1
|
Wei G, Xu M, Shi X, Wang Y, Shi Y, Wang J, Feng L. Integrative analysis of miRNA profile and degradome reveals post-transcription regulation involved in fragrance formation of Rosa rugosa. Int J Biol Macromol 2024; 279:135266. [PMID: 39244114 DOI: 10.1016/j.ijbiomac.2024.135266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Rosa rugosa is renowned for its fragrant essential oils (EOs) including the primary volatile compounds such as terpenes (geraniol and citronellol) and 2-phenylethanol. While the role of miRNAs in plant secondary metabolism has been explored, their involvement in EOs metabolism remains largely unknown. Sequencing of the petals of R. rugosa identified 383 conserved miRNAs and 625 novel miRNAs including 53 miRNAs differentially expressed in a strong fragrance variety R. rugosa 'White Purple Branch'. Degradome sequencing predicted 1969 targets enriched in GO terms involved in the negative regulation of macromolecule metabolic process. Furthermore, 122 targets of differentially expressed miRNAs were enriched in phenylalanine metabolism and other KEGG pathways. A post-transcriptional regulation network of 52 miRNAs and 70 miRNA-transcription factor modules target terpene and 2-phenylethanol biosynthesis pathways. Six interactions including miR535f-RrHMGR, NOV146-RrNUDX1, miR166l-RrHY5 and miR156c-RrSPL2 were validated using RNA ligase-mediated RACE. Sequence alignment revealed that the NOV146-RrNUDX1 was conserved in the Rosa genus. Moreover, weaker silencing of RrNUDX1 by NOV146 contributed to the stronger fragrance of R. rugosa. These findings offer a comprehensive understanding of the post-transcriptional regulation involved in essential oil biosynthesis and identify candidate miRNAs for further genetic improvement of EO yields in R. rugosa.
Collapse
Affiliation(s)
- Guo Wei
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Mengmeng Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xinwei Shi
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Yue Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Yuqing Shi
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jianwen Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Liguo Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Tondepu SAG, Manova V, Vadivel D, Dondi D, Pagano A, Macovei A. MicroRNAs potentially targeting DDR-related genes are differentially expressed upon exposure to γ-rays during seed germination in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108771. [PMID: 38820913 DOI: 10.1016/j.plaphy.2024.108771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
DNA damage response (DDR), a complex network of cellular pathways that cooperate to sense and repair DNA lesions, is regulated by several mechanisms, including microRNAs. As small, single-stranded RNA molecules, miRNAs post-transcriptionally regulate their target genes by mRNA cleavage or translation inhibition. Knowledge regarding miRNAs influence on DDR-associated genes is still scanty in plants. In this work, an in silico analysis was performed to identify putative miRNAs that could target DDR sensors, signal transducers and effector genes in wheat. Selected putative miRNA-gene pairs were tested in an experimental system where seeds from two wheat mutant lines were irradiated with 50 Gy and 300 Gy gamma(γ)-rays. To evaluate the effect of the treatments on wheat germination, phenotypic and molecular (DNA damage, ROS accumulation, gene/miRNA expression profile) analyses have been carried out. The results showed that in dry seeds ROS accumulated immediately after irradiation and decayed soon after while the negative impact on seedling growth was supported by enhanced accumulation of DNA damage. When a qRT-PCR analysis was performed, the selected miRNAs and DDR-related genes were differentially modulated by the γ-rays treatments in a dose-, time- and genotype-dependent manner. A significant negative correlation was observed between the expression of tae-miR5086 and the RAD50 gene, involved in double-strand break sensing and homologous recombination repair, one of the main processes that repairs DNA breaks induced by γ-rays. The results hereby reported can be relevant for wheat breeding programs and screening of the radiation response and tolerance of novel wheat varieties.
Collapse
Affiliation(s)
- Sri Amarnadh Gupta Tondepu
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Adolfo Ferrata 9, 27100, Pavia, Italy
| | - Vasilissa Manova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences "Acad. G. Bonchev", Street Bldg. 21, 1113, Sofia, Bulgaria.
| | - Dhanalakshmi Vadivel
- Department of Chemistry, University of Pavia, Via Torquato Taramelli 12, 27100, Pavia, Italy
| | - Daniele Dondi
- Department of Chemistry, University of Pavia, Via Torquato Taramelli 12, 27100, Pavia, Italy
| | - Andrea Pagano
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Adolfo Ferrata 9, 27100, Pavia, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Adolfo Ferrata 9, 27100, Pavia, Italy.
| |
Collapse
|
3
|
Iorizzo M, Sicilia A, Nicolosi E, Forino M, Picariello L, Lo Piero AR, Vitale A, Monaco E, Ferlito F, Succi M, Tremonte P, Gambuti A, Villano C, Bonfante A, Aversano R, Coppola R. Investigating the impact of pedoclimatic conditions on the oenological performance of two red cultivars grown throughout southern Italy. FRONTIERS IN PLANT SCIENCE 2023; 14:1250208. [PMID: 37780525 PMCID: PMC10540683 DOI: 10.3389/fpls.2023.1250208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023]
Abstract
The cultivated grapevine, Vitis vinifera subsp. vinifera, possesses a rich biodiversity with numerous varieties. Each variety adapts differently to varying pedoclimatic conditions, which greatly influence the terroir expression of wine regions. These conditions impact vine growth, physiology, and berry composition, ultimately shaping the unique characteristics and typicity of the wines produced. Nowadays, the potential of the different adaptation capacities of grape varieties has not yet been thoroughly investigated. We addressed this issue by studying two grape varieties, Aglianico and Cabernet Sauvignon, in two different pedoclimatic conditions of Southern Italy. We evaluated and compared the effect of different pedoclimatic conditions on plant physiology, the microbial quality of grapes using Next-Generation Sequencing (NGS) technology, the expression trends of key genes in ripe berries and the concentration of phenolic compounds in grapes and wines by HPLC-MS, HPLC-DAD, NMR and spectrophotometric analyses. Metabolomic and microbiome data were integrated with quantitative gene expression analyses to examine varietal differences and plasticity of genes involved in important oenological pathways. The data collected showed that the phenotypic response of studied grapes in terms of vigor, production, and fruit quality is strongly influenced by the pedoclimatic conditions and, in particular, by soil physical properties. Furthermore, Aglianico grape variety was more influenced than the Cabernet Sauvignon by environmental conditions. In conclusion, the obtained findings not only reinforce the terroir concept and our comprehension of grape's ability to adapt to climate variations but can also have implications for the future usage of grape genetic resources.
Collapse
Affiliation(s)
- Massimo Iorizzo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Angelo Sicilia
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Elisabetta Nicolosi
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Martino Forino
- Department of Agricultural Sciences, Division of Grape and Wine Sciences, University of Naples Federico II, Avellino, Italy
| | - Luigi Picariello
- Department of Agricultural Sciences, Division of Grape and Wine Sciences, University of Naples Federico II, Avellino, Italy
| | | | - Andrea Vitale
- Institute for Mediterranean Agricultural and Forestry Systems, National Reaserch Council, Portici, Italy
| | - Eugenia Monaco
- Institute for Mediterranean Agricultural and Forestry Systems, National Reaserch Council, Portici, Italy
| | - Filippo Ferlito
- Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
| | - Mariantonietta Succi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Patrizio Tremonte
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Angelita Gambuti
- Department of Agricultural Sciences, Division of Grape and Wine Sciences, University of Naples Federico II, Avellino, Italy
| | - Clizia Villano
- Department of Agricultural Sciences, Division of Grape and Wine Sciences, University of Naples Federico II, Avellino, Italy
| | - Antonello Bonfante
- Institute for Mediterranean Agricultural and Forestry Systems, National Reaserch Council, Portici, Italy
| | - Riccardo Aversano
- Department of Agricultural Sciences, Division of Grape and Wine Sciences, University of Naples Federico II, Avellino, Italy
| | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| |
Collapse
|
4
|
Ferrandino A, Pagliarani C, Pérez-Álvarez EP. Secondary metabolites in grapevine: crosstalk of transcriptional, metabolic and hormonal signals controlling stress defence responses in berries and vegetative organs. FRONTIERS IN PLANT SCIENCE 2023; 14:1124298. [PMID: 37404528 PMCID: PMC10315584 DOI: 10.3389/fpls.2023.1124298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/26/2023] [Indexed: 07/06/2023]
Abstract
Abiotic stresses, such as temperature, heat waves, water limitation, solar radiation and the increase in atmospheric CO2 concentration, significantly influence the accumulation of secondary metabolites in grapevine berries at different developmental stages, and in vegetative organs. Transcriptional reprogramming, miRNAs, epigenetic marks and hormonal crosstalk regulate the secondary metabolism of berries, mainly the accumulation of phenylpropanoids and of volatile organic compounds (VOCs). Currently, the biological mechanisms that control the plastic response of grapevine cultivars to environmental stress or that occur during berry ripening have been extensively studied in many worlds viticultural areas, in different cultivars and in vines grown under various agronomic managements. A novel frontier in the study of these mechanisms is the involvement of miRNAs whose target transcripts encode enzymes of the flavonoid biosynthetic pathway. Some miRNA-mediated regulatory cascades, post-transcriptionally control key MYB transcription factors, showing, for example, a role in influencing the anthocyanin accumulation in response to UV-B light during berry ripening. DNA methylation profiles partially affect the berry transcriptome plasticity of different grapevine cultivars, contributing to the modulation of berry qualitative traits. Numerous hormones (such as abscisic and jasmomic acids, strigolactones, gibberellins, auxins, cytokynins and ethylene) are involved in triggering the vine response to abiotic and biotic stress factors. Through specific signaling cascades, hormones mediate the accumulation of antioxidants that contribute to the quality of the berry and that intervene in the grapevine defense processes, highlighting that the grapevine response to stressors can be similar in different grapevine organs. The expression of genes responsible for hormone biosynthesis is largely modulated by stress conditions, thus resulting in the numeourous interactions between grapevine and the surrounding environment.
Collapse
Affiliation(s)
- Alessandra Ferrandino
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Grugliasco, Italy
| | - Chiara Pagliarani
- National Research Council, Institute for Sustainable Plant Protection (CNR-IPSP), Torino, Italy
| | - Eva Pilar Pérez-Álvarez
- Grupo VIENAP. Finca La Grajera, Instituto de Ciencias de la Vid y del Vino (ICVV), Logroño, La Rioja, Spain
| |
Collapse
|
5
|
Rubio B, Stammitti L, Cookson SJ, Teyssier E, Gallusci P. Small RNA populations reflect the complex dialogue established between heterograft partners in grapevine. HORTICULTURE RESEARCH 2022; 9:uhab067. [PMID: 35048109 PMCID: PMC8935936 DOI: 10.1093/hr/uhab067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/24/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
Grafting is an ancient method that has been intensively used for the clonal propagation of vegetables and woody trees. Despite its importance in agriculture the physiological and molecular mechanisms underlying phenotypic changes of plants following grafting are still poorly understood. In the present study, we analyse the populations of small RNAs in homo and heterografts and take advantage of the sequence differences in the genomes of heterograft partners to analyse the possible exchange of small RNAs. We demonstrate that the type of grafting per se dramatically influences the small RNA populations independently of genotypes but also show genotype specific effects. In addition, we demonstrate that bilateral exchanges of small RNAs, mainly short interfering RNAs, may occur in heterograft with the preferential transfer of small RNAs from the scion to the rootstock. Altogether, the results suggest that small RNAs may have an important role in the phenotype modifications observed in heterografts.
Collapse
Affiliation(s)
- Bernadette Rubio
- EGFV, University Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France
| | - Linda Stammitti
- EGFV, University Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France
| | - Sarah Jane Cookson
- EGFV, University Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France
| | - Emeline Teyssier
- EGFV, University Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France
| | - Philippe Gallusci
- EGFV, University Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France
| |
Collapse
|
6
|
Bianchi D, Caramanico L, Grossi D, Brancadoro L, Lorenzis GD. How Do Novel M-Rootstock ( Vitis Spp.) Genotypes Cope with Drought? PLANTS 2020; 9:plants9101385. [PMID: 33080884 PMCID: PMC7603061 DOI: 10.3390/plants9101385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/31/2022]
Abstract
Most of the vineyards around the world are in areas characterized by seasonal drought, where water deficits and high temperatures represent severe constraints on the regular grapevine growth cycle. Although grapevines are well adapted to arid and semi-arid environments, water stress can cause physiological changes, from mild to irreversible. Screening of available Vitis spp. genetic diversity for new rootstock breeding programs has been proposed as a way for which new viticulture challenges may be faced. In 2014, novel genotypes (M-rootstocks) were released from the University of Milan. In this work, the behavior of M1, M3 and M4 in response to decreasing water availabilities (80%, 50% and 20% soil water content, SWC) was investigated at the physiological and gene expression levels, evaluating gas exchange, stem water potential and transcript abundances of key genes related to ABA (abscisic acid) biosynthesis (VvZEP, VvNCED1 and VvNCED2) and signaling (VvPP2C4, VvSnRK2.6 and VvABF2), and comparing them to those of cuttings of nine commercial rootstocks widely used in viticulture. M-rootstocks showed a change at physiological levels in severe water-stressed conditions (20% soil water content, SWC), reducing the stomatal conductance and stem water potential, but maintaining high photosynthetic activity. Water use efficiency was high in water-limiting conditions. The transcriptional changes were observed at 50% SWC, with an increment of transcripts of VvNCED1 and VvNCED2 genes. M-rootstocks showed similar behavior to 1103P and 110R rootstocks, two highly tolerant commercial genotypes. These rootstocks adopted a tolerant strategy to face water-stressed conditions.
Collapse
Affiliation(s)
| | | | | | - Lucio Brancadoro
- Correspondence: (L.B.); (G.D.L.); Tel.: +39-02-503-16559 (L.B.); +39-02-503-16565 (G.D.L.)
| | - Gabriella De Lorenzis
- Correspondence: (L.B.); (G.D.L.); Tel.: +39-02-503-16559 (L.B.); +39-02-503-16565 (G.D.L.)
| |
Collapse
|
7
|
Zombardo A, Crosatti C, Bagnaresi P, Bassolino L, Reshef N, Puccioni S, Faccioli P, Tafuri A, Delledonne M, Fait A, Storchi P, Cattivelli L, Mica E. Transcriptomic and biochemical investigations support the role of rootstock-scion interaction in grapevine berry quality. BMC Genomics 2020; 21:468. [PMID: 32641089 PMCID: PMC7341580 DOI: 10.1186/s12864-020-06795-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Background In viticulture, rootstock genotype plays a critical role to improve scion physiology, berry quality and to adapt grapevine (Vitis vinifera L.) to different environmental conditions. This study aimed at investigating the effect of two different rootstocks (1103 Paulsen - P - and Mgt 101–14 - M) in comparison with not grafted plants - NGC - on transcriptome (RNA-seq and small RNA-seq) and chemical composition of berry skin in Pinot noir, and exploring the influence of rootstock-scion interaction on grape quality. Berry samples, collected at veraison and maturity, were investigated at transcriptional and biochemical levels to depict the impact of rootstock on berry maturation. Results RNA- and miRNA-seq analyses highlighted that, at veraison, the transcriptomes of the berry skin are extremely similar, while variations associated with the different rootstocks become evident at maturity, suggesting a greater diversification at transcriptional level towards the end of the ripening process. In the experimental design, resembling standard agronomic growth conditions, the vines grafted on the two different rootstocks do not show a high degree of diversity. In general, the few genes differentially expressed at veraison were linked to photosynthesis, putatively because of a ripening delay in not grafted vines, while at maturity the differentially expressed genes were mainly involved in the synthesis and transport of phenylpropanoids (e.g. flavonoids), cell wall loosening, and stress response. These results were supported by some differences in berry phenolic composition detected between grafted and not grafted plants, in particular in resveratrol derivatives accumulation. Conclusions Transcriptomic and biochemical data demonstrate a stronger impact of 1103 Paulsen rootstock than Mgt 101–14 or not grafted plants on ripening processes related to the secondary metabolite accumulations in berry skin tissue. Interestingly, the MYB14 gene, involved in the feedback regulation of resveratrol biosynthesis was up-regulated in 1103 Paulsen thus supporting a putative greater accumulation of stilbenes in mature berries.
Collapse
Affiliation(s)
- A Zombardo
- CREA Research Centre for Viticulture and Enology, viale Santa Margherita 80, 52100, Arezzo, Italy.,Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, 50144, Florence, Italy
| | - C Crosatti
- CREA Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - P Bagnaresi
- CREA Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - L Bassolino
- CREA Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy.,CREA Research Centre for Cereal and Industrial Crops, via di Corticella 133, 40128, Bologna, Italy
| | - N Reshef
- French Associates institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel.,Present address: Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - S Puccioni
- CREA Research Centre for Viticulture and Enology, viale Santa Margherita 80, 52100, Arezzo, Italy
| | - P Faccioli
- CREA Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - A Tafuri
- CREA Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - M Delledonne
- Department of Biotechnologies, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - A Fait
- French Associates institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990, Israel
| | - P Storchi
- CREA Research Centre for Viticulture and Enology, viale Santa Margherita 80, 52100, Arezzo, Italy
| | - L Cattivelli
- CREA Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy
| | - E Mica
- CREA Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017, Fiorenzuola d'Arda, PC, Italy.
| |
Collapse
|
8
|
Pagliarani C, Boccacci P, Chitarra W, Cosentino E, Sandri M, Perrone I, Mori A, Cuozzo D, Nerva L, Rossato M, Zuccolotto P, Pezzotti M, Delledonne M, Mannini F, Gribaudo I, Gambino G. Distinct Metabolic Signals Underlie Clone by Environment Interplay in "Nebbiolo" Grapes Over Ripening. FRONTIERS IN PLANT SCIENCE 2019; 10:1575. [PMID: 31867031 PMCID: PMC6904956 DOI: 10.3389/fpls.2019.01575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/11/2019] [Indexed: 05/05/2023]
Abstract
Several research studies were focused to understand how grapevine cultivars respond to environment; nevertheless, the biological mechanisms tuning this phenomenon need to be further deepened. Particularly, the molecular processes underlying the interplay between clones of the same cultivar and environment were poorly investigated. To address this issue, we analyzed the transcriptome of berries from three "Nebbiolo" clones grown in different vineyards, during two ripening seasons. RNA-sequencing data were implemented with analyses of candidate genes, secondary metabolites, and agronomical parameters. This multidisciplinary approach helped to dissect the complexity of clone × environment interactions, by identifying the molecular responses controlled by genotype, vineyard, phenological phase, or a combination of these factors. Transcripts associated to sugar signalling, anthocyanin biosynthesis, and transport were differently modulated among clones, according to changes in berry agronomical features. Conversely, genes involved in defense response, such as stilbene synthase genes, were significantly affected by vineyard, consistently with stilbenoid accumulation. Thus, besides at the cultivar level, clone-specific molecular responses also contribute to shape the agronomic features of grapes in different environments. This reveals a further level of complexity in the regulation of genotype × environment interactions that has to be considered for orienting viticultural practices aimed at enhancing the quality of grape productions.
Collapse
Affiliation(s)
- Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| | - Paolo Boccacci
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| | - Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
- Council for Agricultural Research and Economics, Centre of Viticultural and Enology Research (CREA-VE), Conegliano, Italy
| | | | - Marco Sandri
- DMS StatLab, University of Brescia, Brescia, Italy
| | - Irene Perrone
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| | - Alessia Mori
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Danila Cuozzo
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, Italy
| | - Luca Nerva
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
- Council for Agricultural Research and Economics, Centre of Viticultural and Enology Research (CREA-VE), Conegliano, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Paola Zuccolotto
- Big&Open Data Innovation Laboratory, University of Brescia, Brescia, Italy
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Franco Mannini
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| | - Ivana Gribaudo
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| |
Collapse
|
9
|
Small RNA Mobility: Spread of RNA Silencing Effectors and its Effect on Developmental Processes and Stress Adaptation in Plants. Int J Mol Sci 2019; 20:ijms20174306. [PMID: 31484348 PMCID: PMC6747330 DOI: 10.3390/ijms20174306] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 01/22/2023] Open
Abstract
Plants are exposed every day to multiple environmental cues, and tight transcriptome reprogramming is necessary to control the balance between responses to stress and processes of plant growth. In this context, the silencing phenomena mediated by small RNAs can drive transcriptional and epigenetic regulatory modifications, in turn shaping plant development and adaptation to the surrounding environment. Mounting experimental evidence has recently pointed to small noncoding RNAs as fundamental players in molecular signalling cascades activated upon exposure to abiotic and biotic stresses. Although, in the last decade, studies on stress responsive small RNAs increased significantly in many plant species, the physiological responses triggered by these molecules in the presence of environmental stresses need to be further explored. It is noteworthy that small RNAs can move either cell-to-cell or systemically, thus acting as mobile silencing effectors within the plant. This aspect has great importance when physiological changes, as well as epigenetic regulatory marks, are inspected in light of plant environmental adaptation. In this review, we provide an overview of the categories of mobile small RNAs in plants, particularly focusing on the biological implications of non-cell autonomous RNA silencing in the stress adaptive response and epigenetic modifications.
Collapse
|
10
|
The Role of UV-B light on Small RNA Activity During Grapevine Berry Development. G3-GENES GENOMES GENETICS 2019; 9:769-787. [PMID: 30647106 PMCID: PMC6404619 DOI: 10.1534/g3.118.200805] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
We explored the effects of ultraviolet B radiation (UV-B) on the developmental dynamics of microRNAs and phased small-interfering-RNA (phasi-RNAs)-producing loci by sequencing small RNAs in vegetative and reproductive organs of grapevine (Vitis vinifera L.). In particular, we tested different UV-B conditions in in vitro-grown plantlets (high-fluence exposition) and in berries from field-grown (radiation filtering) and greenhouse-grown (low- and high-fluence expositions) adult plants throughout fruit development and ripening. The functional significance of the observed UV-coordinated miRNA responses was supported by degradome evidences of ARGONAUTE (AGO)-programmed slicing of mRNAs. Co-expression patterns of the up-regulated miRNAs miR156, miR482, miR530, and miR828 with cognate target gene expressions in response to high-fluence UV-B was tested by q-RT-PCR. The observed UV-response relationships were also interrogated against two published UV-stress and developmental transcriptome datasets. Together, the dynamics observed between miRNAs and targets suggest that changes in target abundance are mediated transcriptionally and, in some cases, modulated post-transcriptionally by miRNAs. Despite the major changes in target abundance are being controlled primarily by those developmental effects that are similar between treatments, we show evidence for novel miRNA-regulatory networks in grape. A model is proposed where high-fluence UV-B increases miR168 and miR530 that target ARGONAUTE 1 (AGO1) and a Plus-3 domain mRNA, respectively, while decreasing miR403 that targets AGO2, thereby coordinating post-transcriptional gene silencing activities by different AGOs. Up-regulation of miR3627/4376 could facilitate anthocyanin accumulation by antagonizing a calcium effector, whereas miR395 and miR399, induced by micronutrient deficiencies known to trigger anthocyanin accumulation, respond positively to UV-B radiation. Finally, increases in the abundance of an anthocyanin-regulatory MYB-bHLH-WD40 complex elucidated in Arabidopsis, mediated by UV-B-induced changes in miR156/miR535, could contribute to the observed up-regulation of miR828. In turn, miR828 would regulate the AtMYB113-ortologues MYBA5, A6 and A7 (and thereby anthocyanins) via a widely conserved and previously validated auto-regulatory loop involving miR828 and phasi TAS4abc RNAs.
Collapse
|
11
|
Marfil C, Ibañez V, Alonso R, Varela A, Bottini R, Masuelli R, Fontana A, Berli F. Changes in grapevine DNA methylation and polyphenols content induced by solar ultraviolet-B radiation, water deficit and abscisic acid spray treatments. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:287-294. [PMID: 30599305 DOI: 10.1016/j.plaphy.2018.12.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 05/21/2023]
Abstract
Environment and crop management shape plant's phenotype. Argentinean high-altitude vineyards are characterized by elevated solar ultraviolet-B radiation (UVB) and water deficit (D) that enhance enological quality for red winemaking. These signals promote phenolics accumulation in leaves and berries, being the responses mediated by abscisic acid (ABA). DNA methylation is an epigenetic mechanism that regulates gene expression and may affect grapevine growth, development and acclimation, since methylation patterns are mitotically heritable. Berry skins low molecular weight polyphenols (LMWP) were characterized in field grown Vitis vinifera L. cv. Malbec plants exposed to contrasting UV-B, D, and ABA treatments during one season. The next season early fruit shoots were epigenetically (methylation-sensitive amplification polymorphism; MSAP) and biochemically (LMWP) characterized. Unstable epigenetic patterns and/or stochastic stress-induced methylation changes were observed. UV-B and D were the treatments that induced greater number of DNA methylation changes respect to Control; and UV-B promoted global hypermethylation of MSAP epiloci. Sequenced MSAP fragments associated with UV-B and ABA showed similarities with transcriptional regulators and ubiquitin ligases proteins activated by light. UV-B was associated with flavonols accumulation in berries and with hydroxycinnamic acids in the next season fruit shoots, suggesting that DNA methylation could regulate the LMWP accumulation and participate in acclimation mechanisms.
Collapse
Affiliation(s)
- Carlos Marfil
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Almte. Brown 500, M5507, Chacras de Coria, Mendoza, Argentina
| | - Verónica Ibañez
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Almte. Brown 500, M5507, Chacras de Coria, Mendoza, Argentina
| | - Rodrigo Alonso
- Catena Institute of Wine (CIW), Bodega Catena Zapata, Cobos S/n, M5509, Agrelo, Mendoza, Argentina
| | - Anabella Varela
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Almte. Brown 500, M5507, Chacras de Coria, Mendoza, Argentina
| | - Rubén Bottini
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Almte. Brown 500, M5507, Chacras de Coria, Mendoza, Argentina
| | - Ricardo Masuelli
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Almte. Brown 500, M5507, Chacras de Coria, Mendoza, Argentina
| | - Ariel Fontana
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Almte. Brown 500, M5507, Chacras de Coria, Mendoza, Argentina
| | - Federico Berli
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Almte. Brown 500, M5507, Chacras de Coria, Mendoza, Argentina.
| |
Collapse
|
12
|
Guo DL, Li Q, Lv WQ, Zhang GH, Yu YH. MicroRNA profiling analysis of developing berries for 'Kyoho' and its early-ripening mutant during berry ripening. BMC PLANT BIOLOGY 2018; 18:285. [PMID: 30445920 PMCID: PMC6240241 DOI: 10.1186/s12870-018-1516-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 10/31/2018] [Indexed: 05/13/2023]
Abstract
BACKGROUND 'Fengzao' is an early-ripening bud mutant of 'Kyoho', which matures nearly 30 days earlier than 'Kyoho'. To gain a better understanding of the regulatory role of miRNAs in early-ripening of grape berry, high-throughput sequencing approach and quantitative RT-PCR validation were employed to identify miRNAs at the genome-wide level and profile the expression patterns of the miRNAs during berry development in 'Kyho' and 'Fengzao', respectively. RESULTS Nine independent small RNA libraries were constructed and sequenced in two varieties from key berry development stages. A total of 108 known miRNAs and 61 novel miRNAs were identified. Among that, 159 miRNAs identified in 'Fengzao' all completely expressed in 'Kyoho' and there were 10 miRNAs specifically expressed in 'Kyoho'. The expression profiles of known and novel miRNAs were quite similar between two varieties. As the major differentially expressed miRNAs, novel_144, vvi-miR3626-3p and vvi-miR3626-5p only expressed in 'Kyoho', vvi-miR399b and vvi-miR399e were down-regulated in 'Fengzao', while vvi-miR477b-3p up-regulated in 'Fengzao'. According to the expression analysis and previous reports, miR169-NF-Y subunit, miR398-CSD, miR3626-RNA helicase, miR399- phosphate transporter and miR477-GRAS transcription factor were selected as the candidates for further investigations of miRNA regulation role in the early-ripening of grape. The qRT-PCR analyses validated the contrasting expression patterns for these miRNAs and their target genes. CONCLUSIONS The miRNAome of the grape berry development of 'Kyoho', and its early-ripening bud mutant, 'Fengzao' were compared by high-throughput sequencing. The expression pattern of several key miRNAs and their target genes during grape berry development and ripening stages was examined. Our results provide valuable basis towards understanding the regulatory mechanisms of early-ripening of grape berry.
Collapse
Affiliation(s)
- Da-Long Guo
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
| | - Qiong Li
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
| | - Wen-Qing Lv
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
| | - Guo-Hai Zhang
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
| | - Yi-He Yu
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
| |
Collapse
|
13
|
Ferreira V, Pinto-Carnide O, Arroyo-García R, Castro I. Berry color variation in grapevine as a source of diversity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:696-707. [PMID: 30146416 DOI: 10.1016/j.plaphy.2018.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 06/08/2023]
Abstract
Even though it is one of the oldest perennial domesticated fruit crops in the world, grapevine (Vitis vinifera L.) cultivation today is the result of both conventional breeding practices (i.e. hybridizations adopted during the last century) and vegetative propagation. Human-assisted asexual propagation has allowed the maintenance of desired traits but has largely impacted the frequency of spontaneous somatic mutations observed in the field. Consequently, many grapevine fruit attributes to date have been artificially selected, including: fruit yield, compactness, size and composition, the latter being greatly diversified in the pursuit of altering berry skin coloration. The present review provides an overview of various aspects related to grapevine diversity, with a special emphasis on grape berry skin color variation and will discuss the current knowledge of how grape skin color variation is affected by the synthesis of phenolic compounds, particularly anthocyanins and their underlying genetic factors. We hope this knowledge will be useful in supporting the importance of the berry color trait diversity in cultivated grapevines, which is used as basis for selection during breeding programs because of its application for vine growers, winemakers and consumers.
Collapse
Affiliation(s)
- Vanessa Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; Centre for Plant Biotechnology and Genomics (UPM-INIA, CBGP), Campus de Montegancedo, Autovía M40 km38, 28223 Pozuelo de Alarcón, Madrid, Spain.
| | - Olinda Pinto-Carnide
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Rosa Arroyo-García
- Centre for Plant Biotechnology and Genomics (UPM-INIA, CBGP), Campus de Montegancedo, Autovía M40 km38, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Isaura Castro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
14
|
Chitarra W, Pagliarani C, Abbà S, Boccacci P, Birello G, Rossi M, Palmano S, Marzachì C, Perrone I, Gambino G. miRVIT: A Novel miRNA Database and Its Application to Uncover Vitis Responses to Flavescence dorée Infection. FRONTIERS IN PLANT SCIENCE 2018; 9:1034. [PMID: 30065744 PMCID: PMC6057443 DOI: 10.3389/fpls.2018.01034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/26/2018] [Indexed: 05/08/2023]
Abstract
Micro(mi)RNAs play crucial roles in plant developmental processes and in defense responses to biotic and abiotic stresses. In the last years, many works on small RNAs in grapevine (Vitis spp.) were published, and several conserved and putative novel grapevine-specific miRNAs were identified. In order to reorganize the high quantity of available data, we produced "miRVIT," the first database of all novel grapevine miRNA candidates characterized so far, and still not deposited in miRBase. To this aim, each miRNA accession was renamed, repositioned in the last version of the grapevine genome, and compared with all the novel and conserved miRNAs detected in grapevine. Conserved and novel miRNAs cataloged in miRVIT were then used for analyzing Vitis vinifera plants infected by Flavescence dorée (FD), one of the most severe phytoplasma diseases affecting grapevine. The analysis of small RNAs from healthy, recovered (plants showing spontaneous and stable remission of symptoms), and FD-infected "Barbera" grapevines showed that FD altered the expression profiles of several miRNAs, including those involved in cell development and photosynthesis, jasmonate signaling, and disease resistance response. The application of miRVIT in a biological context confirmed the effectiveness of the followed approach, especially for the identification of novel miRNA candidates in grapevine. miRVIT database is available at http://mirvit.ipsp.cnr.it. Highlights: The application of the newly produced database of grapevine novel miRNAs to the analysis of plants infected by Flavescence dorée reveals key roles of miRNAs in photosynthesis and jasmonate signaling.
Collapse
Affiliation(s)
- Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
- Viticultural and Enology Research Centre, Council for Agricultural Research and Economics, Conegliano, Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Simona Abbà
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Paolo Boccacci
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Giancarlo Birello
- Research Institute on Sustainable Economic Growth, National Research Council of Italy, Turin, Italy
| | - Marika Rossi
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Sabrina Palmano
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Cristina Marzachì
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Irene Perrone
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| |
Collapse
|
15
|
Dal Santo S, Zenoni S, Sandri M, De Lorenzis G, Magris G, De Paoli E, Di Gaspero G, Del Fabbro C, Morgante M, Brancadoro L, Grossi D, Fasoli M, Zuccolotto P, Tornielli GB, Pezzotti M. Grapevine field experiments reveal the contribution of genotype, the influence of environment and the effect of their interaction (G×E) on the berry transcriptome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:1143-1159. [PMID: 29381239 DOI: 10.1111/tpj.13834] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/14/2017] [Accepted: 01/04/2018] [Indexed: 05/20/2023]
Abstract
Changes in the performance of genotypes in different environments are defined as genotype × environment (G×E) interactions. In grapevine (Vitis vinifera), complex interactions between different genotypes and climate, soil and farming practices yield unique berry qualities. However, the molecular basis of this phenomenon remains unclear. To dissect the basis of grapevine G×E interactions we characterized berry transcriptome plasticity, the genome methylation landscape and within-genotype allelic diversity in two genotypes cultivated in three different environments over two vintages. We identified, through a novel data-mining pipeline, genes with expression profiles that were: unaffected by genotype or environment, genotype-dependent but unaffected by the environment, environmentally-dependent regardless of genotype, and G×E-related. The G×E-related genes showed different degrees of within-cultivar allelic diversity in the two genotypes and were enriched for stress responses, signal transduction and secondary metabolism categories. Our study unraveled the mutual relationships between genotypic and environmental variables during G×E interaction in a woody perennial species, providing a reference model to explore how cultivated fruit crops respond to diverse environments. Also, the pivotal role of vineyard location in determining the performance of different varieties, by enhancing berry quality traits, was unraveled.
Collapse
Affiliation(s)
- Silvia Dal Santo
- Department of Biotechnology, University of Verona, I-37034, Verona, Italy
| | - Sara Zenoni
- Department of Biotechnology, University of Verona, I-37034, Verona, Italy
| | - Marco Sandri
- Department of Biotechnology, University of Verona, I-37034, Verona, Italy
| | - Gabriella De Lorenzis
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milano, I-20133, Milano, Italy
| | | | - Emanuele De Paoli
- Department of Agricultural Food, Environmental and Animal Sciences (DI4A), University of Udine, I-33100, Udine, Italy
| | | | - Cristian Del Fabbro
- Department of Agricultural Food, Environmental and Animal Sciences (DI4A), University of Udine, I-33100, Udine, Italy
| | | | - Lucio Brancadoro
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milano, I-20133, Milano, Italy
| | - Daniele Grossi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milano, I-20133, Milano, Italy
| | - Marianna Fasoli
- Department of Biotechnology, University of Verona, I-37034, Verona, Italy
| | - Paola Zuccolotto
- Department of Economics and management, University of Brescia, I-25121, Brescia, Italy
| | | | - Mario Pezzotti
- Department of Biotechnology, University of Verona, I-37034, Verona, Italy
| |
Collapse
|
16
|
Fabres PJ, Collins C, Cavagnaro TR, Rodríguez López CM. A Concise Review on Multi-Omics Data Integration for Terroir Analysis in Vitis vinifera. FRONTIERS IN PLANT SCIENCE 2017; 8:1065. [PMID: 28676813 PMCID: PMC5477006 DOI: 10.3389/fpls.2017.01065] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/02/2017] [Indexed: 05/19/2023]
Abstract
Vitis vinifera (grapevine) is one of the most important fruit crops, both for fresh consumption and wine and spirit production. The term terroir is frequently used in viticulture and the wine industry to relate wine sensory attributes to its geographic origin. Although, it can be cultivated in a wide range of environments, differences in growing conditions have a significant impact on fruit traits that ultimately affect wine quality. Understanding how fruit quality and yield are controlled at a molecular level in grapevine in response to environmental cues has been a major driver of research. Advances in the area of genomics, epigenomics, transcriptomics, proteomics and metabolomics, have significantly increased our knowledge on the abiotic regulation of yield and quality in many crop species, including V. vinifera. The integrated analysis of multiple 'omics' can give us the opportunity to better understand how plants modulate their response to different environments. However, 'omics' technologies provide a large amount of biological data and its interpretation is not always straightforward, especially when different 'omic' results are combined. Here we examine the current strategies used to integrate multi-omics, and how these have been used in V. vinifera. In addition, we also discuss the importance of including epigenomics data when integrating omics data as epigenetic mechanisms could play a major role as an intermediary between the environment and the genome.
Collapse
Affiliation(s)
- Pastor Jullian Fabres
- Environmental Epigenetics and Genetics Group, Plant Research Centre, School of Agriculture, Food and Wine, University of Adelaide, Glen OsmondSA, Australia
| | - Cassandra Collins
- The Waite Research Institute, The School of Agriculture, Food and Wine, The University of Adelaide, Glen OsmondSA, Australia
| | - Timothy R. Cavagnaro
- The Waite Research Institute, The School of Agriculture, Food and Wine, The University of Adelaide, Glen OsmondSA, Australia
| | - Carlos M. Rodríguez López
- Environmental Epigenetics and Genetics Group, Plant Research Centre, School of Agriculture, Food and Wine, University of Adelaide, Glen OsmondSA, Australia
- *Correspondence: Carlos M. Rodríguez López,
| |
Collapse
|