1
|
Tramontina R, Scopel E, Cardoso VGK, Martins M, da Silva MF, Flaibam B, Salvador MJ, Goldbeck R, Damasio A, Squina FM. Hydroxycinnamic Acid Extraction from Multiple Lignocellulosic Sources: Correlations with Substrate Composition and Taxonomy for Flavoring and Antioxidant Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28048-28059. [PMID: 39632368 DOI: 10.1021/acs.jafc.4c08540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The extraction of hydroxycinnamic acids (HCADs) is a strategy for lignocellulosic biomass valorization due to their high value-added nature and the possibility of application as flavoring and antioxidants. This study proposes correlations between the composition and taxonomy of 28 globally available agro-industrial feedstocks with the production of HCADs using chemometric tools. Principal component analysis indicated strong correlations between ferulic acid release and hemicellulose type and content, especially in grass biomasses. Conversely, p-coumaric acid release was mainly correlated with cellulose content across diverse taxonomic origins. Among the evaluated agro-industrial feedstocks, corn-based biomasses were identified as prime sources of ferulic acid after mild alkaline treatment, releasing up to 10.5 g kg-1 and producing hydrolysates with an antioxidant capacity up to 3.3 mmol Trolox equivalents g-1. Notably, sugar cane bagasse was the best source of p-coumaric acid, yielding 4.8 g kg-1. Corn hydrolysates were successfully converted into 4-vinylguaiacol using a genetically modified Saccharomyces cerevisiae strain, achieving high yields of 0.75 g L-1. This work enhances our understanding of HCAD sources and biomass valorization strategies, demonstrating potential applications in the food and cosmetics sectors.
Collapse
Affiliation(s)
- Robson Tramontina
- Laboratório de Ciências Moleculares, Universidade de Sorocaba (UNISO), Sorocaba, São Paulo 18023-000, Brazil
| | - Eupidio Scopel
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo 13083-970, Brazil
| | | | - Manoela Martins
- Escola de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo 13083-862, Brazil
| | - Marcos Fellipe da Silva
- Escola de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo 13083-862, Brazil
| | - Bárbara Flaibam
- Escola de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo 13083-862, Brazil
| | | | - Rosana Goldbeck
- Escola de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo 13083-862, Brazil
| | | | - Fabio Marcio Squina
- Laboratório de Ciências Moleculares, Universidade de Sorocaba (UNISO), Sorocaba, São Paulo 18023-000, Brazil
| |
Collapse
|
2
|
Huang M, Bai J, Buccato DG, Zhang J, He Y, Zhu Y, Yang Z, Xiao X, Daglia M. Cereal-Derived Water-Unextractable Arabinoxylans: Structure Feature, Effects on Baking Products and Human Health. Foods 2024; 13:2369. [PMID: 39123560 PMCID: PMC11311280 DOI: 10.3390/foods13152369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Arabinoxylans (AXs) are non-starch polysaccharides with complex structures naturally occurring in grains (i.e., barley, corn, and others), providing many health benefits, especially as prebiotics. AXs can be classified as water-extractable (WEAX) and water-unextractable (WUAX) based on their solubility, with properties influenced by grain sources and extraction methods. Numerous studies show that AXs exert an important health impact, including glucose and lipid metabolism regulation and immune system enhancement, which is induced by the interactions between AXs and the gut microbiota. Recent research underscores the dependence of AX physiological effects on structure, advocating for a deeper understanding of structure-activity relationships. While systematic studies on WEAX are prevalent, knowledge gaps persist regarding WUAX, despite its higher grain abundance. Thus, this review reports recent data on WUAX structural properties (chemical structure, branching, and MW) in cereals under different treatments. It discusses WUAX applications in baking and the benefits deriving from gut fermentation.
Collapse
Affiliation(s)
- Manchun Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Daniele Giuseppe Buccato
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy;
| | - Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Yufeng He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Zihan Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.H.); (J.B.); (J.Z.); (Y.H.); (Y.Z.); (Z.Y.)
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Vanhevel Y, De Moor A, Muylle H, Vanholme R, Boerjan W. Breeding for improved digestibility and processing of lignocellulosic biomass in Zea mays. FRONTIERS IN PLANT SCIENCE 2024; 15:1419796. [PMID: 39129761 PMCID: PMC11310149 DOI: 10.3389/fpls.2024.1419796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/10/2024] [Indexed: 08/13/2024]
Abstract
Forage maize is a versatile crop extensively utilized for animal nutrition in agriculture and holds promise as a valuable resource for the production of fermentable sugars in the biorefinery sector. Within this context, the carbohydrate fraction of the lignocellulosic biomass undergoes deconstruction during ruminal digestion and the saccharification process. However, the cell wall's natural resistance towards enzymatic degradation poses a significant challenge during both processes. This so-called biomass recalcitrance is primarily attributed to the presence of lignin and ferulates in the cell walls. Consequently, maize varieties with a reduced lignin or ferulate content or an altered lignin composition can have important beneficial effects on cell wall digestibility. Considerable efforts in genetic improvement have been dedicated towards enhancing cell wall digestibility, benefiting agriculture, the biorefinery sector and the environment. In part I of this paper, we review conventional and advanced breeding methods used in the genetic improvement of maize germplasm. In part II, we zoom in on maize mutants with altered lignin for improved digestibility and biomass processing.
Collapse
Affiliation(s)
- Yasmine Vanhevel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Astrid De Moor
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Hilde Muylle
- Plant Sciences Unit, Institute for Agricultural and Fisheries Research, Melle, Belgium
| | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
4
|
Zhang J, Yue Y, Hu M, Yi F, Chen J, Lai J, Xin B. Dynamic transcriptome landscape of maize pericarp development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1574-1591. [PMID: 37970738 DOI: 10.1111/tpj.16548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/09/2023] [Accepted: 11/05/2023] [Indexed: 11/17/2023]
Abstract
As a maternal tissue, the pericarp supports and protects for other components of seed, such as embryo and endosperm. Despite the importance of maize pericarp in seed, the genome-wide transcriptome pattern throughout maize pericarp development has not been well characterized. Here, we developed RNA-seq transcriptome atlas of B73 maize pericarp development based on 21 samples from 5 days before fertilization (DBP5) to 32 days after fertilization (DAP32). A total of 25 346 genes were detected in programming pericarp development, including 1887 transcription factors (TFs). Together with pericarp morphological changes, the global clustering of gene expression revealed four developmental stages: undeveloped, thickening, expansion and strengthening. Coexpression analysis provided further insights on key regulators in functional transition of four developmental stages. Combined with non-seed, embryo, endosperm, and nucellus transcriptome data, we identified 598 pericarp-specific genes, including 75 TFs, which could elucidate key mechanisms and regulatory networks of pericarp development. Cell wall related genes were identified that reflected their crucial role in the maize pericarp structure building. In addition, key maternal proteases or TFs related with programmed cell death (PCD) were proposed, suggesting PCD in the maize pericarp was mediated by vacuolar processing enzymes (VPE), and jasmonic acid (JA) and ethylene-related pathways. The dynamic transcriptome atlas provides a valuable resource for unraveling the genetic control of maize pericarp development.
Collapse
Affiliation(s)
- Jihong Zhang
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Yang Yue
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Mingjian Hu
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Fei Yi
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, P. R. China
| | - Jian Chen
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Beibei Xin
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, P. R. China
| |
Collapse
|
5
|
Song Z, Xiong X, Huang G. Ultrasound-assisted extraction and characteristics of maize polysaccharides from different sites. ULTRASONICS SONOCHEMISTRY 2023; 95:106416. [PMID: 37094477 PMCID: PMC10160789 DOI: 10.1016/j.ultsonch.2023.106416] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Antitumor, antioxidant, hypoglycemic, and immunomodulatory properties are all exhibited by maize polysaccharides. With the increasing sophistication of maize polysaccharide extraction methods, enzymatic method is no longer limited to a single enzyme to extract polysaccharides, and is more often used in combination with ultrasound or microwave, or combination with different enzymes. Ultrasound has a good cell wall-breaking effect, making it easier to dislodge lignin and hemicellulose from the cellulose surface of the maize husk. The "water extraction and alcohol precipitation" method is the simplest but most resource- and time-consuming process. However, the "ultrasound-assisted extraction" and "microwave-assisted extraction" methods not only compensate for the shortcoming, but also increase the extraction rate. Herein, the preparation, structural analysis, and activities of maize polysaccharides were analyzed and discussed.
Collapse
Affiliation(s)
- Zongyan Song
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Xiong Xiong
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
6
|
Metasecretome and biochemical analysis of consortium PM-06 during the degradation of nixtamalized maize pericarp. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
7
|
Granborg JR, Kaasgaard SG, Janfelt C. Variation in oligosaccharide profiles observed with AP-MALDI in different regions of maize kernels after treatment with xylanases. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Xia C, Yang K, Zhu Y, Liu T, Chen J, Deng J, Zhu B, Shi Z, Xiang Z. Distribution of free and bound phenolic compounds, β-glucan, and araboxylan in fractions of milled hulless barley. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Nanomechanical, Structural and Antioxidant Characterization of Nixtamalized Popcorn Pericarp. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Expanded popcorn grain is widely consumed as a healthy snack all around the world; however, the study of the behavior of its components by processes such as nixtamalization is scarce. Therefore, the aim of this work was to characterize the nanomechanical, structural, and antioxidant properties of nixtamalized popcorn grain pericarp. FT-IR results showed that the secondary structure of proteins of the nixtamalized pericarp was α-helix with 42.10%, the turn was 21.5% and 36.33% β-sheet, and proteins of the pericarp did not present the random coil structure. Pericarp showed antioxidant activity, as their values were 550.1 ± 2.9 and 44.2 ± 1.6 (TE)/mL for ABTS and DPPH, respectively; total phenols content was 0.21 ± 0.008 (TE)/mL; reducing power values were around 29 to 31%; hydroxyl radical scavenging ranged from 36 to 55% and iron chelation around 115 to 140% compared to the standard acids. Thickness values of the nixtamalized pericarp by SEM image analysis were 0.15 ± 0.1 mm near the pedicel inferior tip, 0.07 ± 0.01 mm at middle, and 0.03 ± 0.02 mm at upper of the grain. Young’s modulus value was 261.72 ± 23.58 MPa with a Gaussian function fitting at the distribution of all values. This research provides novel and valuable information for understanding the nanomechanical and protein arrangement, as well as and the antioxidant activity of nixtamalized popcorn grain pericarp in order to promote other processes and uses for this kind of pericarp maize.
Collapse
|
10
|
Bichot A, Raouche S, Faulds CB, Mechin V, Bernet N, Delgenès JP, García-Bernet D. Effects of successive microwave and enzymatic treatments on the release of p-hydroxycinnamic acids from two types of grass biomass. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Feijao C, Morreel K, Anders N, Tryfona T, Busse-Wicher M, Kotake T, Boerjan W, Dupree P. Hydroxycinnamic acid-modified xylan side chains and their cross-linking products in rice cell walls are reduced in the Xylosyl arabinosyl substitution of xylan 1 mutant. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1152-1167. [PMID: 34862679 DOI: 10.1111/tpj.15620] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/13/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
The intricate architecture of cell walls and the complex cross-linking of their components hinders some industrial and agricultural applications of plant biomass. Xylan is a key structural element of grass cell walls, closely interacting with other cell wall components such as cellulose and lignin. The main branching points of grass xylan, 3-linked l-arabinosyl substitutions, can be modified by ferulic acid (a hydroxycinnamic acid), which cross-links xylan to other xylan chains and lignin. XAX1 (Xylosyl arabinosyl substitution of xylan 1), a rice (Oryza sativa) member of the glycosyltransferase family GT61, has been described to add xylosyl residues to arabinosyl substitutions modified by ferulic acid. In this study, we characterize hydroxycinnamic acid-decorated arabinosyl substitutions present on rice xylan and their cross-linking, in order to decipher the role of XAX1 in xylan synthesis. Our results show a general reduction of hydroxycinnamic acid-modified 3-linked arabinosyl substitutions in xax1 mutant rice regardless of their modification with a xylosyl residue. Moreover, structures resembling the direct cross-link between xylan and lignin (ferulated arabinosyl substitutions bound to lignin monomers and dimers), together with diferulates known to cross-link xylan, are strongly reduced in xax1. Interestingly, apart from feruloyl and p-coumaroyl modifications on arabinose, putative caffeoyl and oxalyl modifications were characterized, which were also reduced in xax1. Our results suggest an alternative function of XAX1 in the transfer of hydroxycinnamic acid-modified arabinosyl substitutions to xylan, rather than xylosyl transfer to arabinosyl substitutions. Ultimately, XAX1 plays a fundamental role in cross-linking, providing a potential target for the improvement of use of grass biomass.
Collapse
Affiliation(s)
- Carolina Feijao
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Kris Morreel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Nadine Anders
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Theodora Tryfona
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Marta Busse-Wicher
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Toshihisa Kotake
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
- Saitama University, 255 Shimo-Okubo, Saitama, 338-8570, Japan
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| |
Collapse
|
12
|
Damasceno Junior CV, Godoy S, Gonela A, Scapim CA, Grandis A, Dos Santos WD, Mangolin CA, Buckeridge MS, Machado MDFPS. Biochemical composition of the pericarp cell wall of popcorn inbred lines with different popping expansion. Curr Res Food Sci 2022; 5:102-106. [PMID: 35024623 PMCID: PMC8728428 DOI: 10.1016/j.crfs.2021.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 11/03/2022] Open
Abstract
The popping expansion is a characteristic that is positively related with the quality of popcorn. A positive correlation between the volume of expansion and the thickness of the pericarp, and between the proportion of the opaque/shiny endosperm and the grain weight and volume, were postulated. However, there are no reports in the literature that address the importance of cell wall components in the popping expansion. Here, we investigate the biochemical composition of the pericarp cell walls of three inbred lines of popcorn with different popping expansion. Inbred lines GP12 (expansion volume >40 mL g−1), P11 (expansion volume 30 mL g−1) and P16 (expansion volume 14 mL g−1) were used for the analysis and quantification of monosaccharides by HPAEC-PAD, and ferulic and p-coumaric acids and lignin by HPLC. Our hypothesis is that the biochemical composition of the pericarp cell walls may be related to greater or lesser popping expansion. Our data suggest that the lignin content and composition contribute to popping expansion. The highest concentration of lignin (129.74 μg mg−1; 12.97%) was detected in the pericarp cell wall of the GP12 inbred line with extremely high popping expansion, and the lowest concentration (113.52 μg mg−1; 11.35%) was observed in the P16 inbred line with low popping expansion. These findings may contribute to indicating the quantitative trait locus for breeding programs and to developing other methods to improve the popping expansion of popcorn. Biochemical composition of the pericarp cell wall was related to popcorn expansion. •Three lineages of popcorn with different expansion capacities were analyzed. •Monosaccharides, ferulic and p-coumaric acids and lignin were quantified. •Xylose was detected in the highest concentration in the three lineages of popcorn. •The lignin content and composition contributed to popcorn grain expansion capacity.
Collapse
Affiliation(s)
| | - Samantha Godoy
- Post-Graduate Program in Genetics and Breeding, State University of Maringá, 87020-900, Maringá, PR, Brazil
| | - Adriana Gonela
- Department of Agronomy, State University of Maringá, 87020-900, Maringá, PR, Brazil
| | | | - Adriana Grandis
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Wanderley D Dos Santos
- Post-Graduate Program in Agronomy, State University of Maringá, 87020-900, Maringá, PR, Brazil.,Department of Biochemistry, State University of Maringá, Maringá, PR, Brazil
| | | | - Marcos S Buckeridge
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
13
|
He HJ, Qiao J, Liu Y, Guo Q, Ou X, Wang X. Isolation, Structural, Functional, and Bioactive Properties of Cereal Arabinoxylan─A Critical Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15437-15457. [PMID: 34842436 DOI: 10.1021/acs.jafc.1c04506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Arabinoxylans (AXs) are widely distributed in various cereal grains, such as wheat, corn, rye, barley, rice, and oat. The AX molecule contains a linear (1,4)-β-D-xylp backbone substituted by α-L-araf units and occasionally t-xylp and t-glcpA through α-(1,2) and/or α-(1,3) glycosidic linkages. Arabinoxylan shows diversified functional and bioactive properties, influenced by their molecular mass, branching degree, ferulic acid (FA) content, and the substitution position and chain length of the side chains. This Review summarizes the extraction methods for various cereal sources, compares their structural features and functional/bioactive properties, and highlights the established structure-function/bioactivity relationships, intending to explore the potential functions of AXs and their industrial applications.
Collapse
Affiliation(s)
- Hong-Ju He
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jinli Qiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yan Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xingqi Ou
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaochan Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
14
|
Renk JS, Gilbert AM, Hattery TJ, O'Connor CH, Monnahan PJ, Anderson N, Waters AJ, Eickholt DP, Flint-Garcia SA, Yandeau-Nelson MD, Hirsch CN. Genetic control of kernel compositional variation in a maize diversity panel. THE PLANT GENOME 2021; 14:e20115. [PMID: 34197039 DOI: 10.1002/tpg2.20115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
Abstract
Maize (Zea mays L.) is a multi-purpose row crop grown worldwide, which, over time, has often been bred for increased yield at the detriment of lower composition grain quality. Some knowledge of the genetic factors that affect quality traits has been discovered through the study of classical maize mutants; however, much of the underlying genetic control of these traits and the interaction between these traits remains unknown. To better understand variation that exists for grain compositional traits in maize, we evaluated 501 diverse temperate maize inbred lines in five unique environments and predicted 16 compositional traits (e.g., carbohydrates, protein, and starch) based on the output of near-infrared (NIR) spectroscopy. Phenotypic analysis found substantial variation for compositional traits and the majority of variation was explained by genetic and environmental factors. Correlations and trade-offs among traits in different maize types (e.g., dent, sweetcorn, and popcorn) were explored, and significant differences and meaningful correlations were detected. In total, 22.9-71.0% of the phenotypic variation across these traits could be explained using 2,386,666 single nucleotide polymorphism (SNP) markers generated from whole-genome resequencing data. A genome-wide association study (GWAS) was conducted using these same markers and found 72 statistically significant SNPs for 11 compositional traits. This study provides valuable insights in the phenotypic variation and genetic control underlying compositional traits that can be used in breeding programs for improving maize grain quality.
Collapse
Affiliation(s)
- Jonathan S Renk
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Amanda M Gilbert
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Travis J Hattery
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Christine H O'Connor
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - Patrick J Monnahan
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | | | | | | | - Sherry A Flint-Garcia
- United States Department of Agriculture, Agricultural Research Service, Columbia, MO, 65211, USA
| | - Marna D Yandeau-Nelson
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA
| |
Collapse
|
15
|
Piovesan A, Vancauwenberghe V, Van De Looverbosch T, Verboven P, Nicolaï B. X-ray computed tomography for 3D plant imaging. TRENDS IN PLANT SCIENCE 2021; 26:1171-1185. [PMID: 34404587 DOI: 10.1016/j.tplants.2021.07.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/05/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
X-ray computed tomography (CT) is a valuable tool for 3D imaging of plant tissues and organs. Applications include the study of plant development and organ morphogenesis, as well as modeling of transport processes in plants. Some challenges remain, however, including attaining higher contrast for easier quantification, increasing the resolution for imaging subcellular features, and decreasing image acquisition and processing time for high-throughput phenotyping. In addition, phase contrast, multispectral, dark-field, soft X-ray, and time-resolved imaging are emerging. At the same time, a large amount of 3D image data are becoming available, posing challenges for data management. We review recent advances in the area of X-ray CT for plant imaging, and describe opportunities for using such images for studying transport processes in plants.
Collapse
Affiliation(s)
- Agnese Piovesan
- Katholieke Universiteit (KU) Leuven, Division MeBioS (Mechatronics, Biostatistics, and Sensors) - Postharvest Group, Willem de Croylaan 42, BE-3001 Leuven, Belgium
| | - Valérie Vancauwenberghe
- Katholieke Universiteit (KU) Leuven, Division MeBioS (Mechatronics, Biostatistics, and Sensors) - Postharvest Group, Willem de Croylaan 42, BE-3001 Leuven, Belgium
| | - Tim Van De Looverbosch
- Katholieke Universiteit (KU) Leuven, Division MeBioS (Mechatronics, Biostatistics, and Sensors) - Postharvest Group, Willem de Croylaan 42, BE-3001 Leuven, Belgium
| | - Pieter Verboven
- Katholieke Universiteit (KU) Leuven, Division MeBioS (Mechatronics, Biostatistics, and Sensors) - Postharvest Group, Willem de Croylaan 42, BE-3001 Leuven, Belgium.
| | - Bart Nicolaï
- Katholieke Universiteit (KU) Leuven, Division MeBioS (Mechatronics, Biostatistics, and Sensors) - Postharvest Group, Willem de Croylaan 42, BE-3001 Leuven, Belgium; Flanders Centre of Postharvest Technology (VCBT), Willem de Croylaan 42, BE-3001 Leuven, Belgium
| |
Collapse
|
16
|
Miculan M, Nelissen H, Ben Hassen M, Marroni F, Inzé D, Pè ME, Dell’Acqua M. A forward genetics approach integrating genome-wide association study and expression quantitative trait locus mapping to dissect leaf development in maize (Zea mays). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1056-1071. [PMID: 34087008 PMCID: PMC8519057 DOI: 10.1111/tpj.15364] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/31/2021] [Indexed: 05/13/2023]
Abstract
The characterization of the genetic basis of maize (Zea mays) leaf development may support breeding efforts to obtain plants with higher vigor and productivity. In this study, a mapping panel of 197 biparental and multiparental maize recombinant inbred lines (RILs) was analyzed for multiple leaf traits at the seedling stage. RNA sequencing was used to estimate the transcription levels of 29 573 gene models in RILs and to derive 373 769 single nucleotide polymorphisms (SNPs), and a forward genetics approach combining these data was used to pinpoint candidate genes involved in leaf development. First, leaf traits were correlated with gene expression levels to identify transcript-trait correlations. Then, leaf traits were associated with SNPs in a genome-wide association (GWA) study. An expression quantitative trait locus mapping approach was followed to associate SNPs with gene expression levels, prioritizing candidate genes identified based on transcript-trait correlations and GWAs. Finally, a network analysis was conducted to cluster all transcripts in 38 co-expression modules. By integrating forward genetics approaches, we identified 25 candidate genes highly enriched for specific functional categories, providing evidence supporting the role of vacuolar proton pumps, cell wall effectors, and vesicular traffic controllers in leaf growth. These results tackle the complexity of leaf trait determination and may support precision breeding in maize.
Collapse
Affiliation(s)
- Mara Miculan
- Institute of Life SciencesScuola Superiore Sant’AnnaPisa56127Italy
| | - Hilde Nelissen
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems Biology, VIBGhent9052Belgium
| | - Manel Ben Hassen
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems Biology, VIBGhent9052Belgium
| | - Fabio Marroni
- IGA Technology ServicesUdine33100Italy
- Department of Agricultural, FoodAT, Environmental and Animal Sciences (DI4A)University of UdineUdine33100Italy
| | - Dirk Inzé
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems Biology, VIBGhent9052Belgium
| | - Mario Enrico Pè
- Institute of Life SciencesScuola Superiore Sant’AnnaPisa56127Italy
| | | |
Collapse
|
17
|
Saeed F, Hussain M, Arshad MS, Afzaal M, Munir H, Imran M, Tufail T, Anjum FM. Functional and nutraceutical properties of maize bran cell wall non-starch polysaccharides. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2020.1858864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Farhan Saeed
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Afzaal
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Haroon Munir
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- University Institute of Diet & Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Tabussam Tufail
- University Institute of Diet & Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | | |
Collapse
|
18
|
Verhertbruggen Y, Bouder A, Vigouroux J, Alvarado C, Geairon A, Guillon F, Wilkinson MD, Stritt F, Pauly M, Lee MY, Mortimer JC, Scheller HV, Mitchell RAC, Voiniciuc C, Saulnier L, Chateigner-Boutin AL. The TaCslA12 gene expressed in the wheat grain endosperm synthesizes wheat-like mannan when expressed in yeast and Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110693. [PMID: 33288007 DOI: 10.1016/j.plantsci.2020.110693] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 06/12/2023]
Abstract
Mannan is a class of cell wall polysaccharides widespread in the plant kingdom. Mannan structure and properties vary according to species and organ. The cell walls of cereal grains have been extensively studied due to their role in cereal processing and to their beneficial effect on human health as dietary fiber. Recently, we showed that mannan in wheat (Triticum aestivum) grain endosperm has a linear structure of β-1,4-linked mannose residues. The aim of this work was to study the biosynthesis and function of wheat grain mannan. We showed that mannan is deposited in the endosperm early during grain development, and we identified candidate mannan biosynthetic genes expressed in the endosperm. The functional study in wheat was unsuccessful therefore our best candidate genes were expressed in heterologous systems. The endosperm-specificTaCslA12 gene expressed in Pichia pastoris and in an Arabidopsis thaliana mutant depleted in glucomannan led to the production of wheat-like linear mannan lacking glucose residues and with moderate acetylation. Therefore, this gene encodes a mannan synthase and is likely responsible for the synthesis of wheat endosperm mannan.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mark D Wilkinson
- Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JK, UK
| | - Fabian Stritt
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Markus Pauly
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Mi Yeon Lee
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Henrik V Scheller
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | - Cătălin Voiniciuc
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; Independent Junior Research Group-Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | | | | |
Collapse
|
19
|
Mnich E, Bjarnholt N, Eudes A, Harholt J, Holland C, Jørgensen B, Larsen FH, Liu M, Manat R, Meyer AS, Mikkelsen JD, Motawia MS, Muschiol J, Møller BL, Møller SR, Perzon A, Petersen BL, Ravn JL, Ulvskov P. Phenolic cross-links: building and de-constructing the plant cell wall. Nat Prod Rep 2020; 37:919-961. [PMID: 31971193 DOI: 10.1039/c9np00028c] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Covering: Up to 2019Phenolic cross-links and phenolic inter-unit linkages result from the oxidative coupling of two hydroxycinnamates or two molecules of tyrosine. Free dimers of hydroxycinnamates, lignans, play important roles in plant defence. Cross-linking of bound phenolics in the plant cell wall affects cell expansion, wall strength, digestibility, degradability, and pathogen resistance. Cross-links mediated by phenolic substituents are particularly important as they confer strength to the wall via the formation of new covalent bonds, and by excluding water from it. Four biopolymer classes are known to be involved in the formation of phenolic cross-links: lignins, extensins, glucuronoarabinoxylans, and side-chains of rhamnogalacturonan-I. Lignins and extensins are ubiquitous in streptophytes whereas aromatic substituents on xylan and pectic side-chains are commonly assumed to be particular features of Poales sensu lato and core Caryophyllales, respectively. Cross-linking of phenolic moieties proceeds via radical formation, is catalyzed by peroxidases and laccases, and involves monolignols, tyrosine in extensins, and ferulate esters on xylan and pectin. Ferulate substituents, on xylan in particular, are thought to be nucleation points for lignin polymerization and are, therefore, of paramount importance to wall architecture in grasses and for the development of technology for wall disassembly, e.g. for the use of grass biomass for production of 2nd generation biofuels. This review summarizes current knowledge on the intra- and extracellular acylation of polysaccharides, and inter- and intra-molecular cross-linking of different constituents. Enzyme mediated lignan in vitro synthesis for pharmaceutical uses are covered as are industrial exploitation of mutant and transgenic approaches to control cell wall cross-linking.
Collapse
Affiliation(s)
- Ewelina Mnich
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lapierre C, Voxeur A, Boutet S, Ralph J. Arabinose Conjugates Diagnostic of Ferulate-Ferulate and Ferulate-Monolignol Cross-Coupling Are Released by Mild Acidolysis of Grass Cell Walls. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12962-12971. [PMID: 31644281 DOI: 10.1021/acs.jafc.9b05840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Ferulate (FA) units esterified to grass arabinoxylans are involved in cross-linking cell wall polymers. In this work, this contention is strengthened by the identification of FA homo- and heterodimers esterified to methyl arabinofuranoside (MeAra) units after their release from the xylan by mild acidolysis in dioxane/methanol/HCl. Acidolysis of poorly lignified maize bran cell walls provided diferulate (DFA) isomers, including those from 8-5, 8-O-4, and 5-5 interunit bonding, esterified to one or two MeAra units. Acidolysis of lignified grass samples released crossed dimers esterified to one MeAra unit and derived from the β-O-4 coupling of coniferyl alcohol to FA esters. The evaluation of these heterodimeric esters by LC-UV of their aglycones revealed that the parent structures occur in significant amounts in lignified cell walls (0.5-1 mg/g expressed as FA equivalents). The present results position mild acidolysis as an efficient strategy to obtain improved details regarding the FA-mediated cross-linking of grass cell walls.
Collapse
Affiliation(s)
- Catherine Lapierre
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS , Université Paris-Saclay , Versailles 75231 , France
| | - Aline Voxeur
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS , Université Paris-Saclay , Versailles 75231 , France
| | - Stéphanie Boutet
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS , Université Paris-Saclay , Versailles 75231 , France
| | - John Ralph
- Department of Biochemistry, and The Department of Energy's Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute , University of Wisconsin , Madison , Wisconsin 53726 , United States
| |
Collapse
|
21
|
|
22
|
Le TDQ, Alvarado C, Girousse C, Legland D, Chateigner-Boutin AL. Use of X-ray micro computed tomography imaging to analyze the morphology of wheat grain through its development. PLANT METHODS 2019; 15:84. [PMID: 31384289 PMCID: PMC6668075 DOI: 10.1186/s13007-019-0468-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/23/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Wheat is one of the most important staple source in the world for human consumption, animal feed and industrial raw materials. To deal with the global and increasing population demand, enhancing crop yield by increasing the final weight of individual grain is considered as a feasible solution. Morphometric analysis of wheat grain plays an important role in tracking and understanding developmental processes by assessing potential impacts on grains properties, size and shape that are major determinants of final grain weight. X-ray micro computed tomography (μCT) is a very powerful non-invasive imaging tool that is able to acquire 3D images of an individual grain, enabling to assess the morphology of wheat grain and of its different compartments. Our objective is to quantify changes of morphology during growth stages of wheat grain from 3D μCT images. METHODS 3D μCT images of wheat grains were acquired at various development stages ranging from 60 to 310 degree days after anthesis. We developed robust methods for the identification of outer and inner tissues within the grains, and the extraction of morphometric features using 3D μCT images. We also developed a specific workflow for the quantification of the shape of the grain crease. RESULTS The different compartments of the grain could be semi-automatically segmented. Variations of volumes of the compartments adequately describe the different stages of grain developments. The evolution of voids within wheat grain reflects lysis of outer tissues and growth of inner tissues. The crease shape could be quantified for each grain and averaged for each stage of development, helping us understand the genesis of the grain shape. CONCLUSION This work shows that μCT acquisitions and image processing methodologies are powerful tools to extract morphometric parameters of developing wheat grain. The results of quantitative analysis revealed remarkable features of wheat grain growth. Further work will focus on building a computational model of wheat grain growth based on real 3D imaging data.
Collapse
Affiliation(s)
| | | | - Christine Girousse
- UMR GDEC, INRA, Université Clermont-Auvergne, 63000 Clermont-Ferrand, France
| | | | | |
Collapse
|
23
|
Rongkaumpan G, Amsbury S, Andablo-Reyes E, Linford H, Connell S, Knox JP, Sarkar A, Benitez-Alfonso Y, Orfila C. Cell Wall Polymer Composition and Spatial Distribution in Ripe Banana and Mango Fruit: Implications for Cell Adhesion and Texture Perception. FRONTIERS IN PLANT SCIENCE 2019; 10:858. [PMID: 31338100 PMCID: PMC6629905 DOI: 10.3389/fpls.2019.00858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/14/2019] [Indexed: 05/22/2023]
Abstract
Banana (Musa acuminata) and mango (Mangifera indica) are two of the most popular fruits eaten worldwide. They both soften during ripening but their textural attributes are markedly different. This study aimed to elucidate the molecular mechanism underpinning textural differences between banana and mango. We used a novel combination of methods at different scales to analyse the surface properties of fruit cells and the potential contribution of cells and cell wall components to oral processing and texture perception. The results indicated that cell separation occurred easily in both organs under mild mechanical stress. Banana cells showed distinctively elongated shapes with distinct distribution of pectin and hemicellulose epitopes at the cell surface. In contrast, mango had relatively spherical cells that ruptured during cell separation. Atomic force microscopy detected soft surfaces indicative of middle lamella remnants on banana cells, while mango cells had cleaner, smoother surfaces, suggesting absence of middle lamellae and more advanced cell wall disassembly. Comparison of solubilized polymers by cell wall glycome analysis showed abundance of mannan and feruylated xylan in separation exudate from banana but not mango, but comparable levels of pectin and arabinogalactan proteins. Bulk rheology experiments showed that both fruits had similar apparent viscosity and hence might be extrapolated to have similar "oral thickness" perception. On the other hand, oral tribology experiments showed significant differences in their frictional behavior at orally relevant speeds. The instrumental lubrication behavior can be interpreted as "smooth" mouthfeel for mango as compared to "astringent" or "dry" for banana in the later stages of oral processing. The results suggest that cell wall surface properties contribute to lubricating behavior associated with textural perception in the oral phase.
Collapse
Affiliation(s)
- Ganittha Rongkaumpan
- Nutritional Sciences and Epidemiology Group, School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom
| | - Sam Amsbury
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Efren Andablo-Reyes
- Food Colloids and Bioprocessing, School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom
| | - Holly Linford
- School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | - Simon Connell
- School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | - J. Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Anwesha Sarkar
- Food Colloids and Bioprocessing, School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom
| | - Yoselin Benitez-Alfonso
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Caroline Orfila
- Nutritional Sciences and Epidemiology Group, School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
24
|
Delzenne NM, Olivares M, Neyrinck AM, Beaumont M, Kjølbæk L, Larsen TM, Benítez-Páez A, Romaní-Pérez M, Garcia-Campayo V, Bosscher D, Sanz Y, van der Kamp JW. Nutritional interest of dietary fiber and prebiotics in obesity: Lessons from the MyNewGut consortium. Clin Nutr 2019; 39:414-424. [PMID: 30904186 DOI: 10.1016/j.clnu.2019.03.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/24/2019] [Accepted: 03/04/2019] [Indexed: 01/31/2023]
Abstract
The aim of EU project MyNewGut is to contribute to future public health-related recommendations supported by new insight in gut microbiome and nutrition-host relationship. In this Opinion Paper, we first revisit the concept of dietary fiber, taking into account their interaction with the gut microbiota. This paper also summarizes the main effects of dietary fibers with prebiotic properties in intervention studies in humans, with a particular emphasis on the effects of arabinoxylans and arabinoxylo-oligosaccharides on metabolic alterations associated with obesity. Based on the existing state of the art and future development, we elaborate the steps required to propose dietary guidelines related to dietary fibers, taking into account their interaction with the gut microbiota.
Collapse
Affiliation(s)
- Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.
| | - Marta Olivares
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Martin Beaumont
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Louise Kjølbæk
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 30, 1958, Frederiksberg C, Denmark
| | - Thomas Meinert Larsen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 30, 1958, Frederiksberg C, Denmark
| | - Alfonso Benítez-Páez
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Marina Romaní-Pérez
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | | | | | - Yolanda Sanz
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | | |
Collapse
|
25
|
Chateigner-Boutin AL, Lapierre C, Alvarado C, Yoshinaga A, Barron C, Bouchet B, Bakan B, Saulnier L, Devaux MF, Girousse C, Guillon F. Ferulate and lignin cross-links increase in cell walls of wheat grain outer layers during late development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:199-207. [PMID: 30348319 DOI: 10.1016/j.plantsci.2018.08.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
Important biological, nutritional and technological roles are attributed to cell wall polymers from cereal grains. The composition of cell walls in dry wheat grain has been well studied, however less is known about cell wall deposition and modification in the grain outer layers during grain development. In this study, the composition of cell walls in the outer layers of the wheat grain (Triticum aestivum Recital cultivar) was investigated during grain development, with a focus on cell wall phenolics. We discovered that lignification of outer layers begins earlier than previously reported and long before the grain reaches its final size. Cell wall feruloylation increased in development. However, in the late stages, the amount of ferulate releasable by mild alkaline hydrolysis was reduced as well as the yield of lignin-derived thioacidolysis monomers. These reductions indicate that new ferulate-mediated cross-linkages of cell wall polymers appeared as well as new resistant interunit bonds in lignins. The formation of these additional linkages more specifically occurred in the outer pericarp. Our results raised the possibility that stiffening of cell walls occur at late development stages in the outer pericarp and might contribute to the restriction of the grain radial growth.
Collapse
Affiliation(s)
| | - Catherine Lapierre
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France.
| | - Camille Alvarado
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, 44300, Nantes, France.
| | - Arata Yoshinaga
- Laboratory of Tree Cell Biology, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Cécile Barron
- UMR1208 IATE, INRA, CIRAD, Montpellier SupAgro, Univ Montpellier, Montpellier, France.
| | - Brigitte Bouchet
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, 44300, Nantes, France.
| | - Bénédicte Bakan
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, 44300, Nantes, France.
| | - Luc Saulnier
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, 44300, Nantes, France.
| | | | - Christine Girousse
- INRA UMR1095 GDEC (Génétique Diversité Ecophysiologie des Céréales), INRA, 63000, Clermont-Ferrand, France; UBP, UMR 1095 GDEC (Génétique Diversité Ecophysiologie des Céréales), INRA, 63000, Clermont-Ferrand, France.
| | - Fabienne Guillon
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, 44300, Nantes, France.
| |
Collapse
|
26
|
Aguirre M, Kiegle E, Leo G, Ezquer I. Carbohydrate reserves and seed development: an overview. PLANT REPRODUCTION 2018; 31:263-290. [PMID: 29728792 DOI: 10.1007/s00497-018-0336-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Seeds are one of the most important food sources, providing humans and animals with essential nutrients. These nutrients include carbohydrates, lipids, proteins, vitamins and minerals. Carbohydrates are one of the main energy sources for both plant and animal cells and play a fundamental role in seed development, human nutrition and the food industry. Many studies have focused on the molecular pathways that control carbohydrate flow during seed development in monocot and dicot species. For this reason, an overview of seed biodiversity focused on the multiple metabolic and physiological mechanisms that govern seed carbohydrate storage function in the plant kingdom is required. A large number of mutants affecting carbohydrate metabolism, which display defective seed development, are currently available for many plant species. The physiological, biochemical and biomolecular study of such mutants has led researchers to understand better how metabolism of carbohydrates works in plants and the critical role that these carbohydrates, and especially starch, play during seed development. In this review, we summarize and analyze the newest findings related to carbohydrate metabolism's effects on seed development, pointing out key regulatory genes and enzymes that influence seed sugar import and metabolism. Our review also aims to provide guidelines for future research in the field and in this way to assist seed quality optimization by targeted genetic engineering and classical breeding programs.
Collapse
Affiliation(s)
- Manuel Aguirre
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy
- FNWI, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Edward Kiegle
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Giulia Leo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Ignacio Ezquer
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy.
| |
Collapse
|
27
|
Francoz E, Lepiniec L, North HM. Seed coats as an alternative molecular factory: thinking outside the box. PLANT REPRODUCTION 2018; 31:327-342. [PMID: 30056618 DOI: 10.1007/s00497-018-0345-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/13/2018] [Indexed: 05/15/2023]
Abstract
Seed coats as commodities. Seed coats play important roles in the protection of the embryo from biological attack and physical damage by the environment as well as dispersion strategies. A significant part of the energy devoted by the mother plant to seed production is channeled into the production of the cell layers and metabolites that surround the embryo. Nevertheless, in crop species these are often discarded post-harvest and are a wasted resource that could be processed to yield co-products. The production of novel compounds from existing metabolites is also a possibility. A number of macromolecules are already accumulated in these maternal layers that could be exploited in industrial applications either directly or via green chemistry, notably flavonoids, lignin, lignan, polysaccharides, lipid polyesters and waxes. Here, we summarize our knowledge of the in planta biosynthesis pathways of these macromolecules and their molecular regulation as well as potential applications. We also outline recent work aimed at providing further tools for increasing yields of existing molecules or the development of novel biotech approaches, as well as trial studies aimed at exploiting this underused resource.
Collapse
Affiliation(s)
- Edith Francoz
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Helen M North
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France.
| |
Collapse
|
28
|
Identification and characterization of some putative genes involved in arabinoxylan biosynthesis in Plantago ovata. 3 Biotech 2018; 8:266. [PMID: 29868304 DOI: 10.1007/s13205-018-1289-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/14/2018] [Indexed: 01/18/2023] Open
Abstract
Plantago ovata is an important source of Psyllium (Isabgol), which swells upon contact with water forming mucilaginous mass, largely composed of arabinoxylans. In this study, we analyzed the expression pattern of arabinoxylan biosynthetic pathway genes at different stages of seed development in P. ovata. Besides, arabinoxylans were quantified at different stages of seed development in water extractable and water unextractable fractions. The expression analysis revealed 5-8 fold increase in the levels of expression of some genes involved in arabinoxylan biosynthetic pathway such as UDP-arabinopyranose mutase, UDP-xylosyltransferase 2 and xylan glucuronosyltransferase at 15 days after pollination stage in seed. The xylose and arabinose units were analyzed at different stages of seed development and also in water-soluble (cold water and hot water), alkali and ethanolic fractions. The concentration of xylose and arabinose units increased steadily after pollination. Overall, alkali extract had high concentration of xylose (0.70 ± 0.022 mg/g) and arabinose units (0.10 ± 0.01 mg/g) at 15 days after pollination stage.
Collapse
|
29
|
Del Río JC, Rencoret J, Gutiérrez A, Kim H, Ralph J. Structural Characterization of Lignin from Maize ( Zea mays L.) Fibers: Evidence for Diferuloylputrescine Incorporated into the Lignin Polymer in Maize Kernels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4402-4413. [PMID: 29665690 DOI: 10.1021/acs.jafc.8b00880] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The structure of the phenolic polymer in maize grain fibers, with 5.5% Klason lignin content, has been studied. For this, the milled wood lignin (MWL) and dioxane lignin (DL) preparations were isolated and analyzed. The data indicated that the lignin in maize fibers was syringyl rich, mostly involved in β-aryl ether, resinol, and phenylcoumaran substructures. 2D NMR and derivatization followed by reductive cleavage (DFRC) also revealed the occurrence of associated ferulates together with trace amounts of p-coumarates acylating the γ-OH of lignin side chains, predominantly on S-lignin units. More interesting was the occurrence of diferuloylputrescine, a ferulic acid amide, which was identified by 2D NMR and comparison with a synthesized standard, that was apparently incorporated into this lignin. A phenylcoumaran structure involving a diferuloylputrescine coupled through 8-5' linkages to another diferuloylputrescine (or to a ferulate or a guaiacyl lignin unit) was found, providing compelling evidence for its participation in radical coupling reactions. The occurrence of diferuloylputrescine in cell walls of maize kernels and other cereal grains appears to have been missed in previous works, perhaps due to the alkaline hydrolysis commonly used for composition studies.
Collapse
Affiliation(s)
- José C Del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC , Avenida Reina Mercedes, 10 , 41012 Seville , Spain
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC , Avenida Reina Mercedes, 10 , 41012 Seville , Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC , Avenida Reina Mercedes, 10 , 41012 Seville , Spain
| | - Hoon Kim
- Department of Energy Great Lakes Bioenergy Research Center , Wisconsin Energy Institute, University of Wisconsin-Madison , Madison , Wisconsin 53726 , United States
- Department of Biochemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - John Ralph
- Department of Energy Great Lakes Bioenergy Research Center , Wisconsin Energy Institute, University of Wisconsin-Madison , Madison , Wisconsin 53726 , United States
- Department of Biochemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
30
|
Santiago-Ramos D, Figueroa-Cárdenas JDD, Mariscal-Moreno RM, Escalante-Aburto A, Ponce-García N, Véles-Medina JJ. Physical and chemical changes undergone by pericarp and endosperm during corn nixtamalization-A review. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2018.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Bento-Silva A, Vaz Patto MC, do Rosário Bronze M. Relevance, structure and analysis of ferulic acid in maize cell walls. Food Chem 2017; 246:360-378. [PMID: 29291861 DOI: 10.1016/j.foodchem.2017.11.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 10/15/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023]
Abstract
Phenolic compounds in foods have been widely studied due to their health benefits. In cereals, phenolic compounds are extensively linked to cell wall polysaccharides, mainly arabinoxylans, which cross-link with each other and with other cell wall components. In maize, ferulic acid is the phenolic acid present in the highest concentration, forming ferulic acid dehydrodimers, trimers and tetramers. The cross-linking of polysaccharides is important for the cell wall structure and growth, and may protect against pathogen invasion. In addition to the importance for maize physiology, ferulic acid has been recognized as an important chemical structure with a wide range of health benefits when consumed in a diet rich in fibre. This review paper presents the different ways ferulic acid can be present in maize, the importance of ferulic acid derivatives and the methodologies that can be used for their analysis.
Collapse
Affiliation(s)
- Andreia Bento-Silva
- Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal
| | - Maria Carlota Vaz Patto
- Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal
| | - Maria do Rosário Bronze
- Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal; Faculty of Pharmacy, University of Lisbon (FFULisboa), Av. Prof. Gama Pinto, 1649-019, Lisbon, Portugal; Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2780-901, Oeiras, Portugal.
| |
Collapse
|
32
|
Freeman J, Ward JL, Kosik O, Lovegrove A, Wilkinson MD, Shewry PR, Mitchell RA. Feruloylation and structure of arabinoxylan in wheat endosperm cell walls from RNAi lines with suppression of genes responsible for backbone synthesis and decoration. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1429-1438. [PMID: 28316134 PMCID: PMC5633762 DOI: 10.1111/pbi.12727] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 05/07/2023]
Abstract
Arabinoxylan (AX) is the major component of the cell walls of wheat grain (70% in starchy endosperm), is an important determinant of end-use qualities affecting food processing, use for animal feed and distilling and is a major source of dietary fibre in the human diet. AX is a heterogeneous polysaccharide composed of fractions which can be sequentially extracted by water (WE-AX), then xylanase action (XE-AX) leaving an unextractable (XU-AX) fraction. We determined arabinosylation and feruloylation of AX in these fractions in both wild-type wheat and RNAi lines with decreased AX content (TaGT43_2 RNAi, TaGT47_2 RNAi) or decreased arabinose 3-linked to mono-substituted xylose (TaXAT1 RNAi). We show that these fractions are characterized by the degree of feruloylation of AX, <5, 5-7 and 13-19 mg bound ferulate (g-1 AX), and their content of diferulates (diFA), <0.3, 1-1.7 and 4-5 mg (g-1 AX), for the WE, XE and XU fractions, respectively, in all RNAi lines and their control lines. The amount of AX and its degree of arabinosylation and feruloylation were less affected by RNAi transgenes in the XE-AX fraction than in the WE-AX fraction and largely unaffected in the XU-AX fraction. As the majority of diFA is associated with the XU-AX fraction, there was only a small effect (TaGT43_2 RNAi, TaGT47_2 RNAi) or no effect (TaXAT1 RNAi) on total diFA content. Our results are compatible with a model where, to maintain cell wall function, diFA is maintained at stable levels when other AX properties are altered.
Collapse
Affiliation(s)
- Jackie Freeman
- Plant Biology and Crop ScienceRothamsted ResearchHarpendenHertfordshireUK
| | - Jane L. Ward
- Plant Biology and Crop ScienceRothamsted ResearchHarpendenHertfordshireUK
| | - Ondrej Kosik
- Plant Biology and Crop ScienceRothamsted ResearchHarpendenHertfordshireUK
| | - Alison Lovegrove
- Plant Biology and Crop ScienceRothamsted ResearchHarpendenHertfordshireUK
| | - Mark D. Wilkinson
- Plant Biology and Crop ScienceRothamsted ResearchHarpendenHertfordshireUK
| | - Peter R. Shewry
- Plant Biology and Crop ScienceRothamsted ResearchHarpendenHertfordshireUK
| | | |
Collapse
|
33
|
Bruno C, Patin F, Bocca C, Nadal-Desbarats L, Bonnier F, Reynier P, Emond P, Vourc'h P, Joseph-Delafont K, Corcia P, Andres CR, Blasco H. The combination of four analytical methods to explore skeletal muscle metabolomics: Better coverage of metabolic pathways or a marketing argument? J Pharm Biomed Anal 2017; 148:273-279. [PMID: 29059617 DOI: 10.1016/j.jpba.2017.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Metabolomics is an emerging science based on diverse high throughput methods that are rapidly evolving to improve metabolic coverage of biological fluids and tissues. Technical progress has led researchers to combine several analytical methods without reporting the impact on metabolic coverage of such a strategy. The objective of our study was to develop and validate several analytical techniques (mass spectrometry coupled to gas or liquid chromatography and nuclear magnetic resonance) for the metabolomic analysis of small muscle samples and evaluate the impact of combining methods for more exhaustive metabolite covering. DESIGN AND METHODS We evaluated the muscle metabolome from the same pool of mouse muscle samples after 2 metabolite extraction protocols. Four analytical methods were used: targeted flow injection analysis coupled with mass spectrometry (FIA-MS/MS), gas chromatography coupled with mass spectrometry (GC-MS), liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS), and nuclear magnetic resonance (NMR) analysis. We evaluated the global variability of each compound i.e., analytical (from quality controls) and extraction variability (from muscle extracts). We determined the best extraction method and we reported the common and distinct metabolites identified based on the number and identity of the compounds detected with low analytical variability (variation coefficient<30%) for each method. Finally, we assessed the coverage of muscle metabolic pathways obtained. RESULTS Methanol/chloroform/water and water/methanol were the best extraction solvent for muscle metabolome analysis by NMR and MS, respectively. We identified 38 metabolites by nuclear magnetic resonance, 37 by FIA-MS/MS, 18 by GC-MS, and 80 by LC-HRMS. The combination led us to identify a total of 132 metabolites with low variability partitioned into 58 metabolic pathways, such as amino acid, nitrogen, purine, and pyrimidine metabolism, and the citric acid cycle. This combination also showed that the contribution of GC-MS was low when used in combination with other mass spectrometry methods and nuclear magnetic resonance to explore muscle samples. CONCLUSION This study reports the validation of several analytical methods, based on nuclear magnetic resonance and several mass spectrometry methods, to explore the muscle metabolome from a small amount of tissue, comparable to that obtained during a clinical trial. The combination of several techniques may be relevant for the exploration of muscle metabolism, with acceptable analytical variability and overlap between methods However, the difficult and time-consuming data pre-processing, processing, and statistical analysis steps do not justify systematically combining analytical methods.
Collapse
Affiliation(s)
- C Bruno
- CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France; UMR INSERM U930, Université François Rabelais de Tours, France
| | - F Patin
- CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France; UMR INSERM U930, Université François Rabelais de Tours, France
| | - C Bocca
- Institut MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, Angers, France
| | | | - F Bonnier
- Université François-Rabelais de Tours, Faculté de Pharmacie, EA 6295 Nanomédicaments et Nanosondes, Tours, France
| | - P Reynier
- Institut MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, Angers, France
| | - P Emond
- UMR INSERM U930, Université François Rabelais de Tours, France
| | - P Vourc'h
- CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France; UMR INSERM U930, Université François Rabelais de Tours, France
| | - K Joseph-Delafont
- CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France
| | - P Corcia
- UMR INSERM U930, Université François Rabelais de Tours, France; Centre de Ressources et de Compétences SLA, CHU Tours, France; Fédération des Centres de Ressources et de Compétences de Tours et Limoges, Litorals, France
| | - C R Andres
- CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France; UMR INSERM U930, Université François Rabelais de Tours, France
| | - H Blasco
- CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France; UMR INSERM U930, Université François Rabelais de Tours, France.
| |
Collapse
|
34
|
Lin F, Williams BJ, Thangella PAV, Ladak A, Schepmoes AA, Olivos HJ, Zhao K, Callister SJ, Bartley LE. Proteomics Coupled with Metabolite and Cell Wall Profiling Reveal Metabolic Processes of a Developing Rice Stem Internode. FRONTIERS IN PLANT SCIENCE 2017; 8:1134. [PMID: 28751896 PMCID: PMC5507963 DOI: 10.3389/fpls.2017.01134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/13/2017] [Indexed: 05/27/2023]
Abstract
Internodes of grass stems function in mechanical support, transport, and, in some species, are a major sink organ for carbon in the form of cell wall polymers. This study reports cell wall composition, proteomic, and metabolite analyses of the rice elongating internode. Cellulose, lignin, and xylose increase as a percentage of cell wall material along eight segments of the second rice internode (internode II) at booting stage, from the younger to the older internode segments, indicating active cell wall synthesis. Liquid-chromatography tandem mass spectrometry (LC-MS/MS) of trypsin-digested proteins from this internode at booting reveals 2,547 proteins with at least two unique peptides in two biological replicates. The dataset includes many glycosyltransferases, acyltransferases, glycosyl hydrolases, cell wall-localized proteins, and protein kinases that have or may have functions in cell wall biosynthesis or remodeling. Phospho-enrichment of internode II peptides identified 21 unique phosphopeptides belonging to 20 phosphoproteins including a leucine rich repeat-III family receptor like kinase. GO over-representation and KEGG pathway analyses highlight the abundances of proteins involved in biosynthetic processes, especially the synthesis of secondary metabolites such as phenylpropanoids and flavonoids. LC-MS/MS of hot methanol-extracted secondary metabolites from internode II at four stages (booting/elongation, early mature, mature, and post mature) indicates that internode secondary metabolites are distinct from those of roots and leaves, and differ across stem maturation. This work fills a void of in-depth proteomics and metabolomics data for grass stems, specifically for rice, and provides baseline knowledge for more detailed studies of cell wall synthesis and other biological processes characteristic of internode development, toward improving grass agronomic properties.
Collapse
Affiliation(s)
- Fan Lin
- Department of Microbiology and Plant Biology, University of OklahomaNorman, OK, United States
| | | | | | - Adam Ladak
- Waters CorporationBeverly, MA, United States
| | - Athena A. Schepmoes
- Biological Sciences Division, Pacific Northwest National LaboratoryRichland, WA, United States
| | | | - Kangmei Zhao
- Department of Microbiology and Plant Biology, University of OklahomaNorman, OK, United States
| | - Stephen J. Callister
- Biological Sciences Division, Pacific Northwest National LaboratoryRichland, WA, United States
| | - Laura E. Bartley
- Department of Microbiology and Plant Biology, University of OklahomaNorman, OK, United States
| |
Collapse
|
35
|
de Castro M, Martínez-Rubio R, Acebes JL, Encina A, Fry SC, García-Angulo P. Phenolic metabolism and molecular mass distribution of polysaccharides in cellulose-deficient maize cells. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:475-495. [PMID: 28474461 DOI: 10.1111/jipb.12549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
As a consequence of the habituation to low levels of dichlobenil (DCB), cultured maize cells presented an altered hemicellulose cell fate with a lower proportion of strongly wall-bound hemicelluloses and an increase in soluble extracellular polymers released into the culture medium. The aim of this study was to investigate the relative molecular mass distributions of polysaccharides as well as phenolic metabolism in cells habituated to low levels of DCB (1.5 μM). Generally, cell wall bound hemicelluloses and sloughed polymers from habituated cells were more homogeneously sized and had a lower weight-average relative molecular mass. In addition, polysaccharides underwent massive cross-linking after being secreted into the cell wall, but this cross-linking was less pronounced in habituated cells than in non-habituated ones. However, when relativized, ferulic acid and p-coumaric acid contents were higher in this habituated cell line. Feasibly, cells habituated to low levels of DCB synthesized molecules with a lower weight-average relative molecular mass, although cross-linked, as a part of their strategy to compensate for the lack of cellulose.
Collapse
Affiliation(s)
- María de Castro
- Área de Fisiología Vegetal. Dpto. Ingeniería y Ciencias Agrarias. Facultad de Biología y Ciencias Ambientales, Universidad de León, Leon E-24071, Spain
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, Daniel Rutherford Building, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Romina Martínez-Rubio
- Área de Fisiología Vegetal. Dpto. Ingeniería y Ciencias Agrarias. Facultad de Biología y Ciencias Ambientales, Universidad de León, Leon E-24071, Spain
| | - José L Acebes
- Área de Fisiología Vegetal. Dpto. Ingeniería y Ciencias Agrarias. Facultad de Biología y Ciencias Ambientales, Universidad de León, Leon E-24071, Spain
| | - Antonio Encina
- Área de Fisiología Vegetal. Dpto. Ingeniería y Ciencias Agrarias. Facultad de Biología y Ciencias Ambientales, Universidad de León, Leon E-24071, Spain
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, Daniel Rutherford Building, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Penélope García-Angulo
- Área de Fisiología Vegetal. Dpto. Ingeniería y Ciencias Agrarias. Facultad de Biología y Ciencias Ambientales, Universidad de León, Leon E-24071, Spain
| |
Collapse
|