Collapse
|
18
|
Perlikowski D, Kierszniowska S, Sawikowska A, Krajewski P, Rapacz M, Eckhardt Ä, Kosmala A. Remodeling of Leaf Cellular Glycerolipid Composition under Drought and Re-hydration Conditions in Grasses from the Lolium-Festuca Complex. FRONTIERS IN PLANT SCIENCE 2016; 7:1027. [PMID: 27486462 PMCID: PMC4950141 DOI: 10.3389/fpls.2016.01027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/30/2016] [Indexed: 05/22/2023]
Abstract
Drought tolerant plant genotypes are able to maintain stability and integrity of cellular membranes in unfavorable conditions, and to regenerate damaged membranes after stress cessation. The profiling of cellular glycerolipids during drought stress performed on model species such as Arabidopsis thaliana does not fully cover the picture of lipidome in monocots, including grasses. Herein, two closely related introgression genotypes of Lolium multiflorum (Italian ryegrass) × Festuca arundinacea (tall fescue) were used as a model for other grass species to describe lipid rearrangements during drought and re-hydration. The genotypes differed in their level of photosynthetic capacity during drought, and in their capacity for membrane regeneration after stress cessation. A total of 120 lipids, comprising the classes of monogalactosyldiacyloglycerol, digalactosyldiacyloglycerol, sulfoquinovosyldiacylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, diacylglicerol, and triacylglicerol, were analyzed. The results clearly showed that water deficit had a significant impact on lipid metabolism in studied forage grasses. It was revealed that structural and metabolic lipid species changed their abundance during drought and re-watering periods and some crucial genotype-dependent differences were also observed. The introgression genotype characterized by an ability to regenerate membranes after re-hydration demonstrated a higher accumulation level of most chloroplast and numerous extra-chloroplast membrane lipid species at the beginning of drought. Furthermore, this genotype also revealed a significant reduction in the accumulation of most chloroplast lipids after re-hydration, compared with the other introgression genotype without the capacity for membrane regeneration. The potential influence of observed lipidomic alterations on a cellular membrane stability and photosynthetic capacity, are discussed. HIGHLIGHTS A higher drought tolerance of grasses could be associated with an earlier lipidome response to a stress signal and with a membrane regeneration after stress cessation accompanied by a turnover of chloroplast lipids.
Collapse
Affiliation(s)
- Dawid Perlikowski
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of SciencesPoznan, Poland
| | | | - Aneta Sawikowska
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of SciencesPoznan, Poland
| | - Paweł Krajewski
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of SciencesPoznan, Poland
| | - Marcin Rapacz
- Department of Plant Physiology, University of Agriculture in KrakowKrakow, Poland
| | - Änne Eckhardt
- Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Arkadiusz Kosmala
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of SciencesPoznan, Poland
- *Correspondence: Arkadiusz Kosmala
| |
Collapse
|