1
|
Feng D, Cheng J, Yang X, Tian Z, Liu Y, Zhang Y, Qiang S. Polyploidization-enhanced effective clonal reproduction endows the successful invasion of Solidago canadensis. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2738. [PMID: 36100575 DOI: 10.1002/eap.2738] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Clonality and ploidy levels are positively associated with plant invasiveness. However, there is still no consensus on whether polyploidization can promote the invasion of alien plants by enhancing clonality. Our recent long-term community succession study found that the more vigorous clone of introduced polyploid Solidago canadensis succeeded into mono-dominant community, which seems to be a positive correlationship between polyploidization and clonal reproduction. However, the formation process of clonal ramet and how polyploidization improves the clonal reproduction of S. canadensis remains unknown. Here, we compared clonal growth ability among diploids and polyploids of S. canadensis from native and introduced ranges in a common garden. Results showed that the rhizomes of S. canadensis originated from axillary buds of dense nodes at the basal stem of seedling and then produced into clonal ramets from the rhizomes. Diploids had denser nodes and more buds, developed more rhizomes per unit mass and produced more clonal propagules at the early growth stage compared with polyploids. However, the number of juvenile and secondary rhizomes, as well as the diameter and length of rhizomes in polyploid populations was significantly higher or greater than those of diploids, and those clonal traits in introduced polyploids were significantly higher than in native polyploids. Moreover, a phalanx growth form was observed in native and introduced diploid populations, which allocated about 3% and 5% of the total biomass to rhizomes, respectively, resulting in short and weak rhizomes. However, native and introduced polyploids allocated about 35% and 40%, respectively, of the total biomass to rhizomes, resulting in long and strong rhizomes, which were guerrilla growth forms. This study firstly shows that polyploidization enhanced the effective clonal reproduction of S. canadensis through pre-adaptation and rapid post-adaptation evolution, and consequently contributed to its successful invasion.
Collapse
Affiliation(s)
- Dongyan Feng
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jiliang Cheng
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xianghong Yang
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhongsai Tian
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yujing Liu
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yu Zhang
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Sheng Qiang
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Becker FW, Oberlander KC, Trávníček P, Dreyer LL. Inconsistent expression of the gigas effect in polyploid Oxalis. AMERICAN JOURNAL OF BOTANY 2022; 109:1607-1621. [PMID: 36193941 DOI: 10.1002/ajb2.16077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
PREMISE It is well-known that whole genome duplication (WGD) has played a significant role in the evolution of plants. The best-known phenotypic effect of WGD is the gigas effect, or the enlargement of polyploid plant traits. WGD is often linked with increased weediness, which could be a result of fitness advantages conferred by the gigas effect. As a result, the gigas effect could potentially explain polyploid persistence and abundance. We test whether a gigas effect is present in the polyploid-rich geophyte Oxalis, at both organ and cellular scales. METHODS We measured traits in conspecific diploid and polyploid accessions of 24 species across the genus. In addition, we measured the same and additional traits in 20 populations of the weedy and highly ploidy-variable species Oxalis purpurea L., including measures of clonality and selfing as a proxy for weediness. Ploidy level was determined using flow cytometry. RESULTS We found substantial variation and no consistent ploidy-related size difference, both between and within species, and across traits. Oxalis purpurea polyploids did, however, produce significantly more underground biomass and more bulbils than diploids, consistent with a potential role of WGD in the weediness of this species. CONCLUSIONS Our results suggest a more nuanced role for the gigas effect, at least in Oxalis. It may be temporary, short-lived, and inconsistently expressed and retained on evolutionary time scales, but in the short term can contribute to lineage success via increased vegetative reproduction.
Collapse
Affiliation(s)
- Frederik W Becker
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Kenneth C Oberlander
- H. G. W. J. Schweickerdt Herbarium, Department of Plant and Soil Sciences, Plant Sciences Complex, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Pavel Trávníček
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, Czech Republic, and Department of Botany, Charles University, Praha, Czech Republic
| | - Léanne L Dreyer
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
3
|
Yang Y, Liu M, Pan Y, Huang H, Pan X, Sosa A, Hou Y, Zhu Z, Li B. Rapid evolution of latitudinal clines in growth and defence of an invasive weed. THE NEW PHYTOLOGIST 2021; 230:845-856. [PMID: 33454953 DOI: 10.1111/nph.17193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Re-establishment of heritable latitudinal clines in growth-related traits has been recognised as evidence for adaptive evolution in invasive plants. However, less information is known about latitudinal clines in defence and joint clinal evolution of growth and defence in invasive plants. We planted 14 native Argentinean populations and 14 introduced Chinese populations of Alternanthera philoxeroides in replicate common gardens in China. We investigated the latitudinal clines of traits related to growth and defence, and plasticity of these traits in relation to experiment site and soil nitrogen. We found that chemical defence decreased with latitude in introduced populations but increased with latitude in native populations. For growth rate, latitudinal clines were positive in introduced populations but nonexistent in native populations. There were also parallel positive latitudinal clines in total/shoot biomass and specific leaf area. Experiment site affected the occurrence or magnitude of latitudinal clines in growth rate, branch intensity and triterpenoid saponins concentration. Introduced populations were more plastic to experiment site and soil nitrogen than native populations. We provide evidence for rapid evolution of clines in growth and defence in an invasive plant. Altered herbivory gradients and trade-off between growth and defence may explain nonparallel clines between the native and introduced ranges.
Collapse
Affiliation(s)
- Yang Yang
- National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, #2005 Songhu Road, Shanghai, 200438, China
| | - Mu Liu
- National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, #2005 Songhu Road, Shanghai, 200438, China
| | - Yuanfei Pan
- National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, #2005 Songhu Road, Shanghai, 200438, China
- School of Public Health, Fudan University, Shanghai, 200032, China
| | - Heyan Huang
- National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, #2005 Songhu Road, Shanghai, 200438, China
| | - Xiaoyun Pan
- National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, #2005 Songhu Road, Shanghai, 200438, China
- Research Center for Ecology, College of Science, Tibet University, Lhasa, 850000, China
- Tibet University - Fudan University Joint Laboratory for Biodiversity and Global Change, Fudan University, Shanghai, 200032, China
| | - Alejandro Sosa
- Fundación para el Estudio de Especies Invasivas (FuEDEI), Hurlingham, Buenos Aires, 999071, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, 999071, Argentina
| | - Yuping Hou
- College of Life Sciences, Ludong University, Yantai, 264025, China
| | - Zhengcai Zhu
- Guangzhou Zengcheng Institute of Forestry and Landscape Architecture, Guangzhou, 511300, China
| | - Bo Li
- National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, #2005 Songhu Road, Shanghai, 200438, China
| |
Collapse
|
4
|
Lenzner B, Magallón S, Dawson W, Kreft H, König C, Pergl J, Pyšek P, Weigelt P, van Kleunen M, Winter M, Dullinger S, Essl F. Role of diversification rates and evolutionary history as a driver of plant naturalization success. THE NEW PHYTOLOGIST 2021; 229:2998-3008. [PMID: 33078849 PMCID: PMC7894487 DOI: 10.1111/nph.17014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Human introductions of species beyond their natural ranges and their subsequent establishment are defining features of global environmental change. However, naturalized plants are not uniformly distributed across phylogenetic lineages, with some families contributing disproportionately more to the global alien species pool than others. Additionally, lineages differ in diversification rates, and high diversification rates have been associated with characteristics that increase species naturalization success. Here, we investigate the role of diversification rates in explaining the naturalization success of angiosperm plant families. We use five global data sets that include native and alien plant species distribution, horticultural use of plants, and a time-calibrated angiosperm phylogeny. Using phylogenetic generalized linear mixed models, we analysed the effect of diversification rate, different geographical range measures, and horticultural use on the naturalization success of plant families. We show that a family's naturalization success is positively associated with its evolutionary history, native range size, and economic use. Investigating interactive effects of these predictors shows that native range size and geographic distribution additionally affect naturalization success. High diversification rates and large ranges increase naturalization success, especially of temperate families. We suggest this may result from lower ecological specialization in temperate families with large ranges, compared with tropical families with smaller ranges.
Collapse
Affiliation(s)
- Bernd Lenzner
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 13Vienna1030Austria
| | - Susana Magallón
- Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoCircuito Exterior, Ciudad Universitaria, CoyoacánMexico City04510Mexico
| | - Wayne Dawson
- Department of BiosciencesDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Holger Kreft
- Biodiversity, Macroecology and BiogeographyUniversity of GoettingenBüsgenweg 1Göttingen37077Germany
- Centre of Biodiversity and Sustainable Land Use (CBL)University of GoettingenBüsgenweg 1Göttingen37077Germany
| | - Christian König
- Biodiversity, Macroecology and BiogeographyUniversity of GoettingenBüsgenweg 1Göttingen37077Germany
- Institute for Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | - Jan Pergl
- Institute of BotanyDepartment of Invasion EcologyCzech Academy of SciencesPrůhoniceCZ‐252 43Czech Republic
| | - Petr Pyšek
- Institute of BotanyDepartment of Invasion EcologyCzech Academy of SciencesPrůhoniceCZ‐252 43Czech Republic
- Department of EcologyFaculty of ScienceCharles UniversityViničná 7PragueCZ‐128 44Czech Republic
- Centre for Invasion BiologyDepartment of Botany & ZoologyStellenbosch UniversityMatieland7602South Africa
| | - Patrick Weigelt
- Biodiversity, Macroecology and BiogeographyUniversity of GoettingenBüsgenweg 1Göttingen37077Germany
| | - Mark van Kleunen
- EcologyUniversity of KonstanzUniversitätsstrasse 10Konstanz78457Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and ConservationTaizhou UniversityTaizhou318000China
| | - Marten Winter
- German Centre for Integrative Biodiversity Research (iDiv)Halle‐Jena‐LeipzigDeutscher Platz 5eLeipzig04103Germany
| | - Stefan Dullinger
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 13Vienna1030Austria
| | - Franz Essl
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 13Vienna1030Austria
| |
Collapse
|
5
|
Zhang J, Huang W, Ding J. Phenotypic plasticity in resource allocation to sexual trait of alligatorweed in wetland and terrestrial habitats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143819. [PMID: 33248767 DOI: 10.1016/j.scitotenv.2020.143819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Environmental heterogeneity in resource availability affects invasive plant reproductive strategies and resource allocation to reproduction. Here, we conducted two field surveys to examine the effect of wetland and terrestrial habitats on inflorescence production and resource allocation to inflorescence of the amphibious invasive plant Alternanthera philoxeroides in its invasive range (China). We also specifically examined the effects of water availability, fertilizer application, and plant density (space) in a greenhouse experiment. In field surveys, inflorescence biomass, normal monoclinous flowers and ratio of inflorescences to shoots of plants from wetlands were about 2.4-, 0.8- and 1.3-fold higher than those from terrestrial habitats, respectively. In greenhouse experiment, plants with higher fertilizer application and lower competition conditions produced more inflorescences, and had a lower ratio of roots to shoots and a comparable ratio of inflorescences to shoot and root. Furthermore, water availability had a significant interactive effect when combined with fertilizer level or plant density on inflorescence production and resource allocation. Together, our results indicate that high resources, such as those found in wetland habitats, favor both vegetative growth and sexual trait in A. philoxeroides. However, in terrestrial habitats where resources are relatively poor, the invader can adapt to the environment by allocating more resources to vegetative growth for clonal reproduction and less resources for sexual trait. This phenotypic plasticity in resource allocation likely facilitates the plant to invade heterogeneous wetlands and terrestrial environments.
Collapse
Affiliation(s)
- Jialiang Zhang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang 438000, Hubei, China
| | - Wei Huang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, China; Center of Conservation Biology, Core Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, China.
| | - Jianqing Ding
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China.
| |
Collapse
|
6
|
Home and away and home again: discovery of a native reproductive strategy of the globally invading sea anemone Diadumene lineata (Verrill, 1869) in a satellite population. Biol Invasions 2019. [DOI: 10.1007/s10530-019-01940-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Castro M, Castro S, Figueiredo A, Husband B, Loureiro J. Complex cytogeographical patterns reveal a dynamic tetraploid-octoploid contact zone. AOB PLANTS 2018; 10:ply012. [PMID: 29593853 PMCID: PMC5844219 DOI: 10.1093/aobpla/ply012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/13/2018] [Indexed: 05/24/2023]
Abstract
The distribution of cytotypes in mixed-ploidy species is crucial for evaluating ecological processes involved in the establishment and evolution of polyploid taxa. Here, we use flow cytometry and chromosome counts to explore cytotype diversity and distributions within a tetraploid-octoploid contact zone. We then use niche modelling and ploidy seed screening to assess the roles of niche differentiation among cytotypes and reproductive interactions, respectively, in promoting cytotype coexistence. Two cytotypes, tetraploids and octoploids, were dominant within the contact zone. They were most often distributed parapatrically or allopatrically, resulting in high geographic isolation. Still, 16.7 % of localities comprised two or more cytotypes, including the intermediate hexaploid cytotype. Tetraploids and octoploids had high environmental niche overlap and associated with similar climatic environments, suggesting they have similar ecological requirements. Given the geographical separation and habitat similarity among cytotypes, mixed-ploidy populations may be transitional and subject to the forces of minority cytotype exclusion which lead to pure-ploidy populations. However, seed ploidy analysis suggests that strong reproductive barriers may enforce assortative mating which favours stable cytotype coexistence. High cytogenetic diversity detected in the field suggests that unreduced gamete formation and hybridization events seem frequent in the studied polyploid complex and might be involved with the recurrent polyploid formation, governing, as well, the gene flow between cytogenetic entities.
Collapse
Affiliation(s)
- Mariana Castro
- CFE, Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra, Portugal
| | - Sílvia Castro
- CFE, Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra, Portugal
- Botanic Garden of the University of Coimbra, Calçada Martim de Freitas, Coimbra, Portugal
| | - Albano Figueiredo
- CEGOT, Departamento de Geografia e Turismo, Faculdade de Letras, Universidade de Coimbra, Largo da Porta Férrea, Coimbra, Portugal
| | - Brian Husband
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - João Loureiro
- CFE, Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra, Portugal
| |
Collapse
|
8
|
Papini A, Signorini MA, Foggi B, Della Giovampaola E, Ongaro L, Vivona L, Santosuosso U, Tani C, Bruschi P. History vs. legend: Retracing invasion and spread of Oxalis pes-caprae L. in Europe and the Mediterranean area. PLoS One 2017; 12:e0190237. [PMID: 29287103 PMCID: PMC5747460 DOI: 10.1371/journal.pone.0190237] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 12/10/2017] [Indexed: 11/18/2022] Open
Abstract
Oxalis pes-caprae L. is a South African geophyte that behaves as an invasive in the eurimediterranean area. According to a long-established hypothesis, O. pes-caprae may have invaded Europe and the Mediterranean area starting from a single plant introduced in the Botanical Garden of Malta at the beginning of the 19th century. The aim of this work was to test this hypothesis, to track the arrival of O. pes-caprae in different countries of the Euro-Mediterranean area and to understand the pathways of spreading and particularly its starting point(s). Historical data attesting the presence of the plant in the whole Euro-Mediterranean region were collected from different sources: herbarium specimens, Floras and other botanical papers, plant lists of gardens, catalogs of plant nurseries and plant dealers. First records of the plant (both cultivated and wild) for each Territorial Unit (3rd level of NUTS) were selected and used to draw up a diachronic map and an animated graphic. Both documents clearly show that oldest records are scattered throughout the whole area, proving that the plant arrived in Europe and in the Mediterranean region more times independently and that its spreading started in different times from several different centers of invasion. Botanical gardens and other public or private gardens, nurseries and plant dealers, and above all seaside towns and harbors seemingly played a strategic role as a source of either intentional and unintentional introduction or spread. A geographic profiling analysis was performed to analyse the data. We used also techniques (Silhouette, Kmeans and Voronoi tessellation) capable of verifying the presence of more than one independent clusters of data on the basis of their geographical distribution. Microsatellites were employed for a preliminary analysis of genetic variation in the Mediterranean. Even if the sampling was insufficient, particularly among the populations of the original area, our data supported three main groups of populations, one of them corresponding to the central group of populations identified by GP analysis, and the other two corresponding, respectively, to the western and the eastern cluster of data. The most probable areas of origin of the invasion in the three clusters of observations are characterized by the presence of localities where the invasive plant was cultivated, with the exception of the Iberian cluster of observation where the observations in the field predate the data about known cultivation localities. Alternative possible reasons are also suggested, to explain the current prevalence of pentaploid short-styled plants in the Euro-Mediterranean area.
Collapse
Affiliation(s)
- Alessio Papini
- University of Florence, Dept. Biology (BIO), Florence, Italy
- * E-mail:
| | | | - Bruno Foggi
- University of Florence, Dept. Biology (BIO), Florence, Italy
| | | | - Luca Ongaro
- Istituto Agronomico per l’Oltremare (IAO), Florence, Italy
| | - Laura Vivona
- University of Florence, Dept. of AgriFood Production and Environmental Sciences (DISPAA), Florence, Italy
| | - Ugo Santosuosso
- University of Florence, Dept. of Clinical and experimental Medicine (DMSC), Florence, Italy
| | - Corrado Tani
- University of Florence, Dept. Biology (BIO), Florence, Italy
| | - Piero Bruschi
- University of Florence, Dept. of AgriFood Production and Environmental Sciences (DISPAA), Florence, Italy
| |
Collapse
|