1
|
Varela S, Zheng X, Njuguna J, Sacks E, Allen D, Ruhter J, Leakey ADB. Breaking the barrier of human-annotated training data for machine learning-aided plant research using aerial imagery. PLANT PHYSIOLOGY 2025; 197:kiaf132. [PMID: 40265604 PMCID: PMC12015685 DOI: 10.1093/plphys/kiaf132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 02/27/2025] [Indexed: 04/24/2025]
Abstract
Machine learning (ML) can accelerate biological research. However, the adoption of such tools to facilitate phenotyping based on sensor data has been limited by (i) the need for a large amount of human-annotated training data for each context in which the tool is used and (ii) phenotypes varying across contexts defined in terms of genetics and environment. This is a major bottleneck because acquiring training data is generally costly and time-consuming. This study demonstrates how a ML approach can address these challenges by minimizing the amount of human supervision needed for tool building. A case study was performed to compare ML approaches that examine images collected by an uncrewed aerial vehicle to determine the presence/absence of panicles (i.e. "heading") across thousands of field plots containing genetically diverse breeding populations of 2 Miscanthus species. Automated analysis of aerial imagery enabled the identification of heading approximately 9 times faster than in-field visual inspection by humans. Leveraging an Efficiently Supervised Generative Adversarial Network (ESGAN) learning strategy reduced the requirement for human-annotated data by 1 to 2 orders of magnitude compared to traditional, fully supervised learning approaches. The ESGAN model learned the salient features of the data set by using thousands of unlabeled images to inform the discriminative ability of a classifier so that it required minimal human-labeled training data. This method can accelerate the phenotyping of heading date as a measure of flowering time in Miscanthus across diverse contexts (e.g. in multistate trials) and opens avenues to promote the broad adoption of ML tools.
Collapse
Affiliation(s)
- Sebastian Varela
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
- Independent Researcher, Canelones 15800, Uruguay
| | - Xuying Zheng
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
- Department of Crop Sciences, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
| | - Joyce Njuguna
- Department of Crop Sciences, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
| | - Erik Sacks
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
- Department of Crop Sciences, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
- Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
| | - Dylan Allen
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
- Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
| | - Jeremy Ruhter
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
- Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
| | - Andrew D B Leakey
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
- Department of Crop Sciences, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
- Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
- Department of Plant Biology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
- Center for Digital Agriculture, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Pidlisnyuk V, Mamirova A, Newton RA, Grycová B, Klemencová K, Leštinský P, Ust'ak S, Shapoval P. Miscanthus phytotechnology of Cu- or Zn-spiked soils supported by contaminated Miscanthus biochar-is this a viable option for valorization? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:7737-7759. [PMID: 40045079 DOI: 10.1007/s11356-025-36097-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 02/07/2025] [Indexed: 03/28/2025]
Abstract
Different agricultural practices can be beneficial in Miscanthus × giganteus (M × g) phytotechnology applied to post-military and post-mining lands. However, only limited research has focused on supportive treatments using biochar produced from M × g waste. Indeed, when M × g phytotechnology is applied to contaminated soil, the biochar produced through the pyrolysis of the obtained biomass is contaminated, raising concerns about its further application. The current study tested the use of biochar produced from M × g roots cultivated long-term in slightly contaminated soil in the M × g phytotechnology of Cu- or Zn-spiked soils which is important for finding the solution toward valorization of the contaminated biomass. Two biochar doses (1.67 and 5.00%) were evaluated with varying levels of Cu (200 to 416 mg kg-1) or Zn (202 to 580 mg kg-1) concentrations in the soils. This study revealed a beneficial influence of biochar on M × g development, specifically by increasing the plant height and aboveground biomass by up to 20.4 and 115%, respectively. However, the root dry weight increased by 31.8% only at the highest application rate of biochar. The option for valorization of the contaminated biochar in the next phytoremediation process applied to soil contaminated more than the biochar itself was tested. The finding showed the positive influence of biochar on the M × g phytoremediation metrics such as tolerance index, bioconcentration factor, translocation factor, and comprehensive bioconcentration index which ensured the perspective of the proposed approach in the implementation of post-remediation management practice.
Collapse
Affiliation(s)
- Valentina Pidlisnyuk
- Department of the Environmental Chemistry and Technology, Jan Evangelista Purkyně University, 400 96, Ústí Nad Labem, Czech Republic
| | - Aigerim Mamirova
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, 050040, Almaty, Kazakhstan.
| | - Robert Ato Newton
- Department of the Environmental Chemistry and Technology, Jan Evangelista Purkyně University, 400 96, Ústí Nad Labem, Czech Republic
| | - Barbora Grycová
- Institute of Environmental Technology, VSB - Technical University of Ostrava, 708 00, Ostrava, Czech Republic
| | - Kateřina Klemencová
- Institute of Environmental Technology, VSB - Technical University of Ostrava, 708 00, Ostrava, Czech Republic
| | - Pavel Leštinský
- Institute of Environmental Technology, VSB - Technical University of Ostrava, 708 00, Ostrava, Czech Republic
| | - Sergey Ust'ak
- Czech Agrifood Research Centre, Drnovská 507/73 Praha 6, Prague, Ruzyně, 161 06, Czech Republic
| | - Pavlo Shapoval
- Department of Physical, Analytical and General Chemistry, Lviv Polytechnic National University, Lviv, 79013, Ukraine
| |
Collapse
|
3
|
van der Cruijsen K, Al Hassan M, van Erven G, Kollerie N, van Lent B, Dechesne A, Dolstra O, Paulo MJ, Trindade LM. Salt stress alters the cell wall components and structure in Miscanthus sinensis stems. PHYSIOLOGIA PLANTARUM 2024; 176:e14430. [PMID: 38981734 DOI: 10.1111/ppl.14430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Miscanthus is a perennial grass suitable for the production of lignocellulosic biomass on marginal lands. The effects of salt stress on Miscanthus cell wall composition and its consequences on biomass quality have nonetheless received relatively little attention. In this study, we investigated how exposure to moderate (100 mM NaCl) or severe (200 mM NaCl) saline growing conditions altered the composition of both primary and secondary cell wall components in the stems of 15 Miscanthus sinensis genotypes. The exposure to stress drastically impacted biomass yield and cell wall composition in terms of content and structural features. In general, the observed compositional changes were more pronounced under severe stress conditions and were more apparent in genotypes with a higher sensitivity towards stress. Besides a severely reduced cellulose content, salt stress led to increased pectin content, presumably in the form of highly branched rhamnogalacturonan type I. Although salt stress had a limited effect on the total lignin content, the acid-soluble lignin content was strongly increased in the most sensitive genotypes. This effect was also reflected in substantially altered lignin structures and led to a markedly reduced incorporation of syringyl subunits and p-coumaric acid moieties. Interestingly, plants that were allowed a recovery period after stress ultimately had a reduced lignin content compared to those continuously grown under control conditions. In addition, the salt stress-induced cell wall alterations contributed to an improved enzymatic saccharification efficiency.
Collapse
Affiliation(s)
| | - Mohamad Al Hassan
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Gijs van Erven
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Nicole Kollerie
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Bas van Lent
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Annemarie Dechesne
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Oene Dolstra
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Maria-João Paulo
- Biometris, Wageningen University & Research, Wageningen, The Netherlands
| | - Luisa M Trindade
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
4
|
Mironova GF, Budaeva VV, Skiba EA, Gismatulina YA, Kashcheyeva EI, Sakovich GV. Recent Advances in Miscanthus Macromolecule Conversion: A Brief Overview. Int J Mol Sci 2023; 24:13001. [PMID: 37629183 PMCID: PMC10455303 DOI: 10.3390/ijms241613001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Miscanthus is a valuable renewable feedstock and has a significant potential for the manufacture of diverse biotechnology products based on macromolecules such as cellulose, hemicelluloses and lignin. Herein, we overviewed the state-of-the art of research on the conversion of miscanthus polymers into biotechnology products comprising low-molecular compounds and macromolecules: bioethanol, biogas, bacterial cellulose, enzymes (cellulases, laccases), lactic acid, lipids, fumaric acid and polyhydroxyalkanoates. The present review aims to assess the potential of converting miscanthus polymers in order to develop sustainable technologies.
Collapse
Affiliation(s)
| | - Vera V. Budaeva
- Laboratory of Bioconversion, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (G.F.M.); (E.A.S.); (Y.A.G.); (E.I.K.)
| | | | | | | | | |
Collapse
|
5
|
Shavyrkina NA, Budaeva VV, Skiba EA, Gismatulina YA, Sakovich GV. Review of Current Prospects for Using Miscanthus-Based Polymers. Polymers (Basel) 2023; 15:3097. [PMID: 37514486 PMCID: PMC10383910 DOI: 10.3390/polym15143097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Carbon neutrality is a requisite for industrial development in modern times. In this paper, we review information on possible applications of polymers from the energy crop Miscanthus in the global industries, and we highlight the life cycle aspects of Miscanthus in detail. We discuss the benefits of Miscanthus cultivation on unoccupied marginal lands as well as the rationale for the capabilities of Miscanthus regarding both soil carbon storage and soil remediation. We also discuss key trends in the processing of Miscanthus biopolymers for applications such as a fuel resources, as part of composite materials, and as feedstock for fractionation in order to extract cellulose, lignin, and other valuable chemicals (hydroxymethylfurfural, furfural, phenols) for the subsequent chemical synthesis of a variety of products. The potentialities of the biotechnological transformation of the Miscanthus biomass into carbohydrate nutrient media and then into the final products of microbiological synthesis are also examined herein.
Collapse
Affiliation(s)
- Nadezhda A Shavyrkina
- Laboratory of Bioconversion, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), Biysk 659322, Russia
- Department of Biotechnology, Biysk Technological Institute, Polzunov Altai State Technical University, Biysk 659305, Russia
| | - Vera V Budaeva
- Laboratory of Bioconversion, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), Biysk 659322, Russia
| | - Ekaterina A Skiba
- Laboratory of Bioconversion, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), Biysk 659322, Russia
| | - Yulia A Gismatulina
- Laboratory of Bioconversion, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), Biysk 659322, Russia
| | - Gennady V Sakovich
- Laboratory of Bioconversion, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), Biysk 659322, Russia
| |
Collapse
|
6
|
Iacono R, Slavov GT, Davey CL, Clifton-Brown J, Allison G, Bosch M. Variability of cell wall recalcitrance and composition in genotypes of Miscanthus from different genetic groups and geographical origin. FRONTIERS IN PLANT SCIENCE 2023; 14:1155188. [PMID: 37346113 PMCID: PMC10279889 DOI: 10.3389/fpls.2023.1155188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023]
Abstract
Miscanthus is a promising crop for bioenergy and biorefining in Europe. The improvement of Miscanthus as a crop relies on the creation of new varieties through the hybridization of germplasm collected in the wild with genetic variation and suitable characteristics in terms of resilience, yield and quality of the biomass. Local adaptation has likely shaped genetic variation for these characteristics and is therefore important to quantify. A key biomass quality parameter for biorefining is the ease of conversion of cell wall polysaccharides to monomeric sugars. Thus far, the variability of cell wall related traits in Miscanthus has mostly been explored in accessions from limited genetic backgrounds. Here we analysed the soil and climatic conditions of the original collection sites of 592 Miscanthus genotypes, which form eight distinct genetic groups based on discriminant analysis of principal components of 25,014 single-nucleotide polymorphisms. Our results show that species of the genus Miscanthus grow naturally across a range of soil and climate conditions. Based on a detailed analysis of 49 representative genotypes, we report generally minor differences in cell wall characteristics between different genetic groups and high levels of genetic variation within groups, with less investigated species like M. floridulus showing lower recalcitrance compared to the other genetic groups. The results emphasize that both inter- and intra- specific variation in cell wall characteristics and biomass recalcitrance can be used effectively in Miscanthus breeding programmes, while also reinforcing the importance of considering biomass yield when quantifying overall conversion efficiency. Thus, in addition to reflecting the complexity of the interactions between compositional and structural cell wall features and cell wall recalcitrance to sugar release, our results point to traits that could potentially require attention in breeding programmes targeted at improving the Miscanthus biomass crop.
Collapse
Affiliation(s)
- Rosario Iacono
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, United Kingdom
| | - Gancho T. Slavov
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, United Kingdom
- Radiata Pine Breeding Company, Rotorua, New Zealand
| | - Christopher L. Davey
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, United Kingdom
| | - John Clifton-Brown
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, United Kingdom
- Department of Agronomy and Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Gordon Allison
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, United Kingdom
| | - Maurice Bosch
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, United Kingdom
| |
Collapse
|
7
|
Shepherd A, Awty‐Carroll D, Kam J, Ashman C, Magenau E, Martani E, Kontek M, Ferrarini A, Amaducci S, Davey C, Jurišić V, Petrie G, Al Hassan M, Lamy I, Lewandowski I, de Maupeou E, McCalmont J, Trindade L, van der Cruijsen K, van der Pluijm P, Rowe R, Lovett A, Donnison I, Kiesel A, Clifton‐Brown J, Hastings A. Novel Miscanthus hybrids: Modelling productivity on marginal land in Europe using dynamics of canopy development determined by light interception. GLOBAL CHANGE BIOLOGY. BIOENERGY 2023; 15:444-461. [PMID: 38505760 PMCID: PMC10947340 DOI: 10.1111/gcbb.13029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/21/2022] [Indexed: 03/21/2024]
Abstract
New biomass crop hybrids for bioeconomic expansion require yield projections to determine their potential for strategic land use planning in the face of global challenges. Our biomass growth simulation incorporates radiation interception and conversion efficiency. Models often use leaf area to predict interception which is demanding to determine accurately, so instead we use low-cost rapid light interception measurements using a simple laboratory-made line ceptometer and relate the dynamics of canopy closure to thermal time, and to measurements of biomass. We apply the model to project the European biomass potentials of new market-ready hybrids for 2020-2030. Field measurements are easier to collect, the calibration is seasonally dynamic and reduces influence of weather variation between field sites. The model obtained is conservative, being calibrated by crops of varying establishment and varying maturity on less productive (marginal) land. This results in conservative projections of miscanthus hybrids for 2020-2030 based on 10% land use conversion of the least (productive) grassland and arable for farm diversification, which show a European potential of 80.7-89.7 Mt year-1 biomass, with potential for 1.2-1.3 EJ year-1 energy and 36.3-40.3 Mt year-1 carbon capture, with seeded Miscanthus sacchariflorus × sinensis displaying highest yield potential. Simulated biomass projections must be viewed in light of the field measurements on less productive land with high soil water deficits. We are attempting to model the results from an ambitious and novel project combining new hybrids across Europe with agronomy which has not been perfected on less productive sites. Nevertheless, at the time of energy sourcing issues, seed-propagated miscanthus hybrids for the upscaled provision of bioenergy offer an alternative source of renewable energy. If European countries provide incentives for growers to invest, seeded hybrids can improve product availability and biomass yields over the current commercial miscanthus variety.
Collapse
Affiliation(s)
- Anita Shepherd
- Biological SciencesUniversity of AberdeenAberdeen, ScotlandUK
| | - Danny Awty‐Carroll
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | | | - Chris Ashman
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Elena Magenau
- Department of Biobased Resources in the Bioeconomy, Institute of Crop ScienceUniversity of HohenheimStuttgartGermany
| | - Enrico Martani
- Department of Sustainable Crop ProductionUniversità Cattolica del Sacro CuorePiacenzaItaly
| | - Mislav Kontek
- Department of Ag Technology, Faculty of AgricultureUniversity of ZagrebZagrebCroatia
| | - Andrea Ferrarini
- Department of Sustainable Crop ProductionUniversità Cattolica del Sacro CuorePiacenzaItaly
| | - Stefano Amaducci
- Department of Sustainable Crop ProductionUniversità Cattolica del Sacro CuorePiacenzaItaly
| | - Chris Davey
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Vanja Jurišić
- Department of Ag Technology, Faculty of AgricultureUniversity of ZagrebZagrebCroatia
| | | | - Mohamad Al Hassan
- Plant BreedingWageningen University and ResearchWageningenThe Netherlands
| | - Isabelle Lamy
- French National Institute for Agriculture, Food, and EnvironmentParisFrance
| | - Iris Lewandowski
- Department of Biobased Resources in the Bioeconomy, Institute of Crop ScienceUniversity of HohenheimStuttgartGermany
| | | | - Jon McCalmont
- Biological SciencesUniversity of AberdeenAberdeen, ScotlandUK
| | - Luisa Trindade
- Plant BreedingWageningen University and ResearchWageningenThe Netherlands
| | | | | | - Rebecca Rowe
- NERC Centre for Ecology and Hydrology, Lancaster Environment CentreLancasterUK
| | - Andrew Lovett
- School of Environmental SciencesUniversity of East AngliaNorwichUK
| | - Iain Donnison
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Andreas Kiesel
- Department of Biobased Resources in the Bioeconomy, Institute of Crop ScienceUniversity of HohenheimStuttgartGermany
| | - John Clifton‐Brown
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
- Department of Agronomy and Plant Breeding I, Research Centre for Biosystems, Land‐Use and Nutrition (iFZ)Justus Liebig UniversityGießenGermany
| | - Astley Hastings
- Biological SciencesUniversity of AberdeenAberdeen, ScotlandUK
| |
Collapse
|
8
|
An efficient indirect plant regeneration from shoot apical meristem (SAM) derived embryogenic callus of Miscanthus × giganteus. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Gismatulina YA, Budaeva VV, Kortusov AN, Kashcheyeva EI, Gladysheva EK, Mironova GF, Skiba EA, Shavyrkina NA, Korchagina AA, Zolotukhin VN, Sakovich GV. Evaluation of Chemical Composition of Miscanthus × giganteus Raised in Different Climate Regions in Russia. PLANTS (BASEL, SWITZERLAND) 2022; 11:2791. [PMID: 36297815 PMCID: PMC9610854 DOI: 10.3390/plants11202791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Lignocellulosic biomass is of great interest as an alternative energy resource because it offers a range of merits. Miscanthus × giganteus is a lignocellulosic feedstock of special interest, as it combines a high biomass productivity with a low environmental impact, including CO2 emission control. The chemical composition of lignocellulose determines the application potential for efficient industrial processing. Here, we compiled a sample collection of Miscanthus × giganteus that had been cultivated in different climate regions between 2019 and 2021. The chemical composition was quantified by the conventional wet methods. The findings were compared with each other and with the known data. Starting as soon as the first vegetation year, Miscanthus was shown to feature the following chemical composition: 43.2-55.5% cellulose content, 17.1-25.1% acid-insoluble lignin content, 17.9-22.9% pentosan content, 0.90-2.95% ash content, and 0.3-1.2% extractives. The habitat and the surrounding environment were discovered herein to affect the chemical composition of Miscanthus. The stem part of Miscanthus was found to be richer in cellulose than the leaf (48.4-54.9% vs. 47.2-48.9%, respectively), regardless of the planation age and habitat. The obtained findings broaden the investigative geography of the chemical composition of Miscanthus and corroborate the high value of Miscanthus for industrial conversion thereof into cellulosic products worldwide.
Collapse
|
10
|
Zheng C, Yi Z, Xiao L, Sun G, Li M, Xue S, Peng X, Duan M, Chen Z. The performance of Miscanthus hybrids in saline-alkaline soil. FRONTIERS IN PLANT SCIENCE 2022; 13:921824. [PMID: 36311103 PMCID: PMC9608507 DOI: 10.3389/fpls.2022.921824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Cultivating the dedicated biomass crop Miscanthus on marginal land is a sustainable means of avoiding competition with food crops for arable land. A large proportion of global marginal land is saline-alkaline; however, little is known about the performance of Miscanthus in saline-alkaline soil. In this study, Miscanthus × giganteus and ten other Miscanthus hybrids grown in the Yellow River Delta were exposed to low and saline-alkaline soils during the 2016-2018 growing season to evaluate the agronomic traits, biomass quality and the potential productive index of eleven Miscanthus genotypes. Plant biomass, plant height, and tiller number significantly decreased in high saline-alkaline soil. In particular, the average plant biomass of ten Miscanthus hybrids in low saline-alkaline soil in 2017 and 2018 were 0.21 and 2.25 kg per plant, respectively, and in high saline-alkaline soil were 0.13 and 0.65 kg per plant, respectively. Cell wall, cellulose, and nitrogen content of all genotypes significantly decreased in high saline-alkaline soil, while hemicellulose, ash, sodium, potassium, magnesium, and calcium content significantly increased. However, high saline-alkaline soil had no observable impact on lignin content of Miscanthus biomass. The effect of high saline-alkaline on biomass quality parameters could provide important information for the application of Miscanthus biomass in saline-alkaline soil. The selected genotypes (A5) could be considered as breeding materials in saline-alkaline soil.
Collapse
Affiliation(s)
- Cheng Zheng
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Zili Yi
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Laboratory of Miscanthus Ecological Application Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Liang Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Laboratory of Miscanthus Ecological Application Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Guorong Sun
- Binzhou Polytechnic, Binzhou., Shandong, China
| | - Meng Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Laboratory of Miscanthus Ecological Application Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Shuai Xue
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Laboratory of Miscanthus Ecological Application Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiaoying Peng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Meijuan Duan
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Zhiyong Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Laboratory of Miscanthus Ecological Application Technology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
11
|
Shavyrkina NA, Gismatulina YA, Budaeva VV. Prospects for chemical and biotechnological processing of miscanthus. PROCEEDINGS OF UNIVERSITIES. APPLIED CHEMISTRY AND BIOTECHNOLOGY 2022. [DOI: 10.21285/2227-2925-2022-12-3-383-393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The processing of plant biomass into demanded and economically viable products is currently a recognized global trend. Among alternative energy directions, biomass conversion is the most predictable and sustainable carbon resource that can replace fossil fuels. Already today, plant biomass provides almost 25% of the world’s energy supply. This review provides information on the most promising areas of chemical and biotechnological processing of the biomass of such an energy plant as miscanthus. The choice of miscanthus is due to its high yield (up to 40 t/ha of sown area) and high energy yield (140–560 GJ/ha) compared to other plant materials. In addition, miscanthus is able to grow on marginal lands and does not require special agronomic measures, while in the process of its cultivation, the soil is enriched with organic substances and it is cleaned from pollutants. The review reflects the directions of processing of native biomass and pretreated biomass. Miscanthus biomass, in addition to processing into energy resources, can be fractionated and transformed into many high-value products - cellulose, cellulose nitrates, ethylene, hydroxymethylfurfural, furfural, phenols, ethylene glycol, cooking solutions after nitric acid pretreatment of miscanthus biomass can act as lignohumic fertilizers. In addition, on the basis of miscanthus cellulose hydrolysates, it is possible to obtain benign nutrient media for biotechnological transformation into bacterial nanocellulose, for the accumulation and isolation of various microbial enzymes.
Collapse
Affiliation(s)
- N. A. Shavyrkina
- Institute for Problems of Chemical and Energetic Technologies SB RAS
| | | | - V. V. Budaeva
- Institute for Problems of Chemical and Energetic Technologies SB RAS
| |
Collapse
|
12
|
UAV Remote Sensing for High-Throughput Phenotyping and for Yield Prediction of Miscanthus by Machine Learning Techniques. REMOTE SENSING 2022. [DOI: 10.3390/rs14122927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Miscanthus holds a great potential in the frame of the bioeconomy, and yield prediction can help improve Miscanthus’ logistic supply chain. Breeding programs in several countries are attempting to produce high-yielding Miscanthus hybrids better adapted to different climates and end-uses. Multispectral images acquired from unmanned aerial vehicles (UAVs) in Italy and in the UK in 2021 and 2022 were used to investigate the feasibility of high-throughput phenotyping (HTP) of novel Miscanthus hybrids for yield prediction and crop traits estimation. An intercalibration procedure was performed using simulated data from the PROSAIL model to link vegetation indices (VIs) derived from two different multispectral sensors. The random forest algorithm estimated with good accuracy yield traits (light interception, plant height, green leaf biomass, and standing biomass) using 15 VIs time series, and predicted yield using peak descriptors derived from these VIs time series with root mean square error of 2.3 Mg DM ha−1. The study demonstrates the potential of UAVs’ multispectral images in HTP applications and in yield prediction, providing important information needed to increase sustainable biomass production.
Collapse
|
13
|
Santoro DF, Sicilia A, Testa G, Cosentino SL, Lo Piero AR. Global leaf and root transcriptome in response to cadmium reveals tolerance mechanisms in Arundo donax L. BMC Genomics 2022; 23:427. [PMID: 35672691 PMCID: PMC9175368 DOI: 10.1186/s12864-022-08605-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022] Open
Abstract
The expected increase of sustainable energy demand has shifted the attention towards bioenergy crops. Due to their know tolerance against abiotic stress and relatively low nutritional requirements, they have been proposed as election crops to be cultivated in marginal lands without disturbing the part of lands employed for agricultural purposes. Arundo donax L. is a promising bioenergy crop whose behaviour under water and salt stress has been recently studied at transcriptomic levels. As the anthropogenic activities produced in the last years a worrying increase of cadmium contamination worldwide, the aim of our work was to decipher the global transcriptomic response of A. donax leaf and root in the perspective of its cultivation in contaminated soil. In our study, RNA-seq libraries yielded a total of 416 million clean reads and 10.4 Gb per sample. De novo assembly of clean reads resulted in 378,521 transcripts and 126,668 unigenes with N50 length of 1812 bp and 1555 bp, respectively. Differential gene expression analysis revealed 5,303 deregulated transcripts (3,206 up- and 2,097 down regulated) specifically observed in the Cd-treated roots compared to Cd-treated leaves. Among them, we identified genes related to “Protein biosynthesis”, “Phytohormone action”, “Nutrient uptake”, “Cell wall organisation”, “Polyamine metabolism”, “Reactive oxygen species metabolism” and “Ion membrane transport”. Globally, our results indicate that ethylene biosynthesis and the downstream signal cascade are strongly induced by cadmium stress. In accordance to ethylene role in the interaction with the ROS generation and scavenging machinery, the transcription of several genes (NADPH oxidase 1, superoxide dismutase, ascorbate peroxidase, different glutathione S-transferases and catalase) devoted to cope the oxidative stress is strongly activated. Several small signal peptides belonging to ROTUNDIFOLIA, CLAVATA3, and C-TERMINALLY ENCODED PEPTIDE 1 (CEP) are also among the up-regulated genes in Cd-treated roots functioning as messenger molecules from root to shoot in order to communicate the stressful status to the upper part of the plants. Finally, the main finding of our work is that genes involved in cell wall remodelling and lignification are decisively up-regulated in giant reed roots. This probably represents a mechanism to avoid cadmium uptake which strongly supports the possibility to cultivate giant cane in contaminated soils in the perspective to reserve agricultural soil for food and feed crops.
Collapse
Affiliation(s)
- Danilo Fabrizio Santoro
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 98, 95123, Catania, Italy
| | - Angelo Sicilia
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 98, 95123, Catania, Italy
| | - Giorgio Testa
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 98, 95123, Catania, Italy
| | - Salvatore Luciano Cosentino
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 98, 95123, Catania, Italy
| | - Angela Roberta Lo Piero
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 98, 95123, Catania, Italy.
| |
Collapse
|
14
|
Influence of Miscanthus Rhizome Pyrolysis Operating Conditions on Products Properties. SUSTAINABILITY 2022. [DOI: 10.3390/su14106193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Waste from the Miscanthus production cycle may be a promising source of material for the pyrolysis and biochar production. The biochar can be used to enrich the soil on which the crop grows, thus increasing productivity. A sample of Miscanthus rhizomes was used as a raw material in a series of experiments in order to find the most suitable conditions for the preparation of biochar. Miscanthus biochar was prepared in a laboratory unit using four different temperatures (i.e., 400, 500, 600 and 700 °C). All pyrolysis products were subsequently evaluated in terms of their quality and product yields were determined. For a temperature of 600 °C and a residence time of 2 h, the appropriate properties of biochar were achieved and the process was still economical. The biochar contained a minimal number of polycyclic aromatic hydrocarbons and a high percentage of carbon. Surface area was measured to be 217 m2/g. The aqueous extract of biochar was alkaline.
Collapse
|
15
|
Impact of Plant Growth Regulators to Development of the Second Generation Energy Crop Miscanthus × giganteus Produced Two Years in Marginal Post-Military Soil. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The impact of the plant growth regulators (PGRs) Stimpo, Regoplant, and Charkor on the production of the second-generation energy crop Miscanthus × giganteus on marginal post-military soil was investigated during two vegetation seasons. The land, previously a tank training polygon, has not been in use since 1990 and has become marginal. Biological parameters (stem, shoot, and root lengths) and dry biomass values were evaluated in relation to the applied treatments. The multivariate general linear model (M-GLM) results showed a positive influence of Charkor on M. × giganteus development; the effect was markedly higher in the second year of vegetation. The impact of Stimpo and Regoplant was less noticeable; nevertheless, certain combinations of treatments showed satisfactory results. The M-GLM approach detected the inter-influence of the main factors of the production process, i.e., PGRs, soil, and year of growing. The results showed the predominant influence of year, PGRs and combined factor PGRs × year on the biological parameters; the other studied factors and their combinations were not as effective. Further research should focus on verifying the field-scale results for the M. × giganteus plantation established in a post-military area and compare the lab and field studies.
Collapse
|
16
|
Abstract
The lignocellulosic perennial crop miscanthus, especially Miscanthus × giganteus, is particularly interesting for bioenergy production as it combines high biomass production with low environmental impact. However, there are several varieties that pose a hazard due to susceptibility to disease. This review contains links showing genotype and ecological variability of important characteristics related to yield and biomass composition of miscanthus that may be useful in plant breeding programs to increase bioenergy production. Some clones of Miscanthus × giganteus and Miscanthus sinensis are particularly interesting due to their high biomass production per hectare. Although the compositional requirements for industrial biomass have not been fully defined for the various bioenergy conversion processes, the lignin-rich species Miscanthus × giganteus and Miscanthus sacchariflorus seem to be more suitable for thermochemical conversion processes. At the same time, the species Miscanthus sinensis and some clones of Miscanthus × giganteus with low lignin content are of interest for the biochemical transformation process. The species Miscanthus sacchariflorus is suitable for various bioenergy conversion processes due to its low ash content, so this species is also interesting as a pioneer in breeding programs. Mature miscanthus crops harvested in winter are favored by industrial enterprises to improve efficiency and reduce processing costs. This study can be attributed to other monocotyledonous plants and perennial crops that can be used as feedstock for biofuels.
Collapse
|
17
|
Zheng C, Xiao L, Iqbal Y, Sun G, Feng H, Liu F, Duan M, Yi Z. Miscanthus
interspecific hybrids exceed the biomass yield and quality of their parents in the saline–alkaline Yellow River delta. Food Energy Secur 2021. [DOI: 10.1002/fes3.347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Cheng Zheng
- College of Agronomy Hunan Agricultural University Changsha China
| | - Liang Xiao
- College of Bioscience and Biotechnology Hunan Agricultural University Changsha Hunan China
| | - Yasir Iqbal
- College of Bioscience and Biotechnology Hunan Agricultural University Changsha Hunan China
| | - Guorong Sun
- Binzhou Polytechnic College Binzhou Shandong China
| | - Hui Feng
- Binzhou Polytechnic College Binzhou Shandong China
| | - Fulai Liu
- Faculty of Science Department of Plant and Environmental Sciences University of Copenhagen Tåstrup Denmark
| | - Meijuan Duan
- College of Agronomy Hunan Agricultural University Changsha China
| | - Zili Yi
- College of Bioscience and Biotechnology Hunan Agricultural University Changsha Hunan China
- Hunan Engineering Laboratory of Miscanthus Ecological Application TechnologyHunan Agricultural University Changsha Hunan China
| |
Collapse
|
18
|
Ionic liquid pretreatment of stinging nettle stems and giant miscanthus for bioethanol production. Sci Rep 2021; 11:18465. [PMID: 34531459 PMCID: PMC8445950 DOI: 10.1038/s41598-021-97993-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023] Open
Abstract
Production of ethanol from lignocellulosic biomass is considered the most promising proposition for developing a sustainable and carbon-neutral energy system. The use of renewable raw materials and variability of lignocellulosic feedstock generating hexose and pentose sugars also brings advantages of the most abundant, sustainable and non-food competitive biomass. Great attention is now paid to agricultural wastes and overgrowing plants as an alternative to fast-growing energetic crops. The presented study explores the use of stinging nettle stems, which have not been treated as a source of bioethanol. Apart from being considered a weed, stinging nettle is used in pharmacy or cosmetics, yet its stems are always a non-edible waste. Therefore, the aim was to evaluate the effectiveness of pretreatment using imidazolium- and ammonium-based ionic liquids, enzymatic hydrolysis, fermentation of stinging nettle stems, and comparison of such a process with giant miscanthus. Raw and ionic liquid-pretreated feedstocks of stinging nettle and miscanthus were subjected to compositional analysis and scanning electron microscopy to determine the pretreatment effect. Next, the same conditions of enzymatic hydrolysis and fermentation were applied to both crops to explore the stinging nettle stems potential in the area of bioethanol production. The study showed that the pretreatment of both stinging nettle and miscanthus with imidazolium acetates allowed for increased availability of the critical lignocellulosic fraction. The use of 1-butyl-3-methylimidazolium acetate in the pretreatment of stinging nettle allowed to obtain very high ethanol concentrations of 7.3 g L-1, with 7.0 g L-1 achieved for miscanthus. Results similar for both plants were obtained for 1-ethyl-3-buthylimidazolium acetate. Moreover, in the case of ammonium ionic liquids, even though they have comparable potential to dissolve cellulose, it was impossible to depolymerize lignocellulose and extract lignin. Furthermore, they did not improve the efficiency of the hydrolysis process, which in turn led to low alcohol concentration. Overall, from the presented results, it can be assumed that the stinging nettle stems are a very promising bioenergy crop.
Collapse
|
19
|
da Costa RMF, Winters A, Hauck B, Martín D, Bosch M, Simister R, Gomez LD, Batista de Carvalho LAE, Canhoto JM. Biorefining Potential of Wild-Grown Arundo donax, Cortaderia selloana and Phragmites australis and the Feasibility of White-Rot Fungi-Mediated Pretreatments. FRONTIERS IN PLANT SCIENCE 2021; 12:679966. [PMID: 34276732 PMCID: PMC8283202 DOI: 10.3389/fpls.2021.679966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/10/2021] [Indexed: 05/29/2023]
Abstract
Arundo donax, Cortaderia selloana and Phragmites australis are high-biomass-producing perennial Poalean species that grow abundantly and spontaneously in warm temperate regions, such as in Mediterranean-type climates, like those of Southern Europe, Western United States coastal areas, or in regions of South America, South Africa and Australia. Given their vigorous and spontaneous growth, biomass from the studied grasses often accumulates excessively in unmanaged agro-forestry areas. Nonetheless, this also creates the demand and opportunity for the valorisation of these biomass sources, particularly their cell wall polymers, for biorefining applications. By contrast, a related crop, Miscanthus × giganteus, is a perennial grass that has been extensively studied for lignocellulosic biomass production, as it can grow on low-input agricultural systems in colder climates. In this study Fourier transform mid-infrared spectroscopy (FTIR), high-performance anion-exchange chromatography (HPAEC) and lignin content determinations were used for a comparative compositional characterisation of A. donax, C. selloana and P. australis harvested from the wild, in relation to a trial field-grown M. × giganteus high-yielding genotype. A high-throughput saccharification assay showed relatively high sugar release values from the wild-grown grasses, even with a 0.1M NaOH mild alkali pretreatment. In addition to this alkaline pretreatment, biomass was treated with white-rot fungi (WRF), which preferentially degrade lignin more readily than holocellulose. Three fungal species were used: Ganoderma lucidum, Pleurotus ostreatus and Trametes versicolor. Our results showed that neutral sugar contents are not significantly altered, while some lignin is lost during the pretreatments. Furthermore, sugar release upon enzymatic saccharification was enhanced, and this was dependent on the plant biomass and fungal species used in the treatment. To maximise the potential for lignocellulose valorisation, the liquid fractions from the pretreatments were analysed by high performance liquid chromatography - photodiode array detection - electrospray ionisation tandem mass spectrometry (HPLC-PDA-ESI-MS n ). This study is one of the first to report on the composition of WRF-treated grass biomass, while assessing the potential relevance of breakdown products released during the treatments, beyond more traditional sugar-for-energy applications. Ultimately, we expect that our data will help promote the valorisation of unused biomass resources, create economic value, while contributing to the implementation of sustainable biorefining systems.
Collapse
Affiliation(s)
- Ricardo M. F. da Costa
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Ana Winters
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Barbara Hauck
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Daniel Martín
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Rachael Simister
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| | - Leonardo D. Gomez
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| | | | - Jorge M. Canhoto
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
20
|
Brami C, Pérès G, Menasseri-Aubry S, Byers-Woods JD, Jacquet T, Lowe CN. Effect of Miscanthus × giganteus ash on survival, biomass, reproduction and avoidance behaviour of the endogeic earthworm Aporrectodea caliginosa. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:431-440. [PMID: 33638753 DOI: 10.1007/s10646-021-02369-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
To achieve the EU's targets for reducing energy production from fossil fuels, the use of energy crops, such as Miscanthus × giganteus, is increasing resulting in a corresponding increase in waste ash from incineration. The chemical properties of Miscanthus ash (e.g. phosphorus and potassium content) may allow this waste material (currently landfilled) to be used as a fertiliser, but no information exists on the effect of the ash on the biological properties of soil. The main aim of this study was to determine the potential impact of Miscanthus ash on earthworms by assessing the effect on survival, change in biomass, reproduction and avoidance behaviour of the geophagous, soil dwelling earthworm, Aporrectodea caliginosa. Tests utilised a range of Miscanthus ash doses from 0 to 50 t ha-1 (0, 1, 2.5, 5, 10, 25, 50). Results showed that Miscanthus ash had no significant impact on A. caliginosa survival, biomass and reproduction, but negative trends were observed for biomass from 2.5 t ha-1 and for reproduction from 10 t ha-1. In contrast, a significant avoidance response was observed in the 25 and 50 t ha-1 treatment and according to ISO guideline 17512 there is a negative impact of the Miscanthus ash on soil habitat function at 25 t ha-1 and above as more than 80% of earthworms were in the control soil. It is suggested that this negative effect on soil habitat function could be attributed to a range of factors including the presence of heavy metals in the ash and a change in substrate pH, texture and/or osmotic stress. Further laboratory-based studies conducted over extended time periods with a more refined range of ash doses and associated field-based studies are required to validate the results and determine a more precise assessment of the threshold ash value inducing a loss of soil habitat function.
Collapse
Affiliation(s)
- Claire Brami
- UMR SAS, Institut Agro, INRAE, 35000, Rennes, France.
- University of Central Lancashire, Preston, UK.
- Phytorestore, 53 avenue Philippe Auguste, 75011, Paris, France.
| | - Guénola Pérès
- UMR SAS, Institut Agro, INRAE, 35000, Rennes, France
| | | | | | - Thierry Jacquet
- Phytorestore, 53 avenue Philippe Auguste, 75011, Paris, France
| | | |
Collapse
|
21
|
Pidlisnyuk V, Erickson L, Stefanovska T, Hettiarachchi G, Davis L, Trögl J, Shapoval P. Response to Grygar (2020) comments on "Potential phytomanagement of military polluted sites and biomass production using biofuel crop miscanthus x giganteus"- Pidlisnyuk et al. (2019). Environmental pollution, 261: 113038. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115037. [PMID: 32653105 DOI: 10.1016/j.envpol.2020.115037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Valentina Pidlisnyuk
- Department of the Environmental Chemistry & Technology, Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, Králova Výšina 3132/7, 400 96, Ústi nad Labem, Czech Republic.
| | - Larry Erickson
- Tim Taylor Department of Chemical Engineering, Kansas State University, 1701A Platt Street, KS, 66506, Manhattan, USA.
| | - Tatyana Stefanovska
- Department of Entomology, Faculty of Plant Protection, Biotechnologies and Ecology, National University of Life and the Environmental Sciences, Gerojiv oborony 13, 03041, Kyiv, Ukraine.
| | - Ganga Hettiarachchi
- Department of Agronomy, Throckmorton Hall, 1712, Claflin Road, Manhattan, KS, USA.
| | - Lawrence Davis
- Department of Biochemistry and Molecular Biophysics, 141 Charmers Hall, Manhattan, KS, USA.
| | - Josef Trögl
- Department of the Environmental Chemistry & Technology, Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, Králova Výšina 3132/7, 400 96, Ústi nad Labem, Czech Republic.
| | - Pavlo Shapoval
- Department of Physical, Analytical and General Chemistry, National University "Lvivska Polytechnika", Sv. Yura square 9, 79013, Lviv, Ukraine.
| |
Collapse
|
22
|
Bergs M, Monakhova Y, Diehl BW, Konow C, Völkering G, Pude R, Schulze M. Lignins Isolated via Catalyst-Free Organosolv Pulping from Miscanthus x giganteus, M. sinensis, M. robustus and M. nagara: A Comparative Study. Molecules 2021; 26:842. [PMID: 33562747 PMCID: PMC7915034 DOI: 10.3390/molecules26040842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 01/30/2023] Open
Abstract
As a low-input crop, Miscanthus offers numerous advantages that, in addition to agricultural applications, permits its exploitation for energy, fuel, and material production. Depending on the Miscanthus genotype, season, and harvest time as well as plant component (leaf versus stem), correlations between structure and properties of the corresponding isolated lignins differ. Here, a comparative study is presented between lignins isolated from M. x giganteus, M. sinensis, M. robustus and M. nagara using a catalyst-free organosolv pulping process. The lignins from different plant constituents are also compared regarding their similarities and differences regarding monolignol ratio and important linkages. Results showed that the plant genotype has the weakest influence on monolignol content and interunit linkages. In contrast, structural differences are more significant among lignins of different harvest time and/or season. Analyses were performed using fast and simple methods such as nuclear magnetic resonance (NMR) spectroscopy. Data was assigned to four different linkages (A: β-O-4 linkage, B: phenylcoumaran, C: resinol, D: β-unsaturated ester). In conclusion, A content is particularly high in leaf-derived lignins at just under 70% and significantly lower in stem and mixture lignins at around 60% and almost 65%. The second most common linkage pattern is D in all isolated lignins, the proportion of which is also strongly dependent on the crop portion. Both stem and mixture lignins, have a relatively high share of approximately 20% or more (maximum is M. sinensis Sin2 with over 30%). In the leaf-derived lignins, the proportions are significantly lower on average. Stem samples should be chosen if the highest possible lignin content is desired, specifically from the M. x giganteus genotype, which revealed lignin contents up to 27%. Due to the better frost resistance and higher stem stability, M. nagara offers some advantages compared to M. x giganteus. Miscanthus crops are shown to be very attractive lignocellulose feedstock (LCF) for second generation biorefineries and lignin generation in Europe.
Collapse
Affiliation(s)
- Michel Bergs
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Strasse 20, D-53359 Rheinbach, Germany;
- Spectral Service AG, Emil-Hoffmann-Strasse 33, D-50996 Köln, Germany;
| | - Yulia Monakhova
- Institute of Chemistry, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov, Russia;
- Department of Natural Sciences, University of Applied Sciences Aachen, Chemistry and Biotechnology, Heinrich-Mußmann-Strasse 1, 52428 Jülich, Germany
| | - Bernd W. Diehl
- Spectral Service AG, Emil-Hoffmann-Strasse 33, D-50996 Köln, Germany;
| | - Christopher Konow
- Department of Chemistry, MS 015, Brandeis University, 415 South Street, Waltham, MA 02453, USA;
| | - Georg Völkering
- Institute of Crop Science and Resource Conservation (INRES), Faculty of Agriculture, University of Bonn, Klein-Altendorf 2, D-53359 Rheinbach, Germany; (G.V.); (R.P.)
| | - Ralf Pude
- Institute of Crop Science and Resource Conservation (INRES), Faculty of Agriculture, University of Bonn, Klein-Altendorf 2, D-53359 Rheinbach, Germany; (G.V.); (R.P.)
- Field Lab Campus Klein-Altendorf, Faculty of Agriculture, University of Bonn, Campus Klein-Altendorf 1, D-53359 Rheinbach, Germany
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Strasse 20, D-53359 Rheinbach, Germany;
| |
Collapse
|
23
|
Breeding Targets to Improve Biomass Quality in Miscanthus. Molecules 2021; 26:molecules26020254. [PMID: 33419100 PMCID: PMC7825460 DOI: 10.3390/molecules26020254] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 01/02/2023] Open
Abstract
Lignocellulosic crops are attractive bioresources for energy and chemicals production within a sustainable, carbon circular society. Miscanthus is one of the perennial grasses that exhibits great potential as a dedicated feedstock for conversion to biobased products in integrated biorefineries. The current biorefinery strategies are primarily focused on polysaccharide valorization and require severe pretreatments to overcome the lignin barrier. The need for such pretreatments represents an economic burden and impacts the overall sustainability of the biorefinery. Hence, increasing its efficiency has been a topic of great interest. Inversely, though pretreatment will remain an essential step, there is room to reduce its severity by optimizing the biomass composition rendering it more exploitable. Extensive studies have examined the miscanthus cell wall structures in great detail, and pinpointed those components that affect biomass digestibility under various pretreatments. Although lignin content has been identified as the most important factor limiting cell wall deconstruction, the effect of polysaccharides and interaction between the different constituents play an important role as well. The natural variation that is available within different miscanthus species and increased understanding of biosynthetic cell wall pathways have specified the potential to create novel accessions with improved digestibility through breeding or genetic modification. This review discusses the contribution of the main cell wall components on biomass degradation in relation to hydrothermal, dilute acid and alkaline pretreatments. Furthermore, traits worth advancing through breeding will be discussed in light of past, present and future breeding efforts.
Collapse
|
24
|
Jensen E, Shafiei R, Ma X, Serba DD, Smith DP, Slavov GT, Robson P, Farrar K, Thomas Jones S, Swaller T, Flavell R, Clifton‐Brown J, Saha MC, Donnison I. Linkage mapping evidence for a syntenic QTL associated with flowering time in perennial C 4 rhizomatous grasses Miscanthus and switchgrass. GLOBAL CHANGE BIOLOGY. BIOENERGY 2021; 13:98-111. [PMID: 33381230 PMCID: PMC7756372 DOI: 10.1111/gcbb.12755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/10/2020] [Indexed: 06/12/2023]
Abstract
Flowering in perennial species is directed via complex signalling pathways that adjust to developmental regulations and environmental cues. Synchronized flowering in certain environments is a prerequisite to commercial seed production, and so the elucidation of the genetic architecture of flowering time in Miscanthus and switchgrass could aid breeding in these underdeveloped species. In this context, we assessed a mapping population in Miscanthus and two ecologically diverse switchgrass mapping populations over 3 years from planting. Multiple flowering time quantitative trait loci (QTL) were identified in both species. Remarkably, the most significant Miscanthus and switchgrass QTL proved to be syntenic, located on linkage groups 4 and 2, with logarithm of odds scores of 17.05 and 21.8 respectively. These QTL regions contained three flowering time transcription factors: Squamosa Promoter-binding protein-Like, MADS-box SEPELLATA2 and gibberellin-responsive bHLH137. The former is emerging as a key component of the age-related flowering time pathway.
Collapse
Affiliation(s)
- Elaine Jensen
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Reza Shafiei
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
- University of Dundee at JHIDundeeUK
| | - Xue‐Feng Ma
- Ceres, Inc.Thousand OaksCAUSA
- Noble Research Institute, LLC.ArdmoreOKUSA
| | - Desalegn D. Serba
- Noble Research Institute, LLC.ArdmoreOKUSA
- Agricultural Research Center‐HaysKansas State UniversityHaysKSUSA
| | - Daniel P. Smith
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
- ScionRotoruaNew Zealand
| | - Gancho T. Slavov
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
- ScionRotoruaNew Zealand
| | - Paul Robson
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Kerrie Farrar
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Sian Thomas Jones
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | - Timothy Swaller
- Ceres, Inc.Thousand OaksCAUSA
- Genomics Institute of the Novartis Research FoundationSan DiegoCAUSA
| | - Richard Flavell
- Ceres, Inc.Thousand OaksCAUSA
- International Wheat Yield PartnershipTexas A&M UniversityCollege StationTXUSA
| | - John Clifton‐Brown
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| | | | - Iain Donnison
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
| |
Collapse
|
25
|
Ultrasound-assisted alkali-urea pre-treatment of Miscanthus × giganteus for enhanced extraction of cellulose fiber. Carbohydr Polym 2020; 247:116758. [DOI: 10.1016/j.carbpol.2020.116758] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/11/2020] [Accepted: 06/24/2020] [Indexed: 01/24/2023]
|
26
|
Potential Bioenergy Production from Miscanthus × giganteus in Brandenburg: Producing Bioenergy and Fostering Other Ecosystem Services while Ensuring Food Self-Sufficiency in the Berlin-Brandenburg Region. SUSTAINABILITY 2020. [DOI: 10.3390/su12187731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Miscanthus × giganteus (hereafter Miscanthus) is a perennial crop characterized by its high biomass production, low nutrient requirements, its ability for soil restoration, and its cultivation potential on marginal land. The development of the bioenergy sector in the state of Brandenburg (Germany), with maize as the dominant crop, has recently drawn attention to its negative environmental impacts, competition with food production, and uncertainties regarding its further development toward the state’s bioenergy targets. This study aimed to estimate the potential bioenergy production in Brandenburg by cultivating Miscanthus only on marginal land, thereby avoiding competition with food production in the Berlin-Brandenburg city-region (i.e., foodshed), after using the Metropolitan Foodshed and Self-sufficiency Scenario (MFSS) model. We estimated that by 2030, the Berlin-Brandenburg foodshed would require around 1.13 million hectares to achieve 100% food self-sufficiency under the business as usual (BAU) scenario, and hence there would be around 390,000 ha land left for bioenergy production. Our results suggest that the region would require about 569,000 ha of land of maize to generate 58 PJ—the bioenergy target of the state of Brandenburg for 2030—which is almost 179,000 ha more than the available area for bioenergy production. However, under Miscanthus plantation, the required area would be reduced by 2.5 times to 232,000 ha. Therefore, Miscanthus could enable Brandenburg to meet its bioenergy target by 2030, while at the same time avoiding the trade-offs with food production, and also providing a potential for soil organic carbon (SOC) sequestration of around 255,200 t C yr-1, leading to an improvement in the soil fertility and other ecosystem services (e.g., biodiversity), compared with bioenergy generated from maize.
Collapse
|
27
|
Bergs M, Do XT, Rumpf J, Kusch P, Monakhova Y, Konow C, Völkering G, Pude R, Schulze M. Comparing chemical composition and lignin structure of Miscanthus x giganteus and Miscanthus nagara harvested in autumn and spring and separated into stems and leaves. RSC Adv 2020; 10:10740-10751. [PMID: 35492943 PMCID: PMC9050404 DOI: 10.1039/c9ra10576j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/09/2020] [Indexed: 02/05/2023] Open
Abstract
Miscanthus crops possess very attractive properties such as high photosynthesis yield and carbon fixation rate. Because of these properties, it is currently considered for use in second-generation biorefineries. Here we analyze the differences in chemical composition between M. x giganteus, a commonly studied Miscanthus genotype, and M. nagara, which is relatively understudied but has useful properties such as increased frost resistance and higher stem stability. Samples of M. x giganteus (Gig35) and M. nagara (NagG10) have been separated by plant portion (leaves and stems) in order to isolate the corresponding lignins. The organosolv process was used for biomass pulping (80% ethanol solution, 170 °C, 15 bar). Biomass composition and lignin structure analysis were performed using composition analysis, Fourier-transform infrared (FTIR), ultraviolet-visible (UV-Vis) and nuclear magnetic resonance (NMR) spectroscopy, thermogravimetric analysis (TGA), size exclusion chromatography (SEC) and pyrolysis gas-chromatography/mass spectrometry (Py-GC/MS) to determine the 3D structure of the isolated lignins, monolignol ratio and most abundant linkages depending on genotype and harvesting season. SEC data showed significant differences in the molecular weight and polydispersity indices for stem versus leaf-derived lignins. Py-GC/MS and hetero-nuclear single quantum correlation (HSQC) NMR revealed different monolignol compositions for the two genotypes (Gig35, NagG10). The monolignol ratio is slightly influenced by the time of harvest: stem-derived lignins of M. nagara showed increasing H and decreasing G unit content over the studied harvesting period (December-April).
Collapse
Affiliation(s)
- Michel Bergs
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences von-Liebig-Straße 20 D-53359 Rheinbach Germany
- Spectral Service AG Emil-Hoffmann-Strasse 33 D-50996 Köln Germany
| | - Xuan Tung Do
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences von-Liebig-Straße 20 D-53359 Rheinbach Germany
| | - Jessica Rumpf
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences von-Liebig-Straße 20 D-53359 Rheinbach Germany
| | - Peter Kusch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences von-Liebig-Straße 20 D-53359 Rheinbach Germany
| | - Yulia Monakhova
- Spectral Service AG Emil-Hoffmann-Strasse 33 D-50996 Köln Germany
- Institute of Chemistry, Saratov State University Astrakhanskaya Street 83 410012 Saratov Russia
| | - Christopher Konow
- Department of Chemistry, Brandeis University MS 015, 415 South Street Waltham Massachusetts USA
| | - Georg Völkering
- Institute of Crop Science and Resource Conservation, Faculty of Agriculture, University of Bonn Klein-Altendorf 2 D-53359 Rheinbach Germany
| | - Ralf Pude
- Institute of Crop Science and Resource Conservation, Faculty of Agriculture, University of Bonn Klein-Altendorf 2 D-53359 Rheinbach Germany
- Field Lab Campus Klein-Altendorf, Faculty of Agriculture, University of Bonn Campus Klein-Altendorf 1 D-53359 Rheinbach Germany
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences von-Liebig-Straße 20 D-53359 Rheinbach Germany
| |
Collapse
|
28
|
Increase of Miscanthus Cultivation with New Roles in Materials Production—A Review. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10020308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent changes in the EU green aims can help to overcome economic obstacles in the slow upscaling of Miscanthus cultivation. Using Miscanthus can permanently fix CO
2
within building materials thereby aiding the EU climate goals with the increased use of regrowing materials, as well as carbon fixation. Economic obstacles in the slow upscaling of Miscanthus cultivation are targeted by recent changes in the greening aims in the EU. Miscanthus can fulfill a valuable dual function in aiding the EU climate goals by achieving permanent CO
2
fixation within building materials. In contrast to energetic use, persistent applications create stable markets allowing for a reduced risk in the establishment of long term cultured perennial crops. However, the development of different building materials requires an understanding of the combination of the biological and technical aspects. This work presents an overview of the development of the general aspects for the agricultural product Miscanthus and the scientifically reported developments of Miscanthus used as feedstock in polymers, particle boards, and cementitious materials. While the product performance can be evaluated, the understanding of the influence by the input biomass as a main contributor to the product performance needs to be reinforced to be successful with a goal-oriented development of Miscanthus based products. The key feedstock parameters governing the technical performance of the materials are identified and the knowledge gaps are described.
Collapse
|
29
|
Malinská H, Pidlisnyuk V, Nebeská D, Erol A, Medžová A, Trögl J. Physiological Response of Miscanthus x giganteus to Plant Growth Regulators in Nutritionally Poor Soil. PLANTS 2020; 9:plants9020194. [PMID: 32033420 PMCID: PMC7076640 DOI: 10.3390/plants9020194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 01/20/2023]
Abstract
Miscanthus x giganteus (Mxg) is a promising second-generation biofuel crop with high production of energetic biomass. Our aim was to determine the level of plant stress of Mxg grown in poor quality soils using non-invasive physiological parameters and to test whether the stress could be reduced by application of plant growth regulators (PGRs). Plant fitness was quantified by measuring of leaf fluorescence using 24 indexes to select the most suitable fluorescence indicators for quantification of this type of abiotic stress. Simultaneously, visible stress signs were observed on stems and leaves and differences in variants were revealed also by microscopy of leaf sections. Leaf fluorescence analysis, visual observation and changes of leaf anatomy revealed significant stress in all studied subjects compared to those cultivated in good quality soil. Besides commonly used Fv/Fm (potential photosynthetic efficiency) and P.I. (performance index), which showed very low sensitivity, we suggest other fluorescence parameters (like dissipation, DIo/RC) for revealing finer differences. We can conclude that measurement of leaf fluorescence is a suitable method for revealing stress affecting Mxg in poor soils. However, none of investigated parameters proved significant positive effect of PGRs on stress reduction. Therefore, direct improvement of soil quality by fertilization should be considered for stress reduction and improving the biomass quality in this type of soils.
Collapse
Affiliation(s)
- Hana Malinská
- Department of Biology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem 400 96, Czech Republic; (A.M.); (A.E.)
- Correspondence:
| | - Valentina Pidlisnyuk
- Department of Environmental Chemistry and Technology, Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, 400 96, Czech Republic; (V.P.); (D.N.); (J.T.)
| | - Diana Nebeská
- Department of Environmental Chemistry and Technology, Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, 400 96, Czech Republic; (V.P.); (D.N.); (J.T.)
| | - Anna Erol
- Department of Biology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem 400 96, Czech Republic; (A.M.); (A.E.)
- Clinical Research Centre, Medical University of Białystok, Białystok, 15-089, Poland
| | - Andrea Medžová
- Department of Biology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem 400 96, Czech Republic; (A.M.); (A.E.)
| | - Josef Trögl
- Department of Environmental Chemistry and Technology, Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, 400 96, Czech Republic; (V.P.); (D.N.); (J.T.)
| |
Collapse
|
30
|
Bhatia R, Winters A, Bryant DN, Bosch M, Clifton-Brown J, Leak D, Gallagher J. Pilot-scale production of xylo-oligosaccharides and fermentable sugars from Miscanthus using steam explosion pretreatment. BIORESOURCE TECHNOLOGY 2020; 296:122285. [PMID: 31715557 PMCID: PMC6920740 DOI: 10.1016/j.biortech.2019.122285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 05/12/2023]
Abstract
This study investigated pilot-scale production of xylo-oligosaccharides (XOS) and fermentable sugars from Miscanthus using steam explosion (SE) pretreatment. SE conditions (200 °C; 15 bar; 10 min) led to XOS yields up to 52 % (w/w of initial xylan) in the hydrolysate. Liquid chromatography-mass spectrometry demonstrated that the solubilised XOS contained bound acetyl- and hydroxycinnamate residues, physicochemical properties known for high prebiotic effects and anti-oxidant activity in nutraceutical foods. Enzymatic hydrolysis of XOS-rich hydrolysate with commercial endo-xylanases resulted in xylobiose yields of 380 to 500 g/kg of initial xylan in the biomass after only 4 h, equivalent to ~74 to 90 % conversion of XOS into xylobiose. Fermentable glucose yields from enzymatic hydrolysis of solid residues were 8 to 9-fold higher than for untreated material. In view of an integrated biorefinery, we demonstrate the potential for efficient utilisation of Miscanthus for the production of renewable sources, including biochemicals and biofuels.
Collapse
Affiliation(s)
- Rakesh Bhatia
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK.
| | - Ana Winters
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK
| | - David N Bryant
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK
| | - John Clifton-Brown
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK
| | - David Leak
- Department of Biology & Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Joe Gallagher
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK
| |
Collapse
|
31
|
Methane Yield Potential of Miscanthus (Miscanthus × giganteus (Greef et Deuter)) Established under Maize (Zea mays L.). ENERGIES 2019. [DOI: 10.3390/en12244680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study reports on the effects of two rhizome-based establishment procedures ‘miscanthus under maize’ (MUM) and ‘reference’ (REF) on the methane yield per hectare (MYH) of miscanthus in a field trial in southwest Germany. The dry matter yield (DMY) of aboveground biomass was determined each year in autumn over four years (2016–2019). A biogas batch experiment and a fiber analysis were conducted using plant samples from 2016–2018. Overall, MUM outperformed REF due to a high MYH of maize in 2016 (7211 m3N CH4 ha−1). The MYH of miscanthus in MUM was significantly lower compared to REF in 2016 and 2017 due to a lower DMY. Earlier maturation of miscanthus in MUM caused higher ash and lignin contents compared with REF. However, the mean substrate-specific methane yield of miscanthus was similar across the treatments (281.2 and 276.2 lN kg−1 volatile solid−1). Non-significant differences in MYH 2018 (1624 and 1957 m3N CH4 ha−1) and in DMY 2019 (15.6 and 21.7 Mg ha−1) between MUM and REF indicate, that MUM recovered from biotic and abiotic stress during 2016. Consequently, MUM could be a promising approach to close the methane yield gap of miscanthus cultivation in the first year of establishment.
Collapse
|
32
|
Maleski JJ, Bosch DD, Anderson RG, Coffin AW, Anderson WF, Strickland TC. Evaluation of miscanthus productivity and water use efficiency in southeastern United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:1125-1134. [PMID: 31539944 DOI: 10.1016/j.scitotenv.2019.07.128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/12/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Second generation biofuels, such as perennial grasses, have potential to provide biofuel feedstock while growing on degraded land with minimal inputs. Perennial grasses have been reported to sequester large amounts of soil organic carbon (SOC) in the Midwestern United States (USA). However, there has been little work on biofuel and carbon sequestration potential of perennial grasses in the Southeastern US. Biofuel productivity for dryland Miscanthus × gigantus and irrigated maize in Georgia, USA were quantified using eddy covariance observations of evapotranspiration (ET) and net ecosystem exchange (NEE) of carbon. Miscanthus biomass yield was 15.54 Mg ha-1 in 2015 and 11.80 Mg ha-1 in 2016, while maize produced 30.20 Mg ha-1 of biomass in 2016. Carbon budgets indicated that both miscanthus and maize fields lost carbon over the experiment. The miscanthus field lost 5 Mg C ha-1 in both 2015 and 2016 while the maize field lost 1.37 Mg C ha-1 for the single year of study. Eddy covariance measurement indicated that for 2016 the miscanthus crop evapotranspired 598 mm and harvest water use efficiencies ranged from 6.95 to 13.84 kg C ha-1 mm-1. Maize evapotranspired 659 mm with a harvest water use efficiency of 19.12 kg C ha-1 mm-1. While biomass yields and gross primary production were relatively high, high ecosystem respiration rates resulted in a loss of ecosystem carbon. Relatively low biomass production, low water use efficiency and high respiration for Miscanthus × gigantus in this experiment suggest that this strain of miscanthus may not be well-suited for dryland production under the environmental conditions found in South Georgia USA.
Collapse
Affiliation(s)
- Jerome J Maleski
- USDA-ARS, Southeast Watershed Research Laboratory, 2316 Rainwater Road, Tifton, GA 31793, USA.
| | - David D Bosch
- USDA-ARS, Southeast Watershed Research Laboratory, 2316 Rainwater Road, Tifton, GA 31793, USA.
| | - Ray G Anderson
- USDA-ARS, US Salinity Laboratory, Agricultural Water Use Efficiency and Salinity Unit, 450 W. Big Springs Road, Riverside, CA 92507-4617, USA.
| | - Alisa W Coffin
- USDA-ARS, Southeast Watershed Research Laboratory, 2316 Rainwater Road, Tifton, GA 31793, USA.
| | - William F Anderson
- USDA-ARS, Crop Genetics and Breeding Research Unit, 115 Coastal Way, Tifton, GA 31793, USA.
| | - Timothy C Strickland
- USDA-ARS, Southeast Watershed Research Laboratory, 2316 Rainwater Road, Tifton, GA 31793, USA.
| |
Collapse
|
33
|
Holder AJ, Rowe R, McNamara NP, Donnison IS, McCalmont JP. Soil & Water Assessment Tool (SWAT) simulated hydrological impacts of land use change from temperate grassland to energy crops: A case study in western UK. GLOBAL CHANGE BIOLOGY. BIOENERGY 2019; 11:1298-1317. [PMID: 31762786 PMCID: PMC6853257 DOI: 10.1111/gcbb.12628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/09/2019] [Indexed: 06/10/2023]
Abstract
When considering the large-scale deployment of bioenergy crops, it is important to understand the implication for ecosystem hydrological processes and the influences of crop type and location. Based on the potential for future land use change (LUC), the 10,280 km2 West Wales Water Framework Directive River Basin District (UK) was selected as a typical grassland dominated district, and the Soil & Water Assessment Tool (SWAT) hydrology model with a geographic information systems interface was used to investigate implications for different bioenergy deployment scenarios. The study area was delineated into 855 sub-basins and 7,108 hydrological response units based on rivers, soil type, land use, and slope. Changes in hydrological components for two bioenergy crops (Miscanthus and short rotation coppice, SRC) planted on 50% (2,192 km2) or 25% (1,096 km2) of existing improved pasture are quantified. Across the study area as a whole, only surface run-off with SRC planted at the 50% level was significantly impacted, where it was reduced by up to 23% (during April). However, results varied spatially and a comparison of annual means for each sub-basin and scenario revealed surface run-off was significantly decreased and baseflow significantly increased (by a maximum of 40%) with both Miscanthus and SRC. Evapotranspiration was significantly increased with SRC (at both planting levels) and water yield was significantly reduced with SRC (at the 50% level) by up to 5%. Effects on streamflow were limited, varying between -5% and +5% change (compared to baseline) in the majority of sub-basins. The results suggest that for mesic temperate grasslands, adverse effects from the drying of soil and alterations to streamflow may not arise, and with surface run-off reduced and baseflow increased, there could, depending on crop location, be potential benefits for flood and erosion mitigation.
Collapse
Affiliation(s)
- Amanda J. Holder
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| | - Rebecca Rowe
- Centre for Ecology & HydrologyLancaster Environment CentreLancasterUK
| | - Niall P. McNamara
- Centre for Ecology & HydrologyLancaster Environment CentreLancasterUK
| | - Iain S. Donnison
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| | - Jon P. McCalmont
- College of Life and Environmental SciencesUniversity of ExeterExeterUK
| |
Collapse
|
34
|
da Costa RMF, Simister R, Roberts LA, Timms-Taravella E, Cambler AB, Corke FMK, Han J, Ward RJ, Buckeridge MS, Gomez LD, Bosch M. Nutrient and drought stress: implications for phenology and biomass quality in miscanthus. ANNALS OF BOTANY 2019; 124:553-566. [PMID: 30137291 PMCID: PMC6821376 DOI: 10.1093/aob/mcy155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/25/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS The cultivation of dedicated biomass crops, including miscanthus, on marginal land provides a promising approach to the reduction of dependency on fossil fuels. However, little is known about the impact of environmental stresses often experienced on lower-grade agricultural land on cell-wall quality traits in miscanthus biomass crops. In this study, three different miscanthus genotypes were exposed to drought stress and nutrient stress, both separately and in combination, with the aim of evaluating their impact on plant growth and cell-wall properties. METHODS Automated imaging facilities at the National Plant Phenomics Centre (NPPC-Aberystwyth) were used for dynamic phenotyping to identify plant responses to separate and combinatorial stresses. Harvested leaf and stem samples of the three miscanthus genotypes (Miscanthus sinensis, Miscanthus sacchariflorus and Miscanthus × giganteus) were separately subjected to saccharification assays, to measure sugar release, and cell-wall composition analyses. KEY RESULTS Phenotyping showed that the M. sacchariflorus genotype Sac-5 and particularly the M. sinensis genotype Sin-11 coped better than the M. × giganteus genotype Gig-311 with drought stress when grown in nutrient-poor compost. Sugar release by enzymatic hydrolysis, used as a biomass quality measure, was significantly affected by the different environmental conditions in a stress-, genotype- and organ-dependent manner. A combination of abundant water and low nutrients resulted in the highest sugar release from leaves, while for stems this was generally associated with the combination of drought and nutrient-rich conditions. Cell-wall composition analyses suggest that changes in fine structure of cell-wall polysaccharides, including heteroxylans and pectins, possibly in association with lignin, contribute to the observed differences in cell-wall biomass sugar release. CONCLUSIONS The results highlight the importance of the assessment of miscanthus biomass quality measures in addition to biomass yield determinations and the requirement for selecting suitable miscanthus genotypes for different environmental conditions.
Collapse
Affiliation(s)
- Ricardo M F da Costa
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, UK
| | - Rachael Simister
- CNAP, Department of Biology, University of York, Heslington, York, UK
| | - Luned A Roberts
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, UK
| | - Emma Timms-Taravella
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, UK
| | - Arthur B Cambler
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Fiona M K Corke
- The National Plant Phenomics Centre, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Jiwan Han
- The National Plant Phenomics Centre, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Richard J Ward
- Department of Chemistry, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Marcos S Buckeridge
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Leonardo D Gomez
- CNAP, Department of Biology, University of York, Heslington, York, UK
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, UK
| |
Collapse
|
35
|
Larue F, Fumey D, Rouan L, Soulié JC, Roques S, Beurier G, Luquet D. Modelling tiller growth and mortality as a sink-driven process using Ecomeristem: implications for biomass sorghum ideotyping. ANNALS OF BOTANY 2019; 124:675-690. [PMID: 30953443 PMCID: PMC6821234 DOI: 10.1093/aob/mcz038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/28/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND AND AIMS Plant modelling can efficiently support ideotype conception, particularly in multi-criteria selection contexts. This is the case for biomass sorghum, implying the need to consider traits related to biomass production and quality. This study evaluated three modelling approaches for their ability to predict tiller growth, mortality and their impact, together with other morphological and physiological traits, on biomass sorghum ideotype prediction. METHODS Three Ecomeristem model versions were compared to evaluate whether tillering cessation and mortality were source (access to light) or sink (age-based hierarchical access to C supply) driven. They were tested using a field data set considering two biomass sorghum genotypes at two planting densities. An additional data set comparing eight genotypes was used to validate the best approach for its ability to predict the genotypic and environmental control of biomass production. A sensitivity analysis was performed to explore the impact of key genotypic parameters and define optimal parameter combinations depending on planting density and targeted production (sugar and fibre). KEY RESULTS The sink-driven control of tillering cessation and mortality was the most accurate, and represented the phenotypic variability of studied sorghum genotypes in terms of biomass production and partitioning between structural and non-structural carbohydrates. Model sensitivity analysis revealed that light conversion efficiency and stem diameter are key traits to target for improving sorghum biomass within existing genetic diversity. Tillering contribution to biomass production appeared highly genotype and environment dependent, making it a challenging trait for designing ideotypes. CONCLUSIONS By modelling tiller growth and mortality as sink-driven processes, Ecomeristem could predict and explore the genotypic and environmental variability of biomass sorghum production. Its application to larger sorghum genetic diversity considering water deficit regulations and its coupling to a genetic model will make it a powerful tool to assist ideotyping for current and future climatic scenario.
Collapse
Affiliation(s)
- Florian Larue
- CIRAD, UMR AGAP, PAM, Montpellier, France
- UMR AGAP, Université Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | | | - Lauriane Rouan
- CIRAD, UMR AGAP, PAM, Montpellier, France
- UMR AGAP, Université Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Jean-Christophe Soulié
- CIRAD, UR Recycling & Risk, Montpellier, France
- Recycling & Risk Unit, University of Montpellier, CIRAD, Montpellier, France
| | - Sandrine Roques
- CIRAD, UMR AGAP, PAM, Montpellier, France
- UMR AGAP, Université Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Grégory Beurier
- CIRAD, UMR AGAP, PAM, Montpellier, France
- UMR AGAP, Université Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Delphine Luquet
- CIRAD, UMR AGAP, PAM, Montpellier, France
- UMR AGAP, Université Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
36
|
Holder AJ, Clifton‐Brown J, Rowe R, Robson P, Elias D, Dondini M, McNamara NP, Donnison IS, McCalmont JP. Measured and modelled effect of land-use change from temperate grassland to Miscanthus on soil carbon stocks after 12 years. GLOBAL CHANGE BIOLOGY. BIOENERGY 2019; 11:1173-1186. [PMID: 31598141 PMCID: PMC6774323 DOI: 10.1111/gcbb.12624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/01/2019] [Accepted: 04/22/2019] [Indexed: 06/10/2023]
Abstract
Soil organic carbon (SOC) is an important carbon pool susceptible to land-use change (LUC). There are concerns that converting grasslands into the C4 bioenergy crop Miscanthus (to meet demands for renewable energy) could negatively impact SOC, resulting in reductions of greenhouse gas mitigation benefits gained from using Miscanthus as a fuel. This work addresses these concerns by sampling soils (0-30 cm) from a site 12 years (T12) after conversion from marginal agricultural grassland into Miscanthus x giganteus and four other novel Miscanthus hybrids. Soil samples were analysed for changes in below-ground biomass, SOC and Miscanthus contribution to SOC (using a 13C natural abundance approach). Findings are compared to ECOSSE soil carbon model results (run for a LUC from grassland to Miscanthus scenario and continued grassland counterfactual), and wider implications are considered in the context of life cycle assessments based on the heating value of the dry matter (DM) feedstock. The mean T12 SOC stock at the site was 8 (±1 standard error) Mg C/ha lower than baseline time zero stocks (T0), with assessment of the five individual hybrids showing that while all had lower SOC stock than at T0 the difference was only significant for a single hybrid. Over the longer term, new Miscanthus C4 carbon replaces pre-existing C3 carbon, though not at a high enough rate to completely offset losses by the end of year 12. At the end of simulated crop lifetime (15 years), the difference in SOC stocks between the two scenarios was 4 Mg C/ha (5 g CO2-eq/MJ). Including modelled LUC-induced SOC loss, along with carbon costs relating to soil nitrous oxide emissions, doubled the greenhouse gas intensity of Miscanthus to give a total global warming potential of 10 g CO2-eq/MJ (180 kg CO2-eq/Mg DM).
Collapse
Affiliation(s)
- Amanda J. Holder
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUnited Kingdom
| | - John Clifton‐Brown
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUnited Kingdom
| | - Rebecca Rowe
- Centre for Ecology & Hydrology, Lancaster Environment CentreBailrigg, LancasterUnited Kingdom
| | - Paul Robson
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUnited Kingdom
| | - Dafydd Elias
- Centre for Ecology & Hydrology, Lancaster Environment CentreBailrigg, LancasterUnited Kingdom
| | - Marta Dondini
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenUnited Kingdom
| | - Niall P. McNamara
- Centre for Ecology & Hydrology, Lancaster Environment CentreBailrigg, LancasterUnited Kingdom
| | - Iain S. Donnison
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUnited Kingdom
| | - Jon P. McCalmont
- College of Life and Environmental SciencesUniversity of ExeterExeterUnited Kingdom
| |
Collapse
|
37
|
Determination of Strength Properties of Energy Plants on the Example of Miscanthus × Giganteus, Rosa Multiflora and Salix Viminalis. ENERGIES 2019. [DOI: 10.3390/en12193660] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Energy from biomass accounts for 70% of all renewables used for heat and electricity production. Such a significant share of biomass determines the need for the investigation of their mechanical properties, as most of the lignocellulosic material requires cutting, chipping or milling before its utilization for energy purposes. Therefore, the knowledge about cutting resistance, bending stiffness, and impact strength of the energy plants is very important. The values of these parameters are used in the proper selection of shredding machines and their elements, wrapping nets or determination of power demand during raw material conversion. This paper presents the results of research on the mechanical properties of selected energy plants. The scope of the research included three different plant species: Miscanthus × giganteus, Rosa multiflora, and Salix viminalis, investigated in terms of cutting resistance, bending stiffness and impact strength of stalks. The results showed that the average stalk cutting resistance for the rotation speed of 4200 RPM was 0.17 N·mm−2 for the Miscanthus × giganteus, 0.15 N·mm−2 for the Rosa multiflora and 0.2 N·mm−2 for the Salix viminalis. Meanwhile, for a rotation speed of 3200 RPM, the cutting resistance amounted to 0.15 N·mm−2 for Miscanthus × giganteus, 0.16 N·mm−2 for Rosa multiflora and 0.18 N·mm−2 for Salix viminalis. For the impact measurements, the Salix viminalis exceeded 40 J·mm−2 of absorbed energy. Meanwhile, the average impact strength value for the Rosa multiflora was 0.53 J·mm−2 and for the Miscanthus × giganteus was 0.22 J·mm−2. The bending stiffness of Miscanthus × giganteus at an average modulus of 3.44 GPa was 1.1 N·m2 for the basal zone, 0.78 N·m2 for the central zone, and 0.72 N·m2 of the apical zone. For the average Young’s modulus of 0.19 GPa, the bending stiffness of the Rosa multiflora reached a value of 0.64 N·m2 for the basal zone, 0.23 N·m2 for the central zone, and 0.28 N·m2 for the apical zone. The Salix viminalis, with an average modulus of elasticity of 0.23 GPa, achieved bending stiffness in the basal zone of 0.99 N·m2, the central zone 0.33 N·m2, and the tip zone 0.38 N·m2. This research makes it possible to expand our knowledge in the field of biomass processing and construction of agricultural machinery with higher processing efficiency.
Collapse
|
38
|
Rusinowski S, Krzyżak J, Clifton-Brown J, Jensen E, Mos M, Webster R, Sitko K, Pogrzeba M. New Miscanthus hybrids cultivated at a Polish metal-contaminated site demonstrate high stomatal regulation and reduced shoot Pb and Cd concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1377-1387. [PMID: 31254895 DOI: 10.1016/j.envpol.2019.06.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 06/09/2023]
Abstract
The increased bioeconomy targets for the biomass share of renewable energy production across Europe should be met using land unsuitable for food production. Miscanthus breeding programs targeted the production of plants with a diverse range of traits allowing a wider utilization of land resources for biofuel production without competing with arable crops. These traits include increasing tolerances to drought, chilling, and to metal(loid)s excess. Two novel Miscanthus hybrids, GNT41 and GNT34, were compared against Miscanthus x giganteus (Mxg) on metal-contaminated arable land in Poland. This study aimed at evaluating their yield, biomass quality and quantifying seasonal differences in photosynthetic and transpiration parameters. A secondary objective was to identify key physiological mechanisms underlying differences in metal accumulation between the investigated plants. The new hybrids produced a similar yield to Mxg (13-15 t ha-1 yr-1), had shorter shoots, higher Leaf Area Index and stem number. Based on gas exchange measurements, GNT34 exhibited isohydric (water-conserving) behavior. The stomatal response to light of the new hybrids was at least twice as fast as that of Mxg, a trait that is often associated with increased seasonal water use efficiency. This contributed to the almost 40% reduction in shoot Pb and Cd concentrations for the new hybrids as compared to Mxg. This suggested that promoting stomatal regulation in conjunction with improved water conservation may be a target for improving plants for wider use on metals contaminated land.
Collapse
Affiliation(s)
- Szymon Rusinowski
- Institute for Ecology of Industrial Areas, 6 Kossutha Street, 40-844 Katowice, Poland
| | - Jacek Krzyżak
- Institute for Ecology of Industrial Areas, 6 Kossutha Street, 40-844 Katowice, Poland
| | - John Clifton-Brown
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, SY23 3EB, United Kingdom
| | - Elaine Jensen
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, SY23 3EB, United Kingdom
| | - Michal Mos
- Energene sp. z o.o., Plac Solny 15, Wrocław, 50-062, Poland
| | - Richard Webster
- School of Natural Sciences and Psychology, Liverpool John Moores University, Byrom Street Liverpool, L3 3AF, United Kingdom
| | - Krzysztof Sitko
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellońska Street, 40-032 Katowice, Poland
| | - Marta Pogrzeba
- Institute for Ecology of Industrial Areas, 6 Kossutha Street, 40-844 Katowice, Poland.
| |
Collapse
|
39
|
Low-Input Crops as Lignocellulosic Feedstock for Second-Generation Biorefineries and the Potential of Chemometrics in Biomass Quality Control. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9112252] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lignocellulose feedstock (LCF) provides a sustainable source of components to produce bioenergy, biofuel, and novel biomaterials. Besides hard and soft wood, so-called low-input plants such as Miscanthus are interesting crops to be investigated as potential feedstock for the second generation biorefinery. The status quo regarding the availability and composition of different plants, including grasses and fast-growing trees (i.e., Miscanthus, Paulownia), is reviewed here. The second focus of this review is the potential of multivariate data processing to be used for biomass analysis and quality control. Experimental data obtained by spectroscopic methods, such as nuclear magnetic resonance (NMR) and Fourier-transform infrared spectroscopy (FTIR), can be processed using computational techniques to characterize the 3D structure and energetic properties of the feedstock building blocks, including complex linkages. Here, we provide a brief summary of recently reported experimental data for structural analysis of LCF biomasses, and give our perspectives on the role of chemometrics in understanding and elucidating on LCF composition and lignin 3D structure.
Collapse
|
40
|
How to Generate Yield in the First Year—A Three-Year Experiment on Miscanthus (Miscanthus × giganteus (Greef et Deuter)) Establishment under Maize (Zea mays L.). AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9050237] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Miscanthus is one of the most promising perennial herbaceous industrial crops worldwide mainly due to its high resource-use efficiency and biomass yield. However, the extent of miscanthus cultivation across Europe is still lagging far behind its real potential. Major limiting factors are high initial costs and low biomass yields in the crop establishment period, especially the first year. This study explores the possibility of establishing miscanthus under maize to generate yields from the first year of cultivation onwards. A field trial with mono-cropped maize and two miscanthus establishment procedures, ‘under maize’ (MUM) and ‘standard’ (REF), was established in southwest Germany in 2016. Annual aboveground biomass was harvested in autumn (2016–2018). In 2016 and 2017, the miscanthus dry matter yield (DMY) was significantly lower in MUM than REF. However, the accumulated DMY of miscanthus and maize was as high in MUM as in maize cultivation alone. In 2018, there was no significant difference between the miscanthus DMY of REF (7.86 ± 0.77 Mg ha−1) and MUM (6.21 ± 0.77 Mg ha−1). The accumulated DMY over the three years was 31.7 Mg ha−1 for MUM, of which 10.1 Mg ha−1 were miscanthus-based, compared to 17.7 Mg ha−1 for REF. These results indicate that miscanthus establishment under maize could compensate for its lack of yield in the first year.
Collapse
|
41
|
Bergs M, Völkering G, Kraska T, Pude R, Do XT, Kusch P, Monakhova Y, Konow C, Schulze M. Miscanthus x giganteus Stem Versus Leaf-Derived Lignins Differing in Monolignol Ratio and Linkage. Int J Mol Sci 2019; 20:E1200. [PMID: 30857288 PMCID: PMC6429407 DOI: 10.3390/ijms20051200] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/28/2019] [Accepted: 03/05/2019] [Indexed: 11/19/2022] Open
Abstract
As a renewable, Miscanthus offers numerous advantages such as high photosynthesis activity (as a C₄ plant) and an exceptional CO₂ fixation rate. These properties make Miscanthus very attractive for industrial exploitation, such as lignin generation. In this paper, we present a systematic study analyzing the correlation of the lignin structure with the Miscanthus genotype and plant portion (stem versus leaf). Specifically, the ratio of the three monolignols and corresponding building blocks as well as the linkages formed between the units have been studied. The lignin amount has been determined for M. x giganteus (Gig17, Gig34, Gig35), M. nagara (NagG10), M. sinensis (Sin2), and M. robustus (Rob4) harvested at different time points (September, December, and April). The influence of the Miscanthus genotype and plant component (leaf vs. stem) has been studied to develop corresponding structure-property relationships (i.e., correlations in molecular weight, polydispersity, and decomposition temperature). Lignin isolation was performed using non-catalyzed organosolv pulping and the structure analysis includes compositional analysis, Fourier transform infradred (FTIR), ultraviolet/visible (UV-Vis), hetero-nuclear single quantum correlation nuclear magnetic resonsnce (HSQC-NMR), thermogravimetric analysis (TGA), and pyrolysis gaschromatography/mass spectrometry (GC/MS). Structural differences were found for stem and leaf-derived lignins. Compared to beech wood lignins, Miscanthus lignins possess lower molecular weight and narrow polydispersities (<1.5 Miscanthus vs. >2.5 beech) corresponding to improved homogeneity. In addition to conventional univariate analysis of FTIR spectra, multivariate chemometrics revealed distinct differences for aromatic in-plane deformations of stem versus leaf-derived lignins. These results emphasize the potential of Miscanthus as a low-input resource and a Miscanthus-derived lignin as promising agricultural feedstock.
Collapse
Affiliation(s)
- Michel Bergs
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Strasse 20, D-53359 Rheinbach, Germany.
- Institute of Crop Science and Resource Conservation, Faculty of Agriculture, University of Bonn, Klein-Altendorf 2, D-53359 Rheinbach, Germany.
| | - Georg Völkering
- Institute of Crop Science and Resource Conservation, Faculty of Agriculture, University of Bonn, Klein-Altendorf 2, D-53359 Rheinbach, Germany.
| | - Thorsten Kraska
- Field Lab Campus Klein-Altendorf, Faculty of Agriculture, University of Bonn, Campus Klein-Altendorf 1, D-53359 Rheinbach, Germany.
| | - Ralf Pude
- Institute of Crop Science and Resource Conservation, Faculty of Agriculture, University of Bonn, Klein-Altendorf 2, D-53359 Rheinbach, Germany.
- Field Lab Campus Klein-Altendorf, Faculty of Agriculture, University of Bonn, Campus Klein-Altendorf 1, D-53359 Rheinbach, Germany.
| | - Xuan Tung Do
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Strasse 20, D-53359 Rheinbach, Germany.
| | - Peter Kusch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Strasse 20, D-53359 Rheinbach, Germany.
| | - Yulia Monakhova
- Spectral Service AG, Emil-Hoffmann-Strasse 33, D-50996 Köln, Germany.
- Institute of Chemistry, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov, Russia.
| | - Christopher Konow
- Department of Chemistry, MS 015, Brandeis University, 415 South Street, Waltham, MA 02453, USA.
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Strasse 20, D-53359 Rheinbach, Germany.
| |
Collapse
|
42
|
Holder AJ, McCalmont JP, Rowe R, McNamara NP, Elias D, Donnison IS. Soil N 2O emissions with different reduced tillage methods during the establishment of Miscanthus in temperate grassland. GLOBAL CHANGE BIOLOGY. BIOENERGY 2019; 11:539-549. [PMID: 31007725 PMCID: PMC6472575 DOI: 10.1111/gcbb.12570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/24/2018] [Indexed: 06/09/2023]
Abstract
An increase in renewable energy and the planting of perennial bioenergy crops is expected in order to meet global greenhouse gas (GHG) targets. Nitrous oxide (N2O) is a potent greenhouse gas, and this paper addresses a knowledge gap concerning soil N2O emissions over the possible "hot spot" of land use conversion from established pasture to the biofuel crop Miscanthus. The work aims to quantify the impacts of this land use change on N2O fluxes using three different cultivation methods. Three replicates of four treatments were established: Miscanthus x giganteus (Mxg) planted without tillage; Mxg planted with light tillage; a novel seed-based Miscanthus hybrid planted with light tillage under bio-degradable mulch film; and a control of uncultivated established grass pasture with sheep grazing. Soil N2O fluxes were recorded every 2 weeks using static chambers starting from preconversion in April 2016 and continuing until the end of October 2017. Monthly soil samples were also taken and analysed for nitrate and ammonium. There was no significant difference in N2O emissions between the different cultivation methods. However, in comparison with the uncultivated pasture, N2O emissions from the cultivated Miscanthus plots were 550%-819% higher in the first year (April to December 2016) and 469%-485% higher in the second year (January to October 2017). When added to an estimated carbon cost for production over a 10 year crop lifetime (including crop management, harvest, and transportation), the measured N2O conversion cost of 4.13 Mg CO2-eq./ha represents a 44% increase in emission compared to the base case. This paper clearly shows the need to incorporate N2O fluxes during Miscanthus establishment into assessments of GHG balances and life cycle analysis and provides vital knowledge needed for this process. This work therefore also helps to support policy decisions regarding the costs and benefits of land use change to Miscanthus.
Collapse
Affiliation(s)
- Amanda J. Holder
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityAberystwyth, WalesUK
| | - Jon P. McCalmont
- College of Life and Environmental SciencesUniversity of ExeterExeterUK
| | - Rebecca Rowe
- Centre for Ecology & HydrologyLancaster Environment CentreBailrigg, LancasterUK
| | - Niall P. McNamara
- Centre for Ecology & HydrologyLancaster Environment CentreBailrigg, LancasterUK
| | - Dafydd Elias
- Centre for Ecology & HydrologyLancaster Environment CentreBailrigg, LancasterUK
| | - Iain S. Donnison
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityAberystwyth, WalesUK
| |
Collapse
|
43
|
Abstract
Miscanthus is an energy crop considered to show potential for a substantial contribution to sustainable energy production. In miscanthus combustion, 2.0% to 3.5% of the mass of the fuel remains as ash. This ash is less contaminated by heavy metals than ash from wood combustion. The concentrations are well below the typical limit concentrations for use as a soil conditioner on agricultural land and forests. The potassium concentration in the investigated miscanthus ash of 14.1% K2O was significantly higher than the typical concentration of potassium in ashes from wood combustion (3% to 7% K2O). However, in comparison to wood ashes, only very little enrichment of potassium in the fine size fractions of miscanthus ash was found. For most of the other elements, the enrichment in the fine size fractions was also low. Therefore, the production of a potassium-rich material by classification for the production of potassium fertilizer is not feasible. The absence of such an enrichment can be explained on the one hand by the significantly lower combustion temperature in the miscanthus combustion plant and, on the other hand, by the higher molar ratio of K to Cl and the low ratio of K to Si. Thus, the most sensible utilization of miscanthus ash is its direct recycling to the soil such as where the miscanthus plants are grown.
Collapse
|
44
|
Schäfer J, Sattler M, Iqbal Y, Lewandowski I, Bunzel M. Characterization of Miscanthus cell wall polymers. GLOBAL CHANGE BIOLOGY. BIOENERGY 2019; 11:191-205. [PMID: 31007724 PMCID: PMC6472555 DOI: 10.1111/gcbb.12538] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/17/2018] [Accepted: 05/30/2018] [Indexed: 05/28/2023]
Abstract
Efficient utilization of lignocellulosic Miscanthus biomass for the production of biochemicals, such as ethanol, is challenging due to its recalcitrance, which is influenced by the individual plant cell wall polymers and their interactions. Lignocellulosic biomass composition differs depending on several factors, such as plant age, harvest date, organ type, and genotype. Here, four selected Miscanthus genotypes (Miscanthus sinensis, Miscanthus sacchariflorus, Miscanthus × giganteus, Miscanthus sinensis × Miscanthus sacchariflorus hybrid) were grown and harvested, separated into stems and leaves, and characterized for their non-starch polysaccharide composition and structures, lignin contents and structures, and hydroxycinnamate profiles (monomers and ferulic acid dehydrodimers). Polysaccharides of all genotypes are mainly composed of cellulose and low-substituted arabinoxylans. Ratios of hemicelluloses to cellulose were comparable, with the exception of Miscanthus sinensis that showed a higher hemicellulose/cellulose ratio. Lignin contents of Miscanthus stems were higher than those of Miscanthus leaves. Considering the same organs, the four genotypes did not differ in their Klason lignin contents, but Miscanthus × giganteus showed the highest acetylbromide soluble lignin content. Lignin polymers isolated from stems varied in their S/G ratios and linkage type distributions across genotypes. p-Coumaric acid was the most abundant ester-bound hydroxycinnamte monomer in all samples. Ferulic acid dehydrodimers were analyzed as cell wall cross-links, with 8-5-coupled diferulic acid being the main dimer, followed by 8-O-4-, and 5-5-diferulic acid. Contents of p-coumaric acid, ferulic acid, and ferulic acid dimers varied depending on genotype and organ type. The largest amount of cell wall cross-links was analyzed for Miscanthus sinensis.
Collapse
Affiliation(s)
- Judith Schäfer
- Department of Food Chemistry and Phytochemistry, Institute of Applied BiosciencesKarlsruhe Institute of Technology (KIT)KarlsruheGermany
| | - Melinda Sattler
- Department of Food Chemistry and Phytochemistry, Institute of Applied BiosciencesKarlsruhe Institute of Technology (KIT)KarlsruheGermany
| | - Yasir Iqbal
- Biobased Products and Energy Crops (340b), Institute of Crop ScienceUniversity of HohenheimStuttgartGermany
| | - Iris Lewandowski
- Biobased Products and Energy Crops (340b), Institute of Crop ScienceUniversity of HohenheimStuttgartGermany
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Institute of Applied BiosciencesKarlsruhe Institute of Technology (KIT)KarlsruheGermany
| |
Collapse
|
45
|
da Costa RMF, Pattathil S, Avci U, Winters A, Hahn MG, Bosch M. Desirable plant cell wall traits for higher-quality miscanthus lignocellulosic biomass. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:85. [PMID: 31011368 PMCID: PMC6463665 DOI: 10.1186/s13068-019-1426-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/05/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Lignocellulosic biomass from dedicated energy crops such as Miscanthus spp. is an important tool to combat anthropogenic climate change. However, we still do not exactly understand the sources of cell wall recalcitrance to deconstruction, which hinders the efficient biorefining of plant biomass into biofuels and bioproducts. RESULTS We combined detailed phenotyping, correlation studies and discriminant analyses, to identify key significantly distinct variables between miscanthus organs, genotypes and most importantly, between saccharification performances. Furthermore, for the first time in an energy crop, normalised total quantification of specific cell wall glycan epitopes is reported and correlated with saccharification. CONCLUSIONS In stems, lignin has the greatest impact on recalcitrance. However, in leaves, matrix glycans and their decorations have determinant effects, highlighting the importance of biomass fine structures, in addition to more commonly described cell wall compositional features. The results of our interrogation of the miscanthus cell wall promote the concept that desirable cell wall traits for increased biomass quality are highly dependent on the target biorefining products. Thus, for the development of biorefining ideotypes, instead of a generalist miscanthus variety, more realistic and valuable approaches may come from defining a collection of specialised cultivars, adapted to specific conditions and purposes.
Collapse
Affiliation(s)
- Ricardo M. F. da Costa
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EE UK
- Present Address: Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- Present Address: Mascoma LLC (Lallemand, Inc.), 67 Etna Road, Lebanon, NH 03766 USA
| | - Utku Avci
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- Present Address: Faculty of Engineering, Bioengineering Department, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| | - Ana Winters
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EE UK
| | - Michael G. Hahn
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- DOE-BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EE UK
| |
Collapse
|
46
|
Debode J, De Tender C, Cremelie P, Lee AS, Kyndt T, Muylle H, De Swaef T, Vandecasteele B. Trichoderma-Inoculated Miscanthus Straw Can Replace Peat in Strawberry Cultivation, with Beneficial Effects on Disease Control. FRONTIERS IN PLANT SCIENCE 2018; 9:213. [PMID: 29515613 PMCID: PMC5826379 DOI: 10.3389/fpls.2018.00213] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/05/2018] [Indexed: 05/30/2023]
Abstract
Peat based growing media are not ecologically sustainable and often fail to support biological control. Miscanthus straw was (1) tested to partially replace peat; and (2) pre-colonized with a Trichoderma strain to increase the biological control capacity of the growing media. In two strawberry pot trials (denoted as experiment I & II), extruded and non-extruded miscanthus straw, with or without pre-colonization with T. harzianum T22, was used to partially (20% v/v) replace peat. We tested the performance of each mixture by monitoring strawberry plant development, nutrient content in the leaves and growing media, sensitivity of the fruit to the fungal pathogen Botrytis cinerea, rhizosphere community and strawberry defense responses. N immobilization by miscanthus straw reduced strawberry growth and yield in experiment II but not in I. The pre-colonization of the straw with Trichoderma increased the post-harvest disease suppressiveness against B. cinerea and changed the rhizosphere fungal microbiome in both experiments. In addition, defense-related genes were induced in experiment II. The use of miscanthus straw in growing media will reduce the demand for peat and close resource loops. Successful pre-colonization of this straw with biological control fungi will optimize crop cultivation, requiring fewer pesticide applications, which will benefit the environment and human health.
Collapse
Affiliation(s)
- Jane Debode
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Caroline De Tender
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Pieter Cremelie
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Ana S. Lee
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
- Epigenetics & Defence Research Group, Department Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Tina Kyndt
- Epigenetics & Defence Research Group, Department Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Hilde Muylle
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Tom De Swaef
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Bart Vandecasteele
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| |
Collapse
|
47
|
Fonteyne S, Muylle H, Lootens P, Kerchev P, Van den Ende W, Staelens A, Reheul D, Roldán-Ruiz I. Physiological basis of chilling tolerance and early-season growth in miscanthus. ANNALS OF BOTANY 2018; 121:281-295. [PMID: 29300823 PMCID: PMC5808799 DOI: 10.1093/aob/mcx159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/26/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS The high productivity of Miscanthus × giganteus has been at least partly ascribed to its high chilling tolerance compared with related C4 crops, allowing for a longer productive growing season in temperate climates. However, the chilling tolerance of M. × giganteus has been predominantly studied under controlled environmental conditions. The understanding of the underlying mechanisms contributing to chilling tolerance in the field and their variation in different miscanthus genotypes is largely unexplored. METHODS Five miscanthus genotypes with different sensitivities to chilling were grown in the field and scored for a comprehensive set of physiological traits throughout the spring season. Chlorophyll fluorescence was measured as an indication of photosynthesis, and leaf samples were analysed for biochemical traits related to photosynthetic activity (chlorophyll content and pyruvate, Pi dikinase activity), redox homeostasis (malondialdehyde, glutathione and ascorbate contents, and catalase activity) and water-soluble carbohydrate content. KEY RESULTS Chilling-tolerant genotypes were characterized by higher levels of malondialdehyde, raffinose and sucrose, and higher catalase activity, while the chilling-sensitive genotypes were characterized by higher concentrations of glucose and fructose, and higher pyruvate, Pi dikinase activity later in the growing season. On the early sampling dates, the biochemical responses of M. × giganteus were similar to those of the chilling-tolerant genotypes, but later in the season they became more similar to those of the chilling-sensitive genotypes. CONCLUSIONS The overall physiological response of chilling-tolerant genotypes was distinguishable from that of chilling-sensitive genotypes, while M. × giganteus was intermediate between the two. There appears to be a trade-off between high and efficient photosynthesis and chilling stress tolerance. Miscanthus × giganteus is able to overcome this trade-off and, while it is more similar to the chilling-sensitive genotypes in early spring, its photosynthetic capacity is similar to that of the chilling-tolerant genotypes later on.
Collapse
Affiliation(s)
- Simon Fonteyne
- Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Melle, Belgium
- Ghent University, Department of Plant Production, Ghent, Belgium
| | - Hilde Muylle
- Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Melle, Belgium
| | - Peter Lootens
- Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Melle, Belgium
| | - Pavel Kerchev
- Ghent University, VIB Department of Plant Systems Biology, Ghent, Belgium
| | - Wim Van den Ende
- KU Leuven, Laboratory of Molecular Plant Biology, Leuven, Belgium
| | - Ariane Staelens
- Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Melle, Belgium
| | - Dirk Reheul
- Ghent University, Department of Plant Production, Ghent, Belgium
| | - Isabel Roldán-Ruiz
- Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Melle, Belgium
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
| |
Collapse
|
48
|
Action of lytic polysaccharide monooxygenase on plant tissue is governed by cellular type. Sci Rep 2017; 7:17792. [PMID: 29259205 PMCID: PMC5736606 DOI: 10.1038/s41598-017-17938-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/28/2017] [Indexed: 11/08/2022] Open
Abstract
Lignocellulosic biomass bioconversion is hampered by the structural and chemical complexity of the network created by cellulose, hemicellulose and lignin. Biological conversion of lignocellulose involves synergistic action of a large array of enzymes including the recently discovered lytic polysaccharide monooxygenases (LPMOs) that perform oxidative cleavage of cellulose. Using in situ imaging by synchrotron UV fluorescence, we have shown that the addition of AA9 LPMO (from Podospora anserina) to cellulases cocktail improves the progression of enzymes in delignified Miscanthus x giganteus as observed at tissular levels. In situ chemical monitoring of cell wall modifications performed by synchrotron infrared spectroscopy during enzymatic hydrolysis demonstrated that the boosting effect of the AA9 LPMO was dependent on the cellular type indicating contrasted recalcitrance levels in plant tissues. Our study provides a useful strategy for investigating enzyme dynamics and activity in plant cell wall to improve enzymatic cocktails aimed at expanding lignocelluloses biorefinery.
Collapse
|
49
|
Golfier P, Volkert C, He F, Rausch T, Wolf S. Regulation of secondary cell wall biosynthesis by a NAC transcription factor from Miscanthus. PLANT DIRECT 2017; 1:e00024. [PMID: 31245671 PMCID: PMC6508536 DOI: 10.1002/pld3.24] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 05/22/2023]
Abstract
Cell wall recalcitrance is a major limitation for the sustainable exploitation of lignocellulosic biomass as a renewable resource. Species and hybrids of the genus Miscanthus have emerged as candidate crops for the production of lignocellulosic feedstock in temperate climates, and dedicated efforts are underway to improve biomass yield. However, nothing is known about the molecular players involved in Miscanthus cell wall biosynthesis to facilitate breeding efforts towards tailored biomass. Here, we identify a Miscanthus sinensis transcription factor related to SECONDARY WALL-ASSOCIATED NAC DOMAIN1 (SND1), which acts as a master switch for the regulation of secondary cell wall formation and lignin biosynthesis. MsSND1 is expressed in growth stages associated with secondary cell wall formation, together with its potential targets. Consistent with this observation, MsSND1 was able to complement the secondary cell wall defects of the Arabidopsis snd1 nst1 double mutant, and ectopic expression of MsSND1 in tobacco leaves was sufficient to trigger patterned deposition of cellulose, hemicellulose, and lignin reminiscent of xylem elements. Transgenic studies in Arabidopsis thaliana plants revealed that MsSND1 regulates, directly and indirectly, the expression of a broad range of genes involved in secondary cell wall formation, including MYB transcription factors which regulate only a subset of the SCW differentiation program. Together, our findings suggest that MsSND1 is a transcriptional master regulator orchestrating secondary cell wall biosynthesis in Miscanthus.
Collapse
Affiliation(s)
- Philippe Golfier
- Centre for Organismal Studies HeidelbergDepartment of Plant Molecular PhysiologyHeidelberg UniversityHeidelbergGermany
| | - Christopher Volkert
- Centre for Organismal Studies HeidelbergDepartment of Plant Molecular PhysiologyHeidelberg UniversityHeidelbergGermany
| | - Feng He
- Centre for Organismal Studies HeidelbergDepartment of Plant Molecular PhysiologyHeidelberg UniversityHeidelbergGermany
| | - Thomas Rausch
- Centre for Organismal Studies HeidelbergDepartment of Plant Molecular PhysiologyHeidelberg UniversityHeidelbergGermany
| | - Sebastian Wolf
- Centre for Organismal Studies HeidelbergDepartment of Plant Molecular PhysiologyHeidelberg UniversityHeidelbergGermany
- Centre for Organismal Studies HeidelbergDepartment of Cell BiologyHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
50
|
Hastings A, Mos M, Yesufu JA, McCalmont J, Schwarz K, Shafei R, Ashman C, Nunn C, Schuele H, Cosentino S, Scalici G, Scordia D, Wagner M, Clifton-Brown J. Economic and Environmental Assessment of Seed and Rhizome Propagated Miscanthus in the UK. FRONTIERS IN PLANT SCIENCE 2017; 8:1058. [PMID: 28713395 PMCID: PMC5491852 DOI: 10.3389/fpls.2017.01058] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/31/2017] [Indexed: 05/23/2023]
Abstract
Growth in planted areas of Miscanthus for biomass in Europe has stagnated since 2010 due to technical challenges, economic barriers and environmental concerns. These limitations need to be overcome before biomass production from Miscanthus can expand to several million hectares. In this paper, we consider the economic and environmental effects of introducing seed based hybrids as an alternative to clonal M. x giganteus (Mxg). The impact of seed based propagation and novel agronomy was compared with current Mxg cultivation and used in 10 commercially relevant, field scale experiments planted between 2012 and 2014 in the United Kingdom, Germany, and Ukraine. Economic and greenhouse gas (GHG) emissions costs were quantified for the following production chain: propagation, establishment, harvest, transportation, storage, and fuel preparation (excluding soil carbon changes). The production and utilization efficiency of seed and rhizome propagation were compared. Results show that new hybrid seed propagation significantly reduces establishment cost to below £900 ha-1. Calculated GHG emission costs for the seeds established via plugs, though relatively small, was higher than rhizomes because fossil fuels were assumed to heat glasshouses for raising seedling plugs (5.3 and 1.5 kg CO2 eq. C Mg [dry matter (DM)]-1), respectively. Plastic mulch film reduced establishment time, improving crop economics. The breakeven yield was calculated to be 6 Mg DM ha-1 y-1, which is about half average United Kingdom yield for Mxg; with newer seeded hybrids reaching 16 Mg DM ha-1 in second year United Kingdom trials. These combined improvements will significantly increase crop profitability. The trade-offs between costs of production for the preparation of different feedstock formats show that bales are the best option for direct firing with the lowest transport costs (£0.04 Mg-1 km-1) and easy on-farm storage. However, if pelleted fuel is required then chip harvesting is more economic. We show how current seed based propagation methods can increase the rate at which Miscanthus can be scaled up; ∼×100 those of current rhizome propagation. These rapid ramp rates for biomass production are required to deliver a scalable and economic Miscanthus biomass fuel whose GHG emissions are ∼1/20th those of natural gas per unit of heat.
Collapse
Affiliation(s)
- Astley Hastings
- Institute of Biological and Environmental Sciences, University of AberdeenAberdeen, United Kingdom
| | - Michal Mos
- Blankney Estates Ltd.Lincolnshire, United Kingdom
| | | | - Jon McCalmont
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Kai Schwarz
- Julius Kühn-Institut - Bundesforschungsinstitut für KulturpflanzenBraunschweig, Germany
| | - Reza Shafei
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Chris Ashman
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Chris Nunn
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | | | - Salvatore Cosentino
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Università degli Studi di CataniaCatania, Italy
| | - Giovanni Scalici
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Università degli Studi di CataniaCatania, Italy
| | - Danilo Scordia
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Università degli Studi di CataniaCatania, Italy
| | - Moritz Wagner
- Institute of Crop Science, University of HohenheimStuttgart, Germany
| | - John Clifton-Brown
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| |
Collapse
|