1
|
Dong Z, Li H, Wang Y, Lin S, Guo F, Zhao J, Yao R, Zhu L, Wang W, Buttino I, Qi P, Guo B. Transcriptome profiling reveals the strategy of thermal tolerance enhancement caused by heat-hardening in Mytilus coruscus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:165785. [PMID: 37499827 DOI: 10.1016/j.scitotenv.2023.165785] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
The thick-shell mussel Mytilus coruscus serves as a common sessile intertidal species and holds economic significance as an aquatic organism. M. coruscus often endure higher temperatures than their ideal range during consecutive low tides in the spring. This exposure to elevated temperatures provides them with a thermal tolerance boost, enabling them to adapt to high-temperature events caused by extreme low tides and adverse weather conditions. This phenomenon is referred to as heat-hardening. Some related studies showed the phenomenon of heat-hardening in sessile intertidal species but not reported at the mechanism level based on transcriptome so far. In this study, physiological experiments, gene family identification and transcriptome sequencing were performed to confirm the thermotolerance enhancement based on heat-hardening and explore the mechanism in M. coruscus. A total of 2935 DEGs were identified and the results of the KEGG enrichment showed that seven heat-hardening relative pathways were enriched, including Toll-like receptor signal pathway, Arachidonic acid metabolism, and others. Then, 24 HSP70 members and 36 CYP2 members, were identified, and the up-regulated members are correlated with increasing thermotolerance. Finally, we concluded that the heat-hardening M. coruscus have a better thermotolerance because of the capability of maintaining the integrity and the phenomenon of vasodilation of the gill under thermal stress. Further, the physiological experiments yielded the same conclusions. Overall, this study confirms the thermotolerance enhancement caused by heat-hardening and reveals the survival strategy in M. coruscus. In addition, the conclusion provides a new reference for studying the intertidal species' heat resistance mechanisms to combat extreme heat events and the strategies for dealing with extreme weather in aquaculture under the global warming trend.
Collapse
Affiliation(s)
- Zhenyu Dong
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Hongfei Li
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China; Donghai Laboratory, Zhoushan 316021, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Shuangrui Lin
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Feng Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Jiemei Zhao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Ronghui Yao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Li Zhu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Weifeng Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research ISPRA, Via del Cedro n.38, 57122 Livorno, Italy
| | - Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China; Donghai Laboratory, Zhoushan 316021, China
| | - Baoying Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China.
| |
Collapse
|
2
|
Premchand U, Mesta RK, Devappa V, Basavarajappa MP, Venkataravanappa V, Narasimha Reddy LRC, Shankarappa KS. Survey, Detection, Characterization of Papaya Ringspot Virus from Southern India and Management of Papaya Ringspot Disease. Pathogens 2023; 12:824. [PMID: 37375514 DOI: 10.3390/pathogens12060824] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Papaya ringspot virus (PRSV) is a significant threat to global papaya cultivation, causing ringspot disease, and it belongs to the species Papaya ringspot virus, genus Potyvirus, and family Potyviridae. This study aimed to assess the occurrence and severity of papaya ringspot disease (PRSD) in major papaya-growing districts of Karnataka, India, from 2019 to 2021. The incidence of disease in the surveyed districts ranged from 50.5 to 100.0 percent, exhibiting typical PRSV symptoms. 74 PRSV infected samples were tested using specific primers in RT-PCR, confirming the presence of the virus. The complete genome sequence of a representative isolate (PRSV-BGK: OL677454) was determined, showing the highest nucleotide identity (nt) (95.8%) with the PRSV-HYD (KP743981) isolate from Telangana, India. It also shared an amino acid (aa) identity (96.5%) with the PRSV-Pune VC (MF405299) isolate from Maharashtra, India. Based on phylogenetic and species demarcation criteria, the PRSV-BGK isolate was considered a variant of the reported species and designated as PRSV-[IN:Kar:Bgk:Pap:21]. Furthermore, recombination analysis revealed four unique recombination breakpoint events in the genomic region, except for the region from HC-Pro to VPg, which is highly conserved. Interestingly, more recombination events were detected within the first 1710 nt, suggesting that the 5' UTR and P1 regions play an essential role in shaping the PRSV genome. To manage PRSD, a field experiment was conducted over two seasons, testing various treatments, including insecticides, biorationals, and a seaweed extract with micronutrients, alone or in combination. The best treatment involved eight sprays of insecticides and micronutrients at 30-day intervals, resulting in no PRSD incidence up to 180 days after transplanting (DAT). This treatment also exhibited superior growth, yield, and yield parameters, with the highest cost-benefit ratio (1:3.54) and net return. Furthermore, a module comprising 12 sprays of insecticides and micronutrients at 20-day intervals proved to be the most effective in reducing disease incidence and enhancing plant growth, flowering, and fruiting attributes, resulting in a maximized yield of 192.56 t/ha.
Collapse
Affiliation(s)
- Udavatha Premchand
- Department of Plant Pathology, College of Horticulture, University of Horticultural Sciences, Bagalkot 587104, India
| | - Raghavendra K Mesta
- Department of Plant Pathology, College of Horticulture, University of Horticultural Sciences, Bagalkot 587104, India
| | - Venkatappa Devappa
- Department of Plant Pathology, College of Horticulture, University of Horticultural Sciences, Bagalkot 587104, India
| | | | | | | | | |
Collapse
|
3
|
Wang YX, Wang SY, Beta T, Shahriar M, Laborda P, Herrera-Balandrano DD. Kojic acid induces resistance against Colletotrichum brevisporum and enhances antioxidant properties of postharvest papaya. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Zhang W, Wang Y, Zhang T, Zhang J, Shen L, Zhang B, Ding C, Su X. Transcriptomic Analysis of Mature Transgenic Poplar Expressing the Transcription Factor JERF36 Gene in Two Different Environments. Front Bioeng Biotechnol 2022; 10:929681. [PMID: 35774064 PMCID: PMC9237257 DOI: 10.3389/fbioe.2022.929681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
During the last several decades, a number of transgenic or genetically modified tree varieties with enhanced characteristics and new traits have been produced. These trees have become associated with generally unsubstantiated concerns over health and environmental safety. We conducted transcriptome sequencing of transgenic Populus alba × P. berolinensis expressing the transcription factor JERF36 gene (ABJ01) and the non-transgenic progenitor line (9#) to compare the transcriptional changes in the apical buds. We found that 0.77% and 1.31% of the total expressed genes were significant differentially expressed in ABJ01 at the Daqing and Qiqihar sites, respectively. Among them, 30%–50% of the DEGs contained cis-elements recognized by JERF36. Approximately 5% of the total number of expressed genes showed significant differential expression between Daqing and Qiqihar in both ABJ01 and 9#. 10 DEGs resulting from foreign gene introduction, 394 DEGs that resulted solely from the environmental differences, and 47 DEGs that resulted from the combination of foreign gene introduction and the environment were identified. The number of DEGs resulting from environmental factors was significantly greater than that resulting from foreign gene introduction, and the combined effect of the environmental effects with foreign gene introduction was significantly greater than resulting from the introduction of JERF36 alone. GO and KEGG annotation showed that the DEGs mainly participate in the photosynthesis, oxidative phosphorylation, plant hormone signaling, ribosome, endocytosis, and plant-pathogen interaction pathways, which play important roles in the responses to biotic and abiotic stresses ins plant. To enhance its adaptability to salt-alkali stress, the transgenic poplar line may regulate the expression of genes that participate in the photosynthesis, oxidative phosphorylation, MAPK, and plant hormone signaling pathways. The crosstalk between biotic and abiotic stress responses by plant hormones may improve the ability of both transgenic and non-transgenic poplars to defend against pathogens. The results of our study provide a basis for further studies on the molecular mechanisms behind improved stress resistance and the unexpected effects of transgenic gene expression in poplars, which will be significant for improving the biosafety evaluation of transgenic trees and accelerating the breeding of new varieties of forest trees resistant to environmental stresses.
Collapse
Affiliation(s)
- Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Beijing, China
| | - Yanbo Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Beijing, China
- Nanchang Institute of Technology, Nanchang, China
| | - Tengqian Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Beijing, China
| | - Jing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Beijing, China
| | - Le Shen
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Beijing, China
| | - Bingyu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Beijing, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Beijing, China
- *Correspondence: Changjun Ding, ; Xiaohua Su,
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- *Correspondence: Changjun Ding, ; Xiaohua Su,
| |
Collapse
|
5
|
Mathiazhagan M, Chidambara B, Hunashikatti LR, Ravishankar KV. Genomic Approaches for Improvement of Tropical Fruits: Fruit Quality, Shelf Life and Nutrient Content. Genes (Basel) 2021; 12:1881. [PMID: 34946829 PMCID: PMC8701245 DOI: 10.3390/genes12121881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/23/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022] Open
Abstract
The breeding of tropical fruit trees for improving fruit traits is complicated, due to the long juvenile phase, generation cycle, parthenocarpy, polyploidy, polyembryony, heterozygosity and biotic and abiotic factors, as well as a lack of good genomic resources. Many molecular techniques have recently evolved to assist and hasten conventional breeding efforts. Molecular markers linked to fruit development and fruit quality traits such as fruit shape, size, texture, aroma, peel and pulp colour were identified in tropical fruit crops, facilitating Marker-assisted breeding (MAB). An increase in the availability of genome sequences of tropical fruits further aided in the discovery of SNP variants/Indels, QTLs and genes that can ascertain the genetic determinants of fruit characters. Through multi-omics approaches such as genomics, transcriptomics, metabolomics and proteomics, the identification and quantification of transcripts, including non-coding RNAs, involved in sugar metabolism, fruit development and ripening, shelf life, and the biotic and abiotic stress that impacts fruit quality were made possible. Utilizing genomic assisted breeding methods such as genome wide association (GWAS), genomic selection (GS) and genetic modifications using CRISPR/Cas9 and transgenics has paved the way to studying gene function and developing cultivars with desirable fruit traits by overcoming long breeding cycles. Such comprehensive multi-omics approaches related to fruit characters in tropical fruits and their applications in breeding strategies and crop improvement are reviewed, discussed and presented here.
Collapse
Affiliation(s)
| | | | | | - Kundapura V. Ravishankar
- Division of Basic Sciences, ICAR Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru 560089, India; (M.M.); (B.C.); (L.R.H.)
| |
Collapse
|
6
|
Correr FH, Hosaka GK, Gómez SGP, Cia MC, Vitorello CBM, Camargo LEA, Massola NS, Carneiro MS, Margarido GRA. Time-series expression profiling of sugarcane leaves infected with Puccinia kuehnii reveals an ineffective defense system leading to susceptibility. PLANT CELL REPORTS 2020; 39:873-889. [PMID: 32314046 DOI: 10.1007/s00299-020-02536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/30/2020] [Indexed: 05/02/2023]
Abstract
Successful orange rust development on sugarcane can potentially be explained as suppression of the plant immune system by the pathogen or delayed plant signaling to trigger defense responses. Puccinia kuehnii is an obligate biotrophic fungus that infects sugarcane leaves causing a disease called orange rust. It spread out to other countries resulting in reduction of crop yield since its first outbreak. One of the knowledge gaps of that pathosystem is to understand the molecular mechanisms altered in susceptible plants by this biotic stress. Here, we investigated the changes in temporal expression of transcripts in pathways associated with the immune system. To achieve this purpose, we used RNA-Seq to analyze infected leaf samples collected at five time points after inoculation. Differential expression analyses of adjacent time points revealed substantial changes at 12, 48 h after inoculation and 12 days after inoculation, coinciding with the events of spore germination, haustoria post-penetration and post-sporulation, respectively. During the first 24 h, a lack of transcripts involved with resistance mechanisms was revealed by underrepresentation of hypersensitive and defense response related genes. However, two days after inoculation, upregulation of genes involved with immune response regulation provided evidence of some potential defense response. Events related to biotic stress responses were predominantly downregulated in the initial time points, but expression was later restored to basal levels. Genes involved in carbohydrate metabolism showed evidence of repression followed by upregulation, possibly to ensure the pathogen nutritional requirements were met. Our results support the hypothesis that P. kuehnii initially suppressed sugarcane genes involved in plant defense systems. Late overexpression of specific regulatory pathways also suggests the possibility of an inefficient recognition system by a susceptible sugarcane genotype.
Collapse
Affiliation(s)
- Fernando Henrique Correr
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Guilherme Kenichi Hosaka
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Sergio Gregorio Pérez Gómez
- Departamento de Fitopatologia, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Mariana Cicarelli Cia
- Departamento de Fitopatologia, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Claudia Barros Monteiro Vitorello
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Luis Eduardo Aranha Camargo
- Departamento de Fitopatologia, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Nelson Sidnei Massola
- Departamento de Fitopatologia, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil
| | - Monalisa Sampaio Carneiro
- Departamento de Biotecnologia e Produção Vegetal e Animal, Universidade Federal de São Carlos, Centro de Ciências Agrárias, Araras, São Paulo, Brazil
| | - Gabriel Rodrigues Alves Margarido
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Piracicaba, São Paulo, Brazil.
| |
Collapse
|
7
|
Fang J, Wood AM, Chen Y, Yue J, Ming R. Genomic variation between PRSV resistant transgenic SunUp and its progenitor cultivar Sunset. BMC Genomics 2020; 21:398. [PMID: 32532215 PMCID: PMC7291442 DOI: 10.1186/s12864-020-06804-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 06/05/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The safety of genetically transformed plants remains a subject of scrutiny. Genomic variants in PRSV resistant transgenic papaya will provide evidence to rationally address such concerns. RESULTS In this study, a total of more than 74 million Illumina reads for progenitor 'Sunset' were mapped onto transgenic papaya 'SunUp' reference genome. 310,364 single nucleotide polymorphisms (SNPs) and 34,071 small Inserts/deletions (InDels) were detected between 'Sunset' and 'SunUp'. Those variations have an uneven distribution across nine chromosomes in papaya. Only 0.27% of mutations were predicted to be high-impact mutations. ATP-related categories were highly enriched among these high-impact genes. The SNP mutation rate was about 8.4 × 10- 4 per site, comparable with the rate induced by spontaneous mutation over numerous generations. The transition-to-transversion ratio was 1.439 and the predominant mutations were C/G to T/A transitions. A total of 3430 nuclear plastid DNA (NUPT) and 2764 nuclear mitochondrial DNA (NUMT) junction sites have been found in 'SunUp', which is proportionally higher than the predicted total NUPT and NUMT junction sites in 'Sunset' (3346 and 2745, respectively). Among all nuclear organelle DNA (norgDNA) junction sites, 96% of junction sites were shared by 'SunUp' and 'Sunset'. The average identity between 'SunUp' specific norgDNA and corresponding organelle genomes was higher than that of norgDNA shared by 'SunUp' and 'Sunset'. Six 'SunUp' organelle-like borders of transgenic insertions were nearly identical to corresponding sequences in organelle genomes (98.18 ~ 100%). None of the paired-end spans of mapped 'Sunset' reads were elongated by any 'SunUp' transformation plasmid derived inserts. Significant amounts of DNA were transferred from organelles to the nuclear genome during bombardment, including the six flanking sequences of the three transgenic insertions. CONCLUSIONS Comparative whole-genome analyses between 'SunUp' and 'Sunset' provide a reliable estimate of genome-wide variations and evidence of organelle-to-nucleus transfer of DNA associated with biolistic transformation.
Collapse
Affiliation(s)
- Jingping Fang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China.,Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, 350117, Fujian, China.,FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andrew Michael Wood
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Youqiang Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China.,Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Jingjing Yue
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Ray Ming
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China. .,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
8
|
Peng Q, Fang X, Zong X, He Q, Zhu T, Han S, Li S. Comparative transcriptome analysis of Bambusa pervariabilis × Dendrocalamopsis grandis against Arthrinium phaeospermum under protein AP-toxin induction. Gene 2020; 725:144160. [PMID: 31639431 DOI: 10.1016/j.gene.2019.144160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 01/01/2023]
Abstract
Bambusapervariabilis × Dendrocalamopsisgrandis, a fast-growing and easily propagated bamboo species, has been extensively planted in the southern China, resulting in huge ecological benefits. In recent years, it was found that the pathogenic fungus Arthrinium phaeospermum caused the death of a large amount of bamboo. In this study, the transcriptome of B. pervariabilis × D. grandis, induced by inactivated protein AP-toxin from A. phaeospermum was sequenced and analyzed, to reveal the resistance mechanism induced by biotic agents of B. pervariabilis × D. grandis against A. phaeospermum at the gene level. Transcriptome sequencing was performed by Illumina HiSeq 2000 in order to analyze the differentially expressed genes (DEGs) of B. pervariabilis × D. grandis in response to different treatment conditions. In total, 201,875,606 clean reads were obtained, and the percentage of Q30 bases in each sample was more than 94.21%. There were 6398 DEGs in the D-J group (inoculation with a pathogenic spore suspension after three days of AP-toxin induction) compared to the S-J group (inoculation with a pathogenic spore suspension after inoculation of sterile water for three days) with 3297 up-regulated and 3101 down-regulated genes. For the D-S group (inoculation with sterile water after inoculation of AP-toxin for three days), there were 2032 DEGs in comparison to the S-S group (inoculation with sterile water only), with 1035 up-regulated genes and 997 down-regulated genes. These identified genes were mainly involved in lignin and phytoprotein synthesis, tetrapyrrole synthesis, redox reactions, photosynthesis, and other processes. The fluorescence quantitative results showed that 22 pairs of primer amplification products were up-regulated and 7 were down-regulated. The rate of similarity between these results and the sequencing results of the transcription group was 100%, which confirmed the authenticity of the transcriptome sequencing results. Redox proteins, phenylalanine ammonia lyase, and S-adenosine-L-methionine synthetase, among others, were highly expressed; these results may indicate the level of disease resistance of the bamboo. These results provide a foundation for the further exploration of resistance genes and their functions.
Collapse
Affiliation(s)
- Qi Peng
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Xinmei Fang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Xiaozhuo Zong
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Qianqian He
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Tianhui Zhu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Shan Han
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Shujiang Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China.
| |
Collapse
|
9
|
Comparative Transcriptome Analysis Provides Molecular Insights into the Interaction of Beet necrotic yellow vein virus and Beet soil-borne mosaic virus with Their Host Sugar Beet. Viruses 2020; 12:v12010076. [PMID: 31936258 PMCID: PMC7019549 DOI: 10.3390/v12010076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/18/2019] [Accepted: 12/29/2019] [Indexed: 01/10/2023] Open
Abstract
Beet necrotic yellow vein virus (BNYVV) and Beet soil-borne mosaic virus (BSBMV) are closely related species, but disease development induced in their host sugar beet displays striking differences. Beet necrotic yellow vein virus induces excessive lateral root (LR) formation, whereas BSBMV-infected roots appear asymptomatic. A comparative transcriptome analysis was performed to elucidate transcriptomic changes associated with disease development. Many differentially expressed genes (DEGs) were specific either to BNYVV or BSBMV, although both viruses shared a high number of DEGs. Auxin biosynthesis pathways displayed a stronger activation by BNYVV compared to BSBMV-infected plants. Several genes regulated by auxin signalling and required for LR formation were exclusively altered by BNYVV. Both viruses reprogrammed the transcriptional network, but a large number of transcription factors involved in plant defence were upregulated in BNYVV-infected plants. A strong activation of pathogenesis-related proteins by both viruses suggests a salicylic acid or jasmonic acid mediated-defence response, but the data also indicate that both viruses counteract the SA-mediated defence. The ethylene signal transduction pathway was strongly downregulated which probably increases the susceptibility of sugar beet to Benyvirus infection. Our study provides a deeper insight into the interaction of BNYVV and BSBMV with the economically important crop sugar beet.
Collapse
|
10
|
Yadav BS, Singh S, Srivastava S, Mani A. Analysis of chickpea gene co-expression networks and pathways during heavy metal stress. J Biosci 2019; 44:99. [PMID: 31502577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Crop productivity and yield are adversely affected by abiotic and biotic stresses. Therefore, finding out the genes responsible for stress tolerance is a significant stride towards crop improvement. A gene co-expression network is a powerful tool to detect the most connected genes during heavy metal (HM) stress in plants. The most connected genes may be responsible for HM tolerance by altering the different metabolic pathways during the biotic and abiotic stress. In the same line we have performed the GSE86807 microarray analysis of chickpea during exposure to chromium, cadmium and arsenic and analyzed the data. Common differentially expressed genes (DEGs) during exposure to chromium, cadmium and arsenic were identified and a co-expression network study was carried out. Hub and bottleneck genes were explored on the basis of degree and betweenness centrality, respectively. A gene set enrichment analysis study revealed that genes like haloacid dehydrogenase, cinnamoyl CoA reductase, F-box protein, GDSL esterase lipase, cellulose synthase, beta-glucosidase 13 and isoflavone hydroxylase are significantly enriched and regulate the different pathways like riboflavin metabolism, phenyl propanoid biosynthesis, amino acid biosynthesis, isoflavonoid biosynthesis and indole alkaloid biosynthesis.
Collapse
Affiliation(s)
- Birendra Singh Yadav
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad 211004, India
| | | | | | | |
Collapse
|
11
|
Feng M, Cai H, Guan Y, Sun J, Zhang L, Cang J. Analyses of transgenic fibroblast growth factor 21 mature rice seeds. BREEDING SCIENCE 2019; 69:279-288. [PMID: 31481837 PMCID: PMC6711730 DOI: 10.1270/jsbbs.18117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/04/2019] [Indexed: 05/06/2023]
Abstract
Although some studies have been conducted on the effects of foreign protein expression on rice, the results vary with foreign gene types and protein expression. This study reveals the effects of fibroblast growth factor 21 (FGF21) expression on mature rice seeds in various aspects. Results revealed that the grain weight of the transgene rice was lower than that of non-transgenic wild-type. The sucrose content and ADP-glucose pyrophosphorylase (AGPase) activity in transgenic FGF21 rice were higher than that in non-transgenic wild-type rice, while changes in the starch content, starch branching enzyme (SBE), sucrose synthase (SuS), superoxide dismutase (SOD) and peroxidase (POD) activity were lower in transgenic FGF21 rice compared to non-transgenic wild-type. The scanning electron microscope results revealed that mature seeds of the transgenic FGF21 rice contained fewer vascular bundles with irregular arrangement compared to the wild-type. The mature seeds of CK and T1 rice lines were collected for proteome analysis, and 167 differentially expressed proteins (DEPs) were found. In addition, the most enriched pathways in both rice lines were determined to be amino sugar and nucleotide sugar metabolism and starch and sucrose metabolism, etc. This study laid the foundation for revealing the effects of exogenous protein expression on rice bioreactors.
Collapse
Affiliation(s)
- Mingfang Feng
- College of Life Science, Northeast Agricultural University,
Harbin 150030,
P.R. China
| | - Hua Cai
- College of Life Science, Northeast Agricultural University,
Harbin 150030,
P.R. China
| | - Ying Guan
- College of Life Science, Northeast Agricultural University,
Harbin 150030,
P.R. China
| | - Jian Sun
- College of Agriculture, Northeast Agricultural University,
Harbin 150030,
P.R. China
| | - Liguo Zhang
- Heilongjiang Academy of Agricultural Sciences,
Harbin 150086,
P.R. China
| | - Jing Cang
- College of Life Science, Northeast Agricultural University,
Harbin 150030,
P.R. China
| |
Collapse
|
12
|
Kim HB, Lee Y, Kim CG. Research status of the development of genetically modified papaya (Carica papaya L.) and its biosafety assessment. ACTA ACUST UNITED AC 2018. [DOI: 10.5010/jpb.2018.45.3.171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ho Bang Kim
- Life Sciences Research Institute, Biomedic Co., Ltd., Bucheon 14548, Korea
| | - Yi Lee
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju 28644, Korea
| | - Chang-Gi Kim
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea
| |
Collapse
|
13
|
Gamboa-Tuz SD, Pereira-Santana A, Zamora-Briseño JA, Castano E, Espadas-Gil F, Ayala-Sumuano JT, Keb-Llanes MÁ, Sanchez-Teyer F, Rodríguez-Zapata LC. Transcriptomics and co-expression networks reveal tissue-specific responses and regulatory hubs under mild and severe drought in papaya (Carica papaya L.). Sci Rep 2018; 8:14539. [PMID: 30267030 PMCID: PMC6162326 DOI: 10.1038/s41598-018-32904-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/18/2018] [Indexed: 11/12/2022] Open
Abstract
Plants respond to drought stress through the ABA dependent and independent pathways, which in turn modulate transcriptional regulatory hubs. Here, we employed Illumina RNA-Seq to analyze a total of 18 cDNA libraries from leaves, sap, and roots of papaya plants under drought stress. Reference and de novo transcriptomic analyses identified 8,549 and 6,089 drought-responsive genes and unigenes, respectively. Core sets of 6 and 34 genes were simultaneously up- or down-regulated, respectively, in all stressed samples. Moreover, GO enrichment analysis revealed that under moderate drought stress, processes related to cell cycle and DNA repair were up-regulated in leaves and sap; while responses to abiotic stress, hormone signaling, sucrose metabolism, and suberin biosynthesis were up-regulated in roots. Under severe drought stress, biological processes related to abiotic stress, hormone signaling, and oxidation-reduction were up-regulated in all tissues. Moreover, similar biological processes were commonly down-regulated in all stressed samples. Furthermore, co-expression network analysis revealed three and eight transcriptionally regulated modules in leaves and roots, respectively. Seventeen stress-related TFs were identified, potentially serving as main regulatory hubs in leaves and roots. Our findings provide insight into the molecular responses of papaya plant to drought, which could contribute to the improvement of this important tropical crop.
Collapse
Affiliation(s)
- Samuel David Gamboa-Tuz
- Biotechnology Unit, Yucatan Center for Scientific Research (CICY), 97205, Merida, Yucatan, Mexico
| | | | | | - Enrique Castano
- Plant Biochemistry and Molecular Biology Unit, Yucatan Center for Scientific Research (CICY), 97205, Merida, Yucatan, Mexico
| | - Francisco Espadas-Gil
- Biotechnology Unit, Yucatan Center for Scientific Research (CICY), 97205, Merida, Yucatan, Mexico
| | - Jorge Tonatiuh Ayala-Sumuano
- IDIX S.A. de C.V., Av. Sonterra 3035 int. 26, Querétaro, Mexico
- Polytechnic University of Huatusco, 94100, Veracruz, Mexico
| | - Miguel Ángel Keb-Llanes
- Biotechnology Unit, Yucatan Center for Scientific Research (CICY), 97205, Merida, Yucatan, Mexico
| | - Felipe Sanchez-Teyer
- Biotechnology Unit, Yucatan Center for Scientific Research (CICY), 97205, Merida, Yucatan, Mexico
| | | |
Collapse
|
14
|
Madroñero J, Rodrigues SP, Antunes TFS, Abreu PMV, Ventura JA, Fernandes AAR, Fernandes PMB. Transcriptome analysis provides insights into the delayed sticky disease symptoms in Carica papaya. PLANT CELL REPORTS 2018; 37:967-980. [PMID: 29564545 DOI: 10.1007/s00299-018-2281-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/16/2018] [Indexed: 05/25/2023]
Abstract
Global gene expression analysis indicates host stress responses, mainly those mediated by SA, associated to the tolerance to sticky disease symptoms at pre-flowering stage in Carica papaya. Carica papaya plants develop the papaya sticky disease (PSD) as a result of the combined infection of papaya meleira virus (PMeV) and papaya meleira virus 2 (PMeV2), or PMeV complex. PSD symptoms appear only after C. papaya flowers. To understand the mechanisms involved in this phenomenon, the global gene expression patterns of PMeV complex-infected C. papaya at pre-and post-flowering stages were assessed by RNA-Seq. The result was 633 and 88 differentially expressed genes at pre- and post-flowering stages, respectively. At pre-flowering stage, genes related to stress and transport were up-regulated while metabolism-related genes were down-regulated. It was observed that induction of several salicylic acid (SA)-activated genes, including PR1, PR2, PR5, WRKY transcription factors, ROS and callose genes, suggesting SA signaling involvement in the delayed symptoms. In fact, pre-flowering C. papaya treated with exogenous SA showed a tendency to decrease the PMeV and PMeV2 loads when compared to control plants. However, pre-flowering C. papaya also accumulated transcripts encoding a NPR1-inhibitor (NPR1-I/NIM1-I) candidate, genes coding for UDP-glucosyltransferases (UGTs) and several genes involved with ethylene pathway, known to be negative regulators of SA signaling. At post-flowering, when PSD symptoms appeared, the down-regulation of PR-1 encoding gene and the induction of BSMT1 and JA metabolism-related genes were observed. Hence, SA signaling likely operates at the pre-flowering stage of PMeV complex-infected C. papaya inhibiting the development of PSD symptoms, but the induction of its negative regulators prevents the full-scale and long-lasting tolerance.
Collapse
Affiliation(s)
- Johana Madroñero
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468, Vitória, ES, 29040-090, Brazil
| | - Silas P Rodrigues
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468, Vitória, ES, 29040-090, Brazil
- Núcleo Multidisciplinar de Pesquisa-Polo de Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tathiana F S Antunes
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468, Vitória, ES, 29040-090, Brazil
| | - Paolla M V Abreu
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468, Vitória, ES, 29040-090, Brazil
| | - José A Ventura
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468, Vitória, ES, 29040-090, Brazil
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, Vitória, ES, Brazil
| | - A Alberto R Fernandes
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468, Vitória, ES, 29040-090, Brazil
| | | |
Collapse
|
15
|
Wei T, Deng K, Wang H, Zhang L, Wang C, Song W, Zhang Y, Chen C. Comparative Transcriptome Analyses Reveal Potential Mechanisms of Enhanced Drought Tolerance in Transgenic Salvia Miltiorrhiza Plants Expressing AtDREB1A from Arabidopsis. Int J Mol Sci 2018. [PMID: 29534548 PMCID: PMC5877688 DOI: 10.3390/ijms19030827] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In our previous study, drought-resistant transgenic plants of Salvia miltiorrhiza were produced via overexpression of the transcription factor AtDREB1A. To unravel the molecular mechanisms underpinning elevated drought tolerance in transgenic plants, in the present study we compared the global transcriptional profiles of wild-type (WT) and AtDREB1A-expressing transgenic plants using RNA-sequencing (RNA-seq). Using cluster analysis, we identified 3904 differentially expressed genes (DEGs). Compared with WT plants, 423 unigenes were up-regulated in pRD29A::AtDREB1A-31 before drought treatment, while 936 were down-regulated and 1580 and 1313 unigenes were up- and down-regulated after six days of drought. COG analysis revealed that the 'signal transduction mechanisms' category was highly enriched among these DEGs both before and after drought stress. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation, DEGs associated with "ribosome", "plant hormone signal transduction", photosynthesis", "plant-pathogen interaction", "glycolysis/gluconeogenesis" and "carbon fixation" are hypothesized to perform major functions in drought resistance in AtDREB1A-expressing transgenic plants. Furthermore, the number of DEGs associated with different transcription factors increased significantly after drought stress, especially the AP2/ERF, bZIP and MYB protein families. Taken together, this study substantially expands the transcriptomic information for S. miltiorrhiza and provides valuable clues for elucidating the mechanism of AtDREB1A-mediated drought tolerance in transgenic plants.
Collapse
Affiliation(s)
- Tao Wei
- National Engineering Research Center of Pesticide (Tianjin), Nankai University, Tianjin 300071, China.
- College of Life Sciences, Nankai University, Tianjin 300071, China.
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Kejun Deng
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Hongbin Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Lipeng Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Chunguo Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Wenqin Song
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Yong Zhang
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Chengbin Chen
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|