1
|
Yang W, He Y, Li W, Dai M, Wu B, Zhang Z, Shi J, Song Z. PpERF-CRF3 selected by transcriptomic analysis plays key roles in the regulation of ABA alleviating chilling injury in peach fruit. Int J Biol Macromol 2024; 282:136850. [PMID: 39461629 DOI: 10.1016/j.ijbiomac.2024.136850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
Abscisic acid (ABA) is widely utilized to mitigate chilling injury (CI) of fruit. However, the molecular mechanism of ABA alleviates CI in peach fruit remain unclear. Herein, 10-4 M ABA treatment significantly mitigated the CI of peach fruit by reducing relative conductivity and malondialdehyde content, while increasing proline and endogenous ABA content. Transcriptomic analysis indicated that an abundant number of differentially expressed genes were altered by ABA treatment, which primarily enriched pathways such as plant hormone signal transduction, glycerophospholipid metabolism and phenylpropanoid biosynthesis. RNA-Seq results indicate that ABA modulates the transcription of genes involved in auxin, ABA and ethylene signal transduction, as well as in cell wall degradation, antioxidant, fatty acid desaturation and proline metabolism. RT-qPCR confirmed the RNA-Seq results, ABA treatment induced the transcription of proline metabolism related genes (PpP5CR2, PpP5CS, PpP5CS1) and PpERF-CRF3. Particularly noteworthy, as a nuclear protein, PpERF-CRF3 activated the expression of PpP5CR2 and PpP5CS by directly binding to their promoters and over-expression PpERF-CRF3 increased proline content and enhanced PpP5CR2 and PpP5CS expression. Overall, these findings suggest that ABA mitigates CI in peach fruit may be by mediating these pathways, and PpERF-CRF3 potentially involves this process by stimulating the expression of genes related to proline synthesis.
Collapse
Affiliation(s)
- Wenteng Yang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yuan He
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Wenhui Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Mei Dai
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Bin Wu
- Institute of Agro-products Storage and Processing & Xinjiang Key Laboratory of Processing and Preservation of Agricultural Products, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang, China
| | - Zheng Zhang
- Institute of Agro-products Storage and Processing & Xinjiang Key Laboratory of Processing and Preservation of Agricultural Products, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang, China
| | - Jingying Shi
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China.
| | - Zunyang Song
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
2
|
Estêvão C, Rodrigues L, Rato AE, Garcia R, Cardoso H, Campos C. Applicability of metabolomics to improve sustainable grapevine production. Front Mol Biosci 2024; 11:1395677. [PMID: 39310375 PMCID: PMC11413592 DOI: 10.3389/fmolb.2024.1395677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Metabolites represent the end product of gene expression, protein interaction and other regulatory mechanisms. The metabolome reflects a biological system's response to genetic and environmental changes, providing a more accurate description of plants' phenotype than the transcriptome or the proteome. Grapevine (Vitis vinifera L.), established for the production of wine grapes, table grapes, and raisins, holds immense agronomical and economic significance not only in the Mediterranean region but worldwide. As all plants, grapevines face the adverse impact of biotic and abiotic stresses that negatively affect multiple stages of grape and wine industry, including plant and berry development pre- and post-harvest, fresh grapes processing and consequently wine quality. In the present review we highlight the applicability of metabolome analysis in the understanding of the mechanisms involved in grapevine response and acclimatization upon the main biotic and abiotic constrains. The metabolome of induced morphogenic processes such as adventitious rooting and somatic embryogenesis is also explored, as it adds knowledge on the physiological and molecular phenomena occurring in the explants used, and on the successfully propagation of grapevines with desired traits. Finally, the microbiome-induced metabolites in grapevine are discussed in view of beneficial applications derived from the plant symbioses.
Collapse
Affiliation(s)
- Catarina Estêvão
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Lénia Rodrigues
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Ana Elisa Rato
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Raquel Garcia
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Hélia Cardoso
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Departamento de Biologia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Catarina Campos
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| |
Collapse
|
3
|
Váczy KZ, Otto M, Gomba-Tóth A, Geiger A, Golen R, Hegyi-Kaló J, Cels T, Geml J, Zsófi Z, Hegyi ÁI. Botrytis cinerea causes different plant responses in grape ( Vitis vinifera) berries during noble and grey rot: diverse metabolism versus simple defence. FRONTIERS IN PLANT SCIENCE 2024; 15:1433161. [PMID: 39166245 PMCID: PMC11333459 DOI: 10.3389/fpls.2024.1433161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
The complexity of the interaction between the necrotrophic pathogen Botrytis cinerea and grape berries (Vitis vinifera spp.) can result in the formation of either the preferred noble rot (NR) or the loss-making grey rot (GR), depending on the prevailing climatic conditions. In this study, we focus on the functional gene set of V. vinifera by performing multidimensional scaling followed by differential expression and enrichment analyses. The aim of this study is to identify the differences in gene expression between grape berries in the phases of grey rot, noble rot, and developing rot (DR, in its early stages) phases. The grapevine transcriptome at the NR phase was found to exhibit significant differences from that at the DR and GR stages, which displayed strong similarities. Similarly, several plant defence-related pathways, including plant-pathogen interactions as hypersensitive plant responses were found to be enriched. The results of the analyses identified a potential plant stress response pathway (SGT1 activated hypersensitive response) that was found to be upregulated in the GR berry but downregulated in the NR berry. The study revealed a decrease in defence-related in V. vinifera genes during the NR stages, with a high degree of variability in functions, particularly in enriched pathways. This indicates that the plant is not actively defending itself against Botrytis cinerea, which is otherwise present on its surface with high biomass. This discrepancy underscores the notion that during the NR phase, the grapevine and the pathogenic fungi interact in a state of equilibrium. Conversely the initial stages of botrytis infection manifest as a virulent fungus-plant interaction, irrespective of whether the outcome is grey or noble rot.
Collapse
Affiliation(s)
- Kálmán Z. Váczy
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Margot Otto
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
- Centre for Epidemic Response and Innovation (CERI), Stellenbosch University, Stellenbosch, South Africa
| | - Adrienn Gomba-Tóth
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Adrienn Geiger
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Richárd Golen
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Júlia Hegyi-Kaló
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Thomas Cels
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - József Geml
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
- HUN-REN-EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger, Hungary
| | - Zsolt Zsófi
- Institute for Viticulture and Enology, Eszterházy Károly Catholic University, Eger, Hungary
| | - Ádám István Hegyi
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| |
Collapse
|
4
|
Purayil GP, Saeed EE, Mathai AM, El-Tarabily KA, AbuQamar SF. A high-quality genome assembly and annotation of Thielaviopsis punctulata DSM102798. Sci Data 2024; 11:745. [PMID: 38982096 PMCID: PMC11233662 DOI: 10.1038/s41597-024-03458-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/31/2024] [Indexed: 07/11/2024] Open
Abstract
Black scorch disease (BSD), caused by the fungal pathogen Thielaviopsis punctulata (Tp) DSM102798, poses a significant threat to date palm cultivation in the United Arab Emirates (UAE). In this study, Chicago and Hi-C libraries were prepared as input for the Dovetail HiRise pipeline to scaffold the genome of Tp DSM102798. We generated an assembly with a total length of 28.23 Mb comprising 1,256 scaffolds, and the assembly had a contig N50 of 18.56 kb, L50 of three, and a BUSCO completeness score of 98.6% for 758 orthologous genes. Annotation of this assembly produced 7,169 genes and 3,501 Gene Ontology (GO) terms. Compared to five other Thielaviopsis genomes, Tp DSM102798 exhibited the highest continuity with a cumulative size of 27.598 Mb for the first seven scaffolds, surpassing the assemblies of all examined strains. These findings offer a foundation for targeted strategies that enhance date palm resistance against BSD, and foster more sustainable and resilient agricultural systems.
Collapse
Affiliation(s)
- Gouthaman P Purayil
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Esam Eldin Saeed
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Archana M Mathai
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| |
Collapse
|
5
|
An H, Wang D, Yu L, Wu H, Qin Y, Zhang S, Ji X, Xin Y, Li X. Potential Involvement of MnCYP710A11 in Botrytis cinerea Resistance in Arabidopsis thaliana and Morus notabilis. Genes (Basel) 2024; 15:853. [PMID: 39062632 PMCID: PMC11275358 DOI: 10.3390/genes15070853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Cytochrome P450 (CYP) is a crucial oxidoreductase enzyme that plays a significant role in plant defense mechanisms. In this study, a specific cytochrome P450 gene (MnCYP710A11) was discovered in mulberry (Morus notabilis). Bioinformatic analysis and expression pattern analysis were conducted to elucidate the involvement of MnCYP710A11 in combating Botrytis cinerea infection. After the infection of B. cinerea, there was a notable increase in the expression of MnCYP710A11. MnCYP710A11 is overexpressed in Arabidopsis and mulberry and strongly reacts to B. cinerea. The overexpression of the MnCYP710A11 gene in Arabidopsis and mulberry led to a substantial enhancement in resistance against B. cinerea, elevated catalase (CAT) activity, increased proline content, and reduced malondialdehyde (MDA) levels. At the same time, H2O2 and O2- levels in MnCYP710A11 transgenic Arabidopsis were decreased, which reduced the damage of ROS accumulation to plants. Furthermore, our research indicates the potential involvement of MnCYP710A11 in B. cinerea resistance through the modulation of other resistance-related genes. These findings establish a crucial foundation for gaining deeper insights into the role of cytochrome P450 in mulberry plants.
Collapse
Affiliation(s)
- Hui An
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (H.A.); (Y.Q.); (S.Z.)
- Guangxi Collaborative Innovation Center of Modern Sericulture Silk, School of Chemistry and Bioengineering, Hechi University, Hechi 546300, China
| | - Donghao Wang
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (L.Y.); (H.W.); (X.J.)
| | - Lin Yu
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (L.Y.); (H.W.); (X.J.)
| | - Hongshun Wu
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (L.Y.); (H.W.); (X.J.)
| | - Yue Qin
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (H.A.); (Y.Q.); (S.Z.)
- Guangxi Collaborative Innovation Center of Modern Sericulture Silk, School of Chemistry and Bioengineering, Hechi University, Hechi 546300, China
| | - Shihao Zhang
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (H.A.); (Y.Q.); (S.Z.)
- Guangxi Collaborative Innovation Center of Modern Sericulture Silk, School of Chemistry and Bioengineering, Hechi University, Hechi 546300, China
| | - Xianling Ji
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (L.Y.); (H.W.); (X.J.)
| | - Youchao Xin
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (L.Y.); (H.W.); (X.J.)
| | - Xiaodong Li
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (H.A.); (Y.Q.); (S.Z.)
- Guangxi Collaborative Innovation Center of Modern Sericulture Silk, School of Chemistry and Bioengineering, Hechi University, Hechi 546300, China
| |
Collapse
|
6
|
Liu Z, Ying J, Liu C. Changes in Rhizosphere Soil Microorganisms and Metabolites during the Cultivation of Fritillaria cirrhosa. BIOLOGY 2024; 13:334. [PMID: 38785816 PMCID: PMC11117757 DOI: 10.3390/biology13050334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Fritillaria cirrhosa is an important cash crop, and its industrial development is being hampered by continuous cropping obstacles, but the composition and changes of rhizosphere soil microorganisms and metabolites in the cultivation process of Fritillaria cirrhosa have not been revealed. We used metagenomics sequencing to analyze the changes of the microbiome in rhizosphere soil during a three-year cultivation process, and combined it with LC-MS/MS to detect the changes of metabolites. Results indicate that during the cultivation of Fritillaria cirrhosa, the composition and structure of the rhizosphere soil microbial community changed significantly, especially regarding the relative abundance of some beneficial bacteria. The abundance of Bradyrhizobium decreased from 7.04% in the first year to about 5% in the second and third years; the relative abundance of Pseudomonas also decreased from 6.20% in the first year to 2.22% in the third year; and the relative abundance of Lysobacter decreased significantly from more than 4% in the first two years of cultivation to 1.01% in the third year of cultivation. However, the relative abundance of some harmful fungi has significantly increased, such as Botrytis, which increased significantly from less than 3% in the first two years to 7.93% in the third year, and Talaromyces fungi, which were almost non-existent in the first two years of cultivation, significantly increased to 3.43% in the third year of cultivation. The composition and structure of Fritillaria cirrhosa rhizosphere metabolites also changed significantly, the most important of which were carbohydrates represented by sucrose (48.00-9.36-10.07%) and some amino acid compounds related to continuous cropping obstacles. Co-occurrence analysis showed that there was a significant correlation between differential microorganisms and differential metabolites, but Procrustes analysis showed that the relationship between bacteria and metabolites was closer than that between fungi and metabolites. In general, in the process of Fritillaria cirrhosa cultivation, the beneficial bacteria in the rhizosphere decreased, the harmful bacteria increased, and the relative abundance of carbohydrate and amino acid compounds related to continuous cropping obstacles changed significantly. There is a significant correlation between microorganisms and metabolites, and the shaping of the Fritillaria cirrhosa rhizosphere's microecology by bacteria is more relevant.
Collapse
Affiliation(s)
- Zhixiang Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jizhe Ying
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China;
| | - Chengcheng Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
7
|
Meléndez F, Sánchez R, Fernández JÁ, Belacortu Y, Bermúdez F, Arroyo P, Martín-Vertedor D, Lozano J. Design of a Multisensory Device for Tomato Volatile Compound Detection Based on a Mixed Metal Oxide-Electrochemical Sensor Array and Optical Reader. MICROMACHINES 2023; 14:1761. [PMID: 37763924 PMCID: PMC10537342 DOI: 10.3390/mi14091761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Insufficient control of tomato ripening before harvesting and infection by fungal pests produce large economic losses in world tomato production. Aroma is an indicative parameter of the state of maturity and quality of the tomato. This study aimed to design an electronic system (TOMATO-NOSE) consisting of an array of 12 electrochemical sensors, commercial metal oxide semiconductor sensors, an optical camera for a lateral flow reader, and a smartphone application for device control and data storage. The system was used with tomatoes in different states of ripeness and health, as well as tomatoes infected with Botrytis cinerea. The results obtained through principal component analysis of the olfactory pattern of tomatoes and the reader images show that TOMATO-NOSE is a good tool for the farmer to control tomato ripeness before harvesting and for the early detection of Botrytis cinerea.
Collapse
Affiliation(s)
- Félix Meléndez
- Industrial Engineering School, University of Extremadura, 06006 Badajoz, Spain; (F.M.); (J.Á.F.); (P.A.)
- Alianza Nanotecnología Diagnóstica ASJ S.L. (ANT), 28703 San Sebastián de los Reyes, Spain; (Y.B.); (F.B.)
| | - Ramiro Sánchez
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), 06006 Badajoz, Spain; (R.S.); (D.M.-V.)
| | - Juan Álvaro Fernández
- Industrial Engineering School, University of Extremadura, 06006 Badajoz, Spain; (F.M.); (J.Á.F.); (P.A.)
| | - Yaiza Belacortu
- Alianza Nanotecnología Diagnóstica ASJ S.L. (ANT), 28703 San Sebastián de los Reyes, Spain; (Y.B.); (F.B.)
| | - Francisco Bermúdez
- Alianza Nanotecnología Diagnóstica ASJ S.L. (ANT), 28703 San Sebastián de los Reyes, Spain; (Y.B.); (F.B.)
| | - Patricia Arroyo
- Industrial Engineering School, University of Extremadura, 06006 Badajoz, Spain; (F.M.); (J.Á.F.); (P.A.)
| | - Daniel Martín-Vertedor
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), 06006 Badajoz, Spain; (R.S.); (D.M.-V.)
| | - Jesús Lozano
- Industrial Engineering School, University of Extremadura, 06006 Badajoz, Spain; (F.M.); (J.Á.F.); (P.A.)
| |
Collapse
|
8
|
Badmi R, Tengs T, Brurberg MB, Elameen A, Zhang Y, Haugland LK, Fossdal CG, Hytönen T, Krokene P, Thorstensen T. Transcriptional profiling of defense responses to Botrytis cinerea infection in leaves of Fragaria vesca plants soil-drenched with β-aminobutyric acid. FRONTIERS IN PLANT SCIENCE 2022; 13:1025422. [PMID: 36570914 PMCID: PMC9772985 DOI: 10.3389/fpls.2022.1025422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Grey mold caused by the necrotrophic fungal pathogen Botrytis cinerea can affect leaves, flowers, and berries of strawberry, causing severe pre- and postharvest damage. The defense elicitor β-aminobutyric acid (BABA) is reported to induce resistance against B. cinerea and many other pathogens in several crop plants. Surprisingly, BABA soil drench of woodland strawberry (Fragaria vesca) plants two days before B. cinerea inoculation caused increased infection in leaf tissues, suggesting that BABA induce systemic susceptibility in F. vesca. To understand the molecular mechanisms involved in B. cinerea susceptibility in leaves of F. vesca plants soil drenched with BABA, we used RNA sequencing to characterize the transcriptional reprogramming 24 h post-inoculation. The number of differentially expressed genes (DEGs) in infected vs. uninfected leaf tissue in BABA-treated plants was 5205 (2237 upregulated and 2968 downregulated). Upregulated genes were involved in pathogen recognition, defense response signaling, and biosynthesis of secondary metabolites (terpenoid and phenylpropanoid pathways), while downregulated genes were involved in photosynthesis and response to auxin. In control plants not treated with BABA, we found a total of 5300 DEGs (2461 upregulated and 2839 downregulated) after infection. Most of these corresponded to those in infected leaves of BABA-treated plants but a small subset of DEGs, including genes involved in 'response to biologic stimulus', 'photosynthesis' and 'chlorophyll biosynthesis and metabolism', differed significantly between treatments and could play a role in the induced susceptibility of BABA-treated plants.
Collapse
Affiliation(s)
- Raghuram Badmi
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Torstein Tengs
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - May Bente Brurberg
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
- Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Abdelhameed Elameen
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Yupeng Zhang
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Lisa Karine Haugland
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Carl Gunnar Fossdal
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Timo Hytönen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Genetics, Genomics and Breeding, National Institute of Agricultural Botany- East Malling Research Station, East Malling, United Kingdom
| | - Paal Krokene
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Tage Thorstensen
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| |
Collapse
|
9
|
Zhang X, Huang K, Zhang M, Jiang L, Wang Y, Feng J, Ma Z. Biochemical and genetic characterization of Botrytis cinerea laboratory mutants resistant to propamidine. PEST MANAGEMENT SCIENCE 2022; 78:5281-5292. [PMID: 36054525 DOI: 10.1002/ps.7150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/09/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Botrytis cinerea, the causal agent of gray mold, is one of the top 10 fungal pathogens in the world. Propamidine, an aromatic diamidine compound, exhibited both protective and therapeutic effects against B. cinerea. However, the resistance risk and mechanism of B. cinerea to propamidine are unclear. RESULTS Twelve high and stable resistant mutants were obtained from B. cinerea B05.10 by fungicide induction. Compared with the parental strain, the biological fitness of the mutants, including growth rate, spore germination, pathogenicity, and oxalic acid decreased significantly. There was no cross-resistance among propamidine and other commonly used fungicides, while the efficacy of propamidine against the resistance mutants declined. In addition, the cell membrane permeability, substance metabolism, and defense enzyme activities of the resistant mutants were significantly increased compared with the wild strain. Whole-genome sequencing of all resistant mutants found that there were 32 SNPs and nine InDels. Importantly, nine common single-point mutant genes in the exon region were found in all 12 resistant mutants, and these genes were related to multiple pathways in vivo, indicating that many factors contributed to the formation of propamidine resistance. CONCLUSION These data suggested the resistance risk of B. cinerea to propamidine was low to moderate and the mechanism of propamidine was different from that of the existing fungicides. These results will increase understanding of the resistance mechanism of propamidine and provide a critical basis for the rational design of pesticide molecules based on targets. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuhuan Zhang
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Ke Huang
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Mengwei Zhang
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Lin Jiang
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yong Wang
- College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Biopesticide Engineering & Technology Research Center, Northwest A & F University, Yangling, China
| | - Juntao Feng
- College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Biopesticide Engineering & Technology Research Center, Northwest A & F University, Yangling, China
| | - Zhiqing Ma
- College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Biopesticide Engineering & Technology Research Center, Northwest A & F University, Yangling, China
| |
Collapse
|
10
|
MnASI1 Mediates Resistance to Botrytis cinerea in Mulberry (Morus notabilis). Int J Mol Sci 2022; 23:ijms232113372. [PMID: 36362160 PMCID: PMC9656013 DOI: 10.3390/ijms232113372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Six α-amylase/subtilisin inhibitor genes (MnASIs) were identified from mulberry (Morus notabilis). In this study, bioinformatics and expression pattern analysis of six MnASIs were performed to determine their roles in resistance to B. cinerea. The expression of all six MnASIs was significantly increased under Botrytis cinerea infection. MnASI1, which responded strongly to B. cinerea, was overexpressed in Arabidopsis and mulberry. The resistance of Arabidopsis and mulberry overexpressing MnASI1 gene to B. cinerea was significantly improved, the catalase (CAT) activity was increased, and the malondialdehyde (MDA) content was decreased after inoculation with B. cinerea. At the same time, H2O2 and O2− levels were reduced in MnASI1 transgenic Arabidopsis, reducing the damage of ROS accumulation to plants. In addition, MnASI1 transgenic Arabidopsis increased the expression of the salicylic acid (SA) pathway-related gene AtPR1. This study provides an important reference for further revealing the function of α-amylase/subtilisin inhibitors.
Collapse
|
11
|
Soares F, Pimentel D, Erban A, Neves C, Reis P, Pereira M, Rego C, Gama-Carvalho M, Kopka J, Fortes AM. Virulence-related metabolism is activated in Botrytis cinerea mostly in the interaction with tolerant green grapes that remain largely unaffected in contrast with susceptible green grapes. HORTICULTURE RESEARCH 2022; 9:uhac217. [PMID: 36479580 PMCID: PMC9720446 DOI: 10.1093/hr/uhac217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/15/2022] [Indexed: 06/17/2023]
Abstract
Botrytis cinerea is responsible for the gray mold disease, severely affecting Vitis vinifera grapevine and hundreds of other economically important crops. However, many mechanisms of this fruit-pathogen interaction remain unknown. The combined analysis of the transcriptome and metabolome of green fruits infected with B. cinerea from susceptible and tolerant genotypes was never performed in any fleshy fruit, mostly because green fruits are widely accepted to be resistant to this fungus. In this work, peppercorn-sized fruits were infected in the field or mock-treated, and berries were collected at green (EL32) stage from a susceptible (Trincadeira) and a tolerant (Syrah) variety. RNAseq and GC-MS data suggested that Syrah exhibited a pre-activated/basal defense relying on specific signaling pathways, hormonal regulation, namely jasmonate and ethylene metabolisms, and linked to phenylpropanoid metabolism. In addition, putative defensive metabolites such as shikimic, ursolic/ oleanolic, and trans-4-hydroxy cinnamic acids, and epigallocatechin were more abundant in Syrah than Trincadeira before infection. On the other hand, Trincadeira underwent relevant metabolic reprogramming upon infection but was unable to contain disease progression. RNA-seq analysis of the fungus in planta revealed an opposite scenario with higher gene expression activity within B. cinerea during infection of the tolerant cultivar and less activity in infected Trincadeira berries. The results suggested an activated virulence state during interaction with the tolerant cultivar without visible disease symptoms. Together, this study brings novel insights related to early infection strategies of B. cinerea and the green berry defense against necrotrophic fungi.
Collapse
Affiliation(s)
- Flávio Soares
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Diana Pimentel
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Alexander Erban
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Catarina Neves
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Pedro Reis
- LEAF—Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Marcelo Pereira
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Cecilia Rego
- LEAF—Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Margarida Gama-Carvalho
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | | |
Collapse
|
12
|
Song G, Du S, Sun H, Liang Q, Wang H, Yan M, Zhang J. Antifungal mechanism of ( E)-2-hexenal against Botrytis cinerea growth revealed by transcriptome analysis. Front Microbiol 2022; 13:951751. [PMID: 36071976 PMCID: PMC9444101 DOI: 10.3389/fmicb.2022.951751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Gray mold caused by Botrytis cinerea, a necrotrophic plant pathogen, is one of the most damaging diseases of tomato, resulting in both pre- and post-harvest losses. (E)-2-Hexenal dose-dependently inhibited the mycelial growth of B. cinerea, and caused distortion of mycelia and loss of the cytoplasm content, thus altering the morphology of B. cinerea hyphae. To understand molecular processes in response to (E)-2-hexenal, transcriptome sequencing was carried out using RNA-Seq technology. RNA-Seq results revealed that a total of 3,893 genes were differentially expressed in B. cinerea samples treated with (E)-2-hexenal fumigation. Among these genes, 1,949 were upregulated and 1,944 were downregulated. Moreover, further analysis results showed 2,113 unigenes were mapped onto 259 pathways in Kyoto Encyclopedia of Genes and Genomes (KEGG). Moreover, (E)-2-hexenal stress affected the expression of genes involved in the pathways of cell wall, cell membrane, and energy metabolism. KEGG pathway analysis showed that the terpenoid backbone biosynthesis and steroid biosynthesis were the most enriched in ergosterol biosynthetic process transcriptome data. Particularly, (E)-2-hexenal fumigation had influenced ergosterol biosynthetic gene expression levels (e.g., ERG1, ERG3, ERG4, ERG7, ERG12, ERG13, ERG24, ERG25, ERG26, and ERG27), which were in good agreement with the experimental measurement results, and the ergosterol content decreased. Collectively, the results of this study increase our current understanding of (E)-2-hexenal inhibition mechanisms in B. cinerea and provide relevant information on postharvest shelf life extension and preservation of fruits and vegetables.
Collapse
Affiliation(s)
- Ge Song
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, China
| | - Shenglong Du
- Department of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Helong Sun
- Department of Chemical Engineering, Xiangtan University, Xiangtan, China
| | - Quanwu Liang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, China
| | - Haihua Wang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, China
| | - Mingli Yan
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, China
| | - Jihong Zhang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, China
| |
Collapse
|
13
|
Alwahshi KJ, Purayil GP, Saeed EE, Abufarajallah HA, Aldhaheri SJ, AbuQamar SF, El-Tarabily KA. The 1-aminocyclopropane-1-carboxylic acid deaminase-producing Streptomyces violaceoruber UAE1 can provide protection from sudden decline syndrome on date palm. FRONTIERS IN PLANT SCIENCE 2022; 13:904166. [PMID: 35968092 PMCID: PMC9373858 DOI: 10.3389/fpls.2022.904166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/27/2022] [Indexed: 05/27/2023]
Abstract
In the United Arab Emirates (UAE), sudden decline syndrome (SDS) is one of the major fungal diseases caused by Fusarium solani affecting date palm plantations. To minimize the impact of the causal agent of SDS on date palm, native actinobacterial strains isolated from rhizosphere soils of healthy date palm plants were characterized according to their antifungal activities against F. solani DSM 106836 (Fs). Based on their in vitro abilities, two promising biocontrol agents (BCAs), namely Streptomyces tendae UAE1 (St) andStreptomyces violaceoruber UAE1 (Sv), were selected for the production of antifungal compounds and cell wall degrading enzymes (CWDEs), albeit their variations in synthesizing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase (ACCD). Although both isolates showed antagonism when applied 7 days before the pathogen in the greenhouse experiments, the ACCD-producing Sv was relatively superior in its efficacy against SDS over the non-ACCD-producing St. This was evident from the symptoms of SDS in diseased date palm seedlings which were greatly reduced by Sv compared to St. On a scale of 5.0, the estimated disease severity indices in Fs-diseased seedlings were significantly (P < 0.05) reduced from 4.8 to 1.5 and 0.5 by St and Sv, respectively. Thus, the number of conidia of Fs recovered from plants pre-treated with both BCAs was comparable, but significantly (P < 0.05) reduced compared to plants without any BCA treatment. In addition, a significant (P < 0.05) decrease in ACC levels of both the root and shoot tissues was detected inSv + Fs seedlings to almost similar levels of healthy seedlings. However, in planta ACC levels highly increased in seedlings grown in soils infested with the pathogen alone or amended with St prior to F. solani infestation (St + Fs). This suggests a major role of ACCD production in relieving the stress of date palm seedlings infected with F. solani, thus supporting the integrated preventive disease management programs against this pathogen. This is the first report of effective rhizosphere actinobacterial BCAs to provide protection against SDS on date palm, and to help increase agricultural productivity in a more sustainable manner in the UAE and the other arid regions.
Collapse
Affiliation(s)
- Khawla J. Alwahshi
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Research Station Section, Abu Dhabi Agriculture and Food Safety Authority, Abu Dhabi, United Arab Emirates
| | - Gouthaman P. Purayil
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Esam Eldin Saeed
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Haneen A. Abufarajallah
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Shama J. Aldhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
14
|
Physiological and transcription analyses reveal regulatory pathways of 6-benzylaminopurine delaying leaf senescence and maintaining quality in postharvest Chinese flowering cabbage. Food Res Int 2022; 157:111455. [DOI: 10.1016/j.foodres.2022.111455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 01/13/2023]
|
15
|
Adnan M, Islam W, Gang L, Chen HYH. Advanced research tools for fungal diversity and its impact on forest ecosystem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45044-45062. [PMID: 35460003 DOI: 10.1007/s11356-022-20317-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Fungi are dominant ecological participants in the forest ecosystems, which play a major role in recycling organic matter and channeling nutrients across trophic levels. Fungal populations are shaped by plant communities and environmental parameters, and in turn, fungal communities also impact the forest ecosystem through intrinsic participation of different fungal guilds. Mycorrhizal fungi result in conservation and stability of forest ecosystem, while pathogenic fungi can bring change in forest ecosystem, by replacing the dominant plant species with new or exotic plant species. Saprotrophic fungi, being ecological regulators in the forest ecosystem, convert dead tree logs into reusable constituents and complete the ecological cycles of nitrogen and carbon. However, fungal communities have not been studied in-depth with respect to functional, spatiotemporal, or environmental parameters. Previously, fungal diversity and its role in shaping the forest ecosystem were studied by traditional and laborious cultural methods, which were unable to achieve real-time results and draw a conclusive picture of fungal communities. This review highlights the latest advances in biological methods such as next-generation sequencing and meta'omics for observing fungal diversity in the forest ecosystem, the role of different fungal groups in shaping forest ecosystem, forest productivity, and nutrient cycling at global scales.
Collapse
Affiliation(s)
- Muhammad Adnan
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liu Gang
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Han Y H Chen
- Faculty of Forestry and the Forest Environment, Lakehead University, 955 Oliver Rd, Thunder Bay, ON, P7B 5E1, Canada.
| |
Collapse
|
16
|
Barda O, Levy M. IQD1 Involvement in Hormonal Signaling and General Defense Responses Against Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2022; 13:845140. [PMID: 35557724 PMCID: PMC9087847 DOI: 10.3389/fpls.2022.845140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/15/2022] [Indexed: 06/15/2023]
Abstract
IQ Domain 1 (IQD1) is a novel Arabidopsis thaliana calmodulin-binding protein, which was found to be a positive regulator of glucosinolate (GS) accumulation and plant defense responses against insects. We demonstrate here that the IQD1 overexpressing line (IQD1 OXP ) was also more resistant also to the necrotrophic fungus Botrytis cinerea, whereas an IQD1 knockout line (iqd1-1) was much more sensitive. Furthermore, we showed that IQD1 is up-regulated by jasmonic acid (JA) and downregulated by salicylic acid (SA). A comparison of whole transcriptome expression between iqd1-1 and wild type plants revealed a substantial downregulation of genes involved in plant defense and hormone regulation. Further examination revealed a marked reduction of SA and increases in the levels of ethylene, JA and abscisic acid response genes in the iqd1-1 line. Moreover, quantification of SA, JA, and abscisic acids in IQD1 OXP and iqd1-1 lines relative to the wild type, showed a significant reduction in endogenous JA levels in the knockout line, simultaneously with increased SA levels. Relations between IQD1 OXP and mutants defective in plant-hormone response indicated that IQD1 cannot rescue the absence of NPR1 or impaired SA accumulation in the NahG line. IQD1 cannot rescue ein2 or eto1 mutations connected to the ethylene pathway involved in both defense responses against B. cinerea and in regulating GS accumulation. Furthermore, IQD1cannot rescue the aos, coi1 or jar1mutations, all involved in the defense response against B. cinerea and it depends on JAR1 to control indole glucosinolate accumulation. We also found that in the B. cinerea, which infected the iqd1-1 mutant, the most abundant upregulated group of proteins is involved in the degradation of complex carbohydrates, as correlated with the sensitivity of this mutant. In summary, our results suggest that IQD1 is an important A. thaliana defensive protein against B. cinerea that is integrated into several important pathways, such as those involved in plant defense and hormone responses.
Collapse
|
17
|
Langstroff A, Heuermann MC, Stahl A, Junker A. Opportunities and limits of controlled-environment plant phenotyping for climate response traits. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1-16. [PMID: 34302493 PMCID: PMC8741719 DOI: 10.1007/s00122-021-03892-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 06/17/2021] [Indexed: 05/19/2023]
Abstract
Rising temperatures and changing precipitation patterns will affect agricultural production substantially, exposing crops to extended and more intense periods of stress. Therefore, breeding of varieties adapted to the constantly changing conditions is pivotal to enable a quantitatively and qualitatively adequate crop production despite the negative effects of climate change. As it is not yet possible to select for adaptation to future climate scenarios in the field, simulations of future conditions in controlled-environment (CE) phenotyping facilities contribute to the understanding of the plant response to special stress conditions and help breeders to select ideal genotypes which cope with future conditions. CE phenotyping facilities enable the collection of traits that are not easy to measure under field conditions and the assessment of a plant's phenotype under repeatable, clearly defined environmental conditions using automated, non-invasive, high-throughput methods. However, extrapolation and translation of results obtained under controlled environments to field environments is ambiguous. This review outlines the opportunities and challenges of phenotyping approaches under controlled environments complementary to conventional field trials. It gives an overview on general principles and introduces existing phenotyping facilities that take up the challenge of obtaining reliable and robust phenotypic data on climate response traits to support breeding of climate-adapted crops.
Collapse
Affiliation(s)
- Anna Langstroff
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich Buff-Ring 26, 35392, Giessen, Germany
| | - Marc C Heuermann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, OT Gatersleben, 06466, Seeland, Germany
| | - Andreas Stahl
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich Buff-Ring 26, 35392, Giessen, Germany
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kühn-Institut (JKI), Erwin-Baur-Strasse 27, 06484, Quedlinburg, Germany
| | - Astrid Junker
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, OT Gatersleben, 06466, Seeland, Germany.
| |
Collapse
|
18
|
Characterization of the Chitinase Gene Family in Mulberry (Morus notabilis) and MnChi18 Involved in Resistance to Botrytis cinerea. Genes (Basel) 2021; 13:genes13010098. [PMID: 35052438 PMCID: PMC8774697 DOI: 10.3390/genes13010098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
Chitinase is a hydrolase that uses chitin as a substrate. It plays an important role in plant resistance to fungal pathogens by degrading chitin. Here, we conducted bioinformatics analysis and transcriptome data analysis of the mulberry (Morus notabilis) chitinase gene family to determine its role in the resistance to Botrytis cinerea. A total of 26 chitinase genes were identified, belonging to the GH18 and GH19 families. Among them, six chitinase genes were differentially expressed under the infection of B. cinerea. MnChi18, which significantly responded to B. cinerea, was heterologously expressed in Arabidopsis (Arabidopsis thaliana). The resistance of MnChi18 transgenic Arabidopsis to B. cinerea was significantly enhanced, and after inoculation with B. cinerea, the activity of catalase (CAT) increased and the content of malondialdehyde (MDA) decreased. This shows that overexpression of MnChi18 can protect cells from damage. In addition, our study also indicated that MnChi18 may be involved in B. cinerea resistance through other resistance-related genes. This study provides an important basis for further understanding the function of mulberry chitinase.
Collapse
|
19
|
Alblooshi AA, Purayil GP, Saeed EE, Ramadan GA, Tariq S, Altaee AS, El-Tarabily KA, AbuQamar SF. Biocontrol Potential of Endophytic Actinobacteria against Fusarium solani, the Causal Agent of Sudden Decline Syndrome on Date Palm in the UAE. J Fungi (Basel) 2021; 8:jof8010008. [PMID: 35049948 PMCID: PMC8779766 DOI: 10.3390/jof8010008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 01/07/2023] Open
Abstract
Thirty-one endophytic streptomycete and non-streptomycete actinobacteria were isolated from healthy date palm root tissues. In vitro screening revealed that the antifungal action of isolate #16 was associated with the production of cell-wall degrading enzymes, whereas with diffusible antifungal metabolites in isolate #28, albeit their production of volatile antifungal compounds. According to the 16S rRNA gene sequencing, isolates #16 and #28 were identified as Streptomyces polychromogenes UAE2 (Sp; GenBank Accession #: OK560620) and Streptomyces coeruleoprunus UAE1 (Sc; OK560621), respectively. The two antagonists were recovered from root tissues until 12 weeks after inoculation, efficiently colonized root cortex and xylem vessels, indicating that the date palm roots are a suitable habitat for these endophytic isolates. At the end of the greenhouse experiments, the development of sudden decline syndrome (SDS) was markedly suppressed by 53% with the application of Sp and 86% with Sc, confirming their potential in disease management. Results showed that the estimated disease severity indices in diseased seedlings were significantly (p < 0.05) reduced from 4.75 (scale of 5) to 2.25 or 0.67 by either Sp or Sc, respectively. In addition, conidial numbers of the pathogen significantly (p < 0.05) dropped by 38% and 76% with Sp and Sc, respectively, compared to infected seedlings with F. solani (control). Thus, the suppression of disease symptoms was superior in seedlings pre-inoculated with S. coeruleoprunus, indicating that the diffusible antifungal metabolites were responsible for F. solani retardation in these plants. This is the first report of actinobacteria naturally existing in date palm tissues acting as microbial antagonists against SDS on date palm.
Collapse
Affiliation(s)
- Aisha A. Alblooshi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.A.A.); (G.P.P.); (G.A.R.); (A.S.A.)
| | - Gouthaman P. Purayil
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.A.A.); (G.P.P.); (G.A.R.); (A.S.A.)
| | - Esam Eldin Saeed
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (E.E.S.)
| | - Gaber A. Ramadan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.A.A.); (G.P.P.); (G.A.R.); (A.S.A.)
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (S.T.)
| | - Amna S. Altaee
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.A.A.); (G.P.P.); (G.A.R.); (A.S.A.)
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.A.A.); (G.P.P.); (G.A.R.); (A.S.A.)
- Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
- Correspondence: (K.A.E.-T.); (S.F.A.); Tel.: +971-3-713-6518 (K.A.E.-T.); +971-3-713-6733 (S.F.A.)
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.A.A.); (G.P.P.); (G.A.R.); (A.S.A.)
- Correspondence: (K.A.E.-T.); (S.F.A.); Tel.: +971-3-713-6518 (K.A.E.-T.); +971-3-713-6733 (S.F.A.)
| |
Collapse
|
20
|
Yue J, Wang Y, Jiao J, Wang H. Comparative transcriptomic and metabolic profiling provides insight into the mechanism by which the autophagy inhibitor 3-MA enhances salt stress sensitivity in wheat seedlings. BMC PLANT BIOLOGY 2021; 21:577. [PMID: 34872497 PMCID: PMC8647401 DOI: 10.1186/s12870-021-03351-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Salt stress hinders plant growth and production around the world. Autophagy induced by salt stress helps plants improve their adaptability to salt stress. However, the underlying mechanism behind this adaptability remains unclear. To obtain deeper insight into this phenomenon, combined metabolomics and transcriptomics analyses were used to explore the coexpression of differentially expressed-metabolite (DEM) and gene (DEG) between control and salt-stressed wheat roots and leaves in the presence or absence of the added autophagy inhibitor 3-methyladenine (3-MA). RESULTS The results indicated that 3-MA addition inhibited autophagy, increased ROS accumulation, damaged photosynthesis apparatus and impaired the tolerance of wheat seedlings to NaCl stress. A total of 14,759 DEGs and 554 DEMs in roots and leaves of wheat seedlings were induced by salt stress. DEGs were predominantly enriched in cellular amino acid catabolic process, response to external biotic stimulus, regulation of the response to salt stress, reactive oxygen species (ROS) biosynthetic process, regulation of response to osmotic stress, ect. The DEMs were mostly associated with amino acid metabolism, carbohydrate metabolism, phenylalanine metabolism, carbapenem biosynthesis, and pantothenate and CoA biosynthesis. Further analysis identified some critical genes (gene involved in the oxidative stress response, gene encoding transcription factor (TF) and gene involved in the synthesis of metabolite such as alanine, asparagine, aspartate, glutamate, glutamine, 4-aminobutyric acid, abscisic acid, jasmonic acid, ect.) that potentially participated in a complex regulatory network in the wheat response to NaCl stress. The expression of the upregulated DEGs and DEMs were higher, and the expression of the down-regulated DEGs and DEMs was lower in 3-MA-treated plants under NaCl treatment. CONCLUSION 3-MA enhanced the salt stress sensitivity of wheat seedlings by inhibiting the activity of the roots and leaves, inhibiting autophagy in the roots and leaves, increasing the content of both H2O2 and O2•-, damaged photosynthesis apparatus and changing the transcriptome and metabolome of salt-stressed wheat seedlings.
Collapse
Affiliation(s)
- Jieyu Yue
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China.
| | - Yingjie Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Jinlan Jiao
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Huazhong Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China.
| |
Collapse
|
21
|
Reboledo G, Agorio AD, Vignale L, Batista-García RA, Ponce De León I. Transcriptional profiling reveals conserved and species-specific plant defense responses during the interaction of Physcomitrium patens with Botrytis cinerea. PLANT MOLECULAR BIOLOGY 2021; 107:365-385. [PMID: 33521880 DOI: 10.1007/s11103-021-01116-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
Evolutionary conserved defense mechanisms present in extant bryophytes and angiosperms, as well as moss-specific defenses are part of the immune response of Physcomitrium patens. Bryophytes and tracheophytes are descendants of early land plants that evolved adaptation mechanisms to cope with different kinds of terrestrial stresses, including drought, variations in temperature and UV radiation, as well as defense mechanisms against microorganisms present in the air and soil. Although great advances have been made on pathogen perception and subsequent defense activation in angiosperms, limited information is available in bryophytes. In this study, a transcriptomic approach uncovered the molecular mechanisms underlying the defense response of the bryophyte Physcomitrium patens (previously Physcomitrella patens) against the important plant pathogen Botrytis cinerea. A total of 3.072 differentially expressed genes were significantly affected during B. cinerea infection, including genes encoding proteins with known functions in angiosperm immunity and involved in pathogen perception, signaling, transcription, hormonal signaling, metabolic pathways such as shikimate and phenylpropanoid, and proteins with diverse role in defense against biotic stress. Similarly as in other plants, B. cinerea infection leads to downregulation of genes involved in photosynthesis and cell cycle progression. These results highlight the existence of evolutionary conserved defense responses to pathogens throughout the green plant lineage, suggesting that they were probably present in the common ancestors of land plants. Moreover, several genes acquired by horizontal transfer from prokaryotes and fungi, and a high number of P. patens-specific orphan genes were differentially expressed during B. cinerea infection, suggesting that they are important players in the moss immune response.
Collapse
Affiliation(s)
- Guillermo Reboledo
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Astri D Agorio
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Lucía Vignale
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | - Inés Ponce De León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
22
|
Yang Z, Liu Q, Sun Y, Sun X, Chen L, Sun L, Gu W. Synthesis, Antifungal Activity, DFT Study and Molecular Dynamics Simulation of Novel 4-(1,2,4-Oxadiazol-3-yl)-N-(4-phenoxyphenyl)benzamide Derivatives. Chem Biodivers 2021; 18:e2100651. [PMID: 34626068 DOI: 10.1002/cbdv.202100651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022]
Abstract
In order to find novel potential antifungal agrochemicals, a series of new 4-(1,2,4-oxadiazol-3-yl)-N-(4-phenoxyphenyl)benzamide derivatives 3a-j were designed, synthesized and characterized by their 1 H-, 13 C-NMR and HRMS spectra. The preliminary antifungal assay in vitro revealed that compounds 3a-j exhibited moderate to good antifungal activity against five plant pathogenic fungi. Especially, compound 3e presented significant antifungal activity against Alternaria solani, Botrytis cinerea and Sclerotinia sclerotiorum, superior to positive control boscalid. In the in vivo antifungal assay on tomato plants and cucumber leaves, compound 3e presented good inhibition rate against B. cinerea at 200 mg/L. Molecular dynamics simulation revealed that compound 3e could bind with the active site of class II histone deacetylase (HDAC).
Collapse
Affiliation(s)
- Zihui Yang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels, Chemicals, Co - Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Qingsong Liu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels, Chemicals, Co - Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Yue Sun
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels, Chemicals, Co - Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Xuebao Sun
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels, Chemicals, Co - Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Linlin Chen
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels, Chemicals, Co - Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Lu Sun
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels, Chemicals, Co - Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Wen Gu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels, Chemicals, Co - Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| |
Collapse
|
23
|
Wan R, Guo C, Hou X, Zhu Y, Gao M, Hu X, Zhang S, Jiao C, Guo R, Li Z, Wang X. Comparative transcriptomic analysis highlights contrasting levels of resistance of Vitis vinifera and Vitis amurensis to Botrytis cinerea. HORTICULTURE RESEARCH 2021; 8:103. [PMID: 33931625 PMCID: PMC8087793 DOI: 10.1038/s41438-021-00537-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 02/23/2021] [Accepted: 03/08/2021] [Indexed: 05/08/2023]
Abstract
Botrytis cinerea is a major grapevine (Vitis spp.) pathogen, but some genotypes differ in their degree of resistance. For example, the Vitis vinifera cultivar Red Globe (RG) is highly susceptible, but V. amurensis Rupr Shuangyou (SY) is highly resistant. Here, we used RNA sequencing analysis to characterize the transcriptome responses of these two genotypes to B. cinerea inoculation at an early infection stage. Approximately a quarter of the genes in RG presented significant changes in transcript levels during infection, the number of which was greater than that in the SY leaves. The genes differentially expressed between infected leaves of SY and RG included those associated with cell surface structure, oxidation, cell death and C/N metabolism. We found evidence that an imbalance in the levels of reactive oxygen species (ROS) and redox homeostasis probably contributed to the susceptibility of RG to B. cinerea. SY leaves had strong antioxidant capacities and improved ROS homeostasis following infection. Regulatory network prediction suggested that WRKY and MYB transcription factors are associated with the abscisic acid pathway. Weighted gene correlation network analysis highlighted preinfection features of SY that might contribute to its increased resistance. Moreover, overexpression of VaWRKY10 in Arabidopsis thaliana and V. vinifera Thompson Seedless enhanced resistance to B. cinerea. Collectively, our study provides a high-resolution view of the transcriptional changes of grapevine in response to B. cinerea infection and novel insights into the underlying resistance mechanisms.
Collapse
Affiliation(s)
- Ran Wan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
- College of Horticulture, Henan Agricultural University, 450002, Zhengzhou, Henan, China
| | - Chunlei Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, 066004, Qinhuangdao, Hebei, China
| | - Xiaoqing Hou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
| | - Yanxun Zhu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
| | - Min Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
| | - Xiaoyan Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, 066004, Qinhuangdao, Hebei, China
| | - Songlin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
| | - Chen Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA
| | - Rongrong Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, 53000, Nanning, Guangxi, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, 712100, Yangling, Xianyang, Shaanxi, China.
| |
Collapse
|
24
|
Schwendel BH, Anekal PV, Zarate E, Bang KW, Guo G, Grey AC, Pinu FR. Mass Spectrometry-Based Metabolomics to Investigate the Effect of Mechanical Shaking on Sauvignon Blanc Berry Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4918-4933. [PMID: 33856217 DOI: 10.1021/acs.jafc.1c00413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Previous commercial studies carried out in New Zealand showed that mechanical shaking significantly reduced the incidence of Botrytis cinerea infection in wine grapes. However, the reasons behind this reduction are not well understood. Here, we employed a metabolomics approach to gain insights into the biochemical changes that occur in grape berries due to mechanical shaking. Berry samples were analyzed using three different analytical approaches including gas chromatography and mass spectrometry (MS), liquid chromatography and MS, and imaging mass spectrometry (IMS). Combined data provided a comprehensive overview of metabolic changes in grape berry, indicating the initiation of different stress mitigation strategies to overcome the effect of mechanical shaking. Berry primary metabolism was distinctly altered in the green berries in response to mechanical shaking, while secondary metabolism significantly changed in berries collected after veraison. Pathway analysis showed upregulation of metabolites related to nitrogen and lipid metabolism in the berries from shaken vines when compared with controls. From IMS data, we observed an accumulation of different groups of metabolites including phenolic compounds and amino and fatty acids in the areas near to the skin of berries from shaken vines. This observation suggests that mechanical shaking caused an accumulation of these metabolites, which may be associated with the formation of a protective barrier, leading to the reduction in B. cinerea infection in berries from mechanically shaken vines.
Collapse
Affiliation(s)
- Brigitte Heike Schwendel
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4474, New Zealand
| | - Praju Vikas Anekal
- School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Biomedical Imaging Research Unit, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Erica Zarate
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Kyung Whan Bang
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - George Guo
- School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Angus C Grey
- School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Biomedical Imaging Research Unit, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Farhana R Pinu
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| |
Collapse
|
25
|
Richards JK, Xiao CL, Jurick WM. Botrytis spp.: A Contemporary Perspective and Synthesis of Recent Scientific Developments of a Widespread Genus that Threatens Global Food Security. PHYTOPATHOLOGY 2021; 111:432-436. [PMID: 33231498 DOI: 10.1094/phyto-10-20-0475-ia] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This perspective presents a synopsis of the topics contained in the Phytopathology Pathogen Spotlight on Botrytis spp. causing gray mold, including pathogen biology and systematics, genomic characterization of new species, perspectives on genome editing, and fungicide resistance. A timely breakthrough to engineer host plant resistance against the gray mold fungus has been demonstrated in planta and may augment chemical controls in the near future. While B. cinerea has garnered much of the research attention, other economically important Botrytis spp. have been identified and characterized via morphological and genome-based approaches. Gray mold control is achieved primarily through fungicide applications but resistance to various chemical classes is a major concern that threatens global plant health and food security. In this issue, new information on molecular mechanism(s) of fungicide resistance and ways to manage control failures are presented. Finally, a significant leap in fundamental pathogen biology has been achieved via development of CRISPR/Cas9 to assess gene function in the fungus which likely will spawn new control mechanisms and facilitate gene discovery studies.
Collapse
Affiliation(s)
- Jonathan K Richards
- Assistant Professor, Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA
| | - Chang-Lin Xiao
- Supervisory Research Plant Pathologist, Commodity Protection and Quality Research Unit, USDA-ARS, Parlier, CA
| | - Wayne M Jurick
- Lead Scientist and Research Plant Pathologist, Food Quality Laboratory, USDA-ARS, Beltsville, MD
| |
Collapse
|
26
|
Lacrampe N, Lopez-Lauri F, Lugan R, Colombié S, Olivares J, Nicot PC, Lecompte F. Regulation of sugar metabolism genes in the nitrogen-dependent susceptibility of tomato stems to Botrytis cinerea. ANNALS OF BOTANY 2021; 127:143-154. [PMID: 32853354 PMCID: PMC7750717 DOI: 10.1093/aob/mcaa155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS The main soluble sugars are important components of plant defence against pathogens, but the underlying mechanisms are unclear. Upon infection by Botrytis cinerea, the activation of several sugar transporters, from both plant and fungus, illustrates the struggle for carbon resources. In sink tissues, the metabolic use of the sugars mobilized in the synthesis of defence compounds or antifungal barriers is not fully understood. METHODS In this study, the nitrogen-dependent variation of tomato stem susceptibility to B. cinerea was used to examine, before and throughout the course of infection, the transcriptional activity of enzymes involved in sugar metabolism. Under different nitrate nutrition regimes, the expression of genes that encode the enzymes of sugar metabolism (invertases, sucrose synthases, hexokinases, fructokinases and phosphofructokinases) was determined and sugar contents were measured before inoculation and in asymptomatic tissues surrounding the lesions after inoculation. KEY RESULTS At high nitrogen availability, decreased susceptibility was associated with the overexpression of several genes 2 d after inoculation: sucrose synthases Sl-SUS1 and Sl-SUS3, cell wall invertases Sl-LIN5 to Sl-LIN9 and some fructokinase and phosphofructokinase genes. By contrast, increased susceptibility corresponded to the early repression of several genes that encode cell wall invertase and sucrose synthase. The course of sugar contents was coherent with gene expression. CONCLUSIONS The activation of specific genes that encode sucrose synthase is required for enhanced defence. Since the overexpression of fructokinase is also associated with reduced susceptibility, it can be hypothesized that supplementary sucrose cleavage by sucrose synthases is dedicated to the production of cell wall components from UDP-glucose, or to the additional implication of fructose in the synthesis of antimicrobial compounds, or both.
Collapse
Affiliation(s)
- Nathalie Lacrampe
- PSH unit, INRAE, Avignon, France
- UMR Qualisud, Avignon Université, Avignon, France
| | | | | | - Sophie Colombié
- UMR 1332 BFP, INRAE, Univ Bordeaux, Villenave d’Ornon, France
| | | | | | | |
Collapse
|
27
|
Abstract
Recent progress in transcriptomics and co-expression networks have enabled us to predict the inference of the biological functions of genes with the associated environmental stress. Microarrays and RNA sequencing (RNA-seq) are the most commonly used high-throughput gene expression platforms for detecting differentially expressed genes between two (or more) phenotypes. Gene co-expression networks (GCNs) are a systems biology method for capturing transcriptional patterns and predicting gene interactions into functional and regulatory relationships. Here, we describe the procedures and tools used to construct and analyze GCN and investigate the integration of transcriptional data with GCN to provide reliable information about the underlying biological mechanism.
Collapse
|
28
|
Xin Y, Meng S, Ma B, He W, He N. Mulberry genes MnANR and MnLAR confer transgenic plants with resistance to Botrytis cinerea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110473. [PMID: 32540003 DOI: 10.1016/j.plantsci.2020.110473] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 05/27/2023]
Abstract
Proanthocyanidins (PAs) are major defense-related phenolics in mulberry, but the mechanism underlying their biosynthesis remains uncharacterized. In this study, the relationship between the expression of genes encoding anthocyanidin reductase (ANR) or leucoanthocyanidin reductase (LAR) and PA biosynthesis was investigated in white and red mulberry fruits. In ripening fruits, the MnANR and MnLAR transcription levels tended to decrease, whereas the catechin and epicatechin contents initially increased and then decreased. In contrast, the PA content exhibited a clearly different trend. The ectopic expression of MnANR and MnLAR in tobacco increased the resistance to Botrytis cinerea, as evidenced by the less extensive disease symptoms of the transgenic plants compared with the wild-type plants. In vitro experiments revealed that the transgenic tobacco crude leaf extract had an obvious inhibitory effect on B. cinerea. Moreover, the ectopic expression of MnANR and MnLAR in tobacco inhibited the expression of anthocyanin biosynthesis genes, resulting in decreased anthocyanin contents in flowers. The results of this study may be useful for elucidating the mechanism underlying PA biosynthesis. Furthermore, ANR and LAR represent potential targets for improving the resistance of mulberry and related plant species to B. cinerea.
Collapse
Affiliation(s)
- Youchao Xin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
| | - Shuai Meng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
| | - Bi Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
| | - Wenmin He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
29
|
Tundo S, Paccanaro MC, Elmaghraby I, Moscetti I, D’Ovidio R, Favaron F, Sella L. The Xylanase Inhibitor TAXI-I Increases Plant Resistance to Botrytis cinerea by Inhibiting the BcXyn11a Xylanase Necrotizing Activity. PLANTS 2020; 9:plants9050601. [PMID: 32397168 PMCID: PMC7285161 DOI: 10.3390/plants9050601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
During host plant infection, pathogens produce a wide array of cell wall degrading enzymes (CWDEs) to break the plant cell wall. Among CWDEs, xylanases are key enzymes in the degradation of xylan, the main component of hemicellulose. Targeted deletion experiments support the direct involvement of the xylanase BcXyn11a in the pathogenesis of Botrytis cinerea. Since the Triticum aestivum xylanase inhibitor-I (TAXI-I) has been shown to inhibit BcXyn11a, we verified if TAXI-I could be exploited to counteract B. cinerea infections. With this aim, we first produced Nicotiana tabacum plants transiently expressing TAXI-I, observing increased resistance to B. cinerea. Subsequently, we transformed Arabidopsis thaliana to express TAXI-I constitutively, and we obtained three transgenic lines exhibiting a variable amount of TAXI-I. The line with the higher level of TAXI-I showed increased resistance to B. cinerea and the absence of necrotic lesions when infiltrated with BcXyn11a. Finally, in a droplet application experiment on wild-type Arabidopsis leaves, TAXI-I prevented the necrotizing activity of BcXyn11a. These results would confirm that the contribution of BcXyn11a to virulence is due to its necrotizing rather than enzymatic activity. In conclusion, our experiments highlight the ability of the TAXI-I xylanase inhibitor to counteract B. cinerea infection presumably by preventing the necrotizing activity of BcXyn11a.
Collapse
Affiliation(s)
- Silvio Tundo
- Department of Land, Environment, Agriculture and Forestry (TESAF), Research Group in Plant Pathology, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (S.T.); (M.C.P.); (I.E.); (F.F.)
| | - Maria Chiara Paccanaro
- Department of Land, Environment, Agriculture and Forestry (TESAF), Research Group in Plant Pathology, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (S.T.); (M.C.P.); (I.E.); (F.F.)
| | - Ibrahim Elmaghraby
- Department of Land, Environment, Agriculture and Forestry (TESAF), Research Group in Plant Pathology, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (S.T.); (M.C.P.); (I.E.); (F.F.)
- Agricultural Research Center, Central Laboratory of Organic Agriculture, 9, Cairo Univ. St., Giza 12619, Egypt
| | - Ilaria Moscetti
- Department of Ecology and Biology (DEB), Biophysics and Nanoscience Centre, University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy;
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy;
| | - Renato D’Ovidio
- Department of Agricultural and Forestry Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy;
| | - Francesco Favaron
- Department of Land, Environment, Agriculture and Forestry (TESAF), Research Group in Plant Pathology, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (S.T.); (M.C.P.); (I.E.); (F.F.)
| | - Luca Sella
- Department of Land, Environment, Agriculture and Forestry (TESAF), Research Group in Plant Pathology, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (S.T.); (M.C.P.); (I.E.); (F.F.)
- Correspondence: ; Tel.: +39-049-8272893
| |
Collapse
|
30
|
Al Raish SM, Saeed EE, Sham A, Alblooshi K, El-Tarabily KA, AbuQamar SF. Molecular Characterization and Disease Control of Stem Canker on Royal Poinciana ( Delonix regia) Caused by Neoscytalidium dimidiatum in the United Arab Emirates. Int J Mol Sci 2020; 21:E1033. [PMID: 32033175 PMCID: PMC7036867 DOI: 10.3390/ijms21031033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/24/2020] [Accepted: 02/01/2020] [Indexed: 01/04/2023] Open
Abstract
In the United Arab Emirates (UAE), royal poinciana (Delonix regia) trees suffer from stem canker disease. Symptoms of stem canker can be characterized by branch and leaf dryness, bark lesions, discoloration of xylem tissues, longitudinal wood necrosis and extensive gumming. General dieback signs were also observed leading to complete defoliation of leaves and ultimately death of trees in advanced stages. The fungus, Neoscytalidium dimidiatum DSM 109897, was consistently recovered from diseased royal poinciana tissues; this was confirmed by the molecular, structural and morphological studies. Phylogenetic analyses of the translation elongation factor 1-a (TEF1-α) of N. dimidiatum from the UAE with reference specimens of Botryosphaeriaceae family validated the identity of the pathogen. To manage the disease, the chemical fungicides, Protifert®, Cidely® Top and Amistrar® Top, significantly inhibited mycelial growth and reduced conidial numbers of N. dimidiatum in laboratory and greenhouse experiments. The described "apple bioassay" is an innovative approach that can be useful when performing fungicide treatment studies. Under field conditions, Cidely® Top proved to be the most effective fungicide against N. dimidiatum among all tested treatments. Our data suggest that the causal agent of stem canker disease on royal poinciana in the UAE is N. dimidiatum.
Collapse
Affiliation(s)
- Seham M. Al Raish
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, UAE; (S.M.A.R.); (A.S.); (K.A.)
| | - Esam Eldin Saeed
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain 15551, UAE;
| | - Arjun Sham
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, UAE; (S.M.A.R.); (A.S.); (K.A.)
| | - Khulood Alblooshi
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, UAE; (S.M.A.R.); (A.S.); (K.A.)
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, UAE; (S.M.A.R.); (A.S.); (K.A.)
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain 15551, UAE;
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, UAE; (S.M.A.R.); (A.S.); (K.A.)
| |
Collapse
|
31
|
Sham A, Al-Ashram H, Whitley K, Iratni R, El-Tarabily KA, AbuQamar SF. Metatranscriptomic Analysis of Multiple Environmental Stresses Identifies RAP2.4 Gene Associated with Arabidopsis Immunity to Botrytis cinerea. Sci Rep 2019; 9:17010. [PMID: 31740741 PMCID: PMC6861241 DOI: 10.1038/s41598-019-53694-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/24/2019] [Indexed: 01/18/2023] Open
Abstract
In this study, we aimed to identify common genetic components during stress response responsible for crosstalk among stresses, and to determine the role of differentially expressed genes in Arabidopsis-Botrytis cinerea interaction. Of 1,554 B. cinerea up-regulated genes, 24%, 1.4% and 14% were induced by biotic, abiotic and hormonal treatments, respectively. About 18%, 2.5% and 22% of B. cinerea down-regulated genes were also repressed by the same stress groups. Our transcriptomic analysis indicates that plant responses to all tested stresses can be mediated by commonly regulated genes; and protein-protein interaction network confirms the cross-interaction between proteins regulated by these genes. Upon challenges to individual or multiple stress(es), accumulation of signaling molecules (e.g. hormones) plays a major role in the activation of downstream defense responses. In silico gene analyses enabled us to assess the involvement of RAP2.4 (related to AP2.4) in plant immunity. Arabidopsis RAP2.4 was repressed by B. cinerea, and its mutants enhanced resistance to the same pathogen. To the best of our knowledge, this is the first report demonstrating the role of RAP2.4 in plant defense against B. cinerea. This research can provide a basis for breeding programs to increase tolerance and improve yield performance in crops.
Collapse
Affiliation(s)
- Arjun Sham
- Department of Biology, United Arab Emirates University, 15551, Al-Ain, UAE
| | | | - Kenna Whitley
- Department of Biology, United Arab Emirates University, 15551, Al-Ain, UAE
| | - Rabah Iratni
- Department of Biology, United Arab Emirates University, 15551, Al-Ain, UAE
| | - Khaled A El-Tarabily
- Department of Biology, United Arab Emirates University, 15551, Al-Ain, UAE. .,School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia.
| | - Synan F AbuQamar
- Department of Biology, United Arab Emirates University, 15551, Al-Ain, UAE.
| |
Collapse
|
32
|
Zhu X, Ye L, Ding X, Gao Q, Xiao S, Tan Q, Huang J, Chen W, Li X. Transcriptomic analysis reveals key factors in fruit ripening and rubbery texture caused by 1-MCP in papaya. BMC PLANT BIOLOGY 2019; 19:309. [PMID: 31299898 PMCID: PMC6626363 DOI: 10.1186/s12870-019-1904-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/25/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Ethylene promotes fruit ripening whereas 1-methylcyclopropene (1-MCP), a non-toxic antagonist of ethylene, delays fruit ripening via the inhibition of ethylene receptor. However, unsuitable 1-MCP treatment can cause fruit ripening disorders. RESULTS In this study, we show that short-term 1-MCP treatment (400 nL•L- 1, 2 h) significantly delays papaya fruit ripening with normal ripening characteristics. However, long-term 1-MCP treatment (400 nL•L- 1, 16 h) causes a "rubbery" texture of fruit. The comparative transcriptome analysis showed that a total of 5529 genes were differently expressed during fruit ripening compared to freshly harvested fruits. Comprehensive functional enrichment analysis showed that the metabolic pathways of carbon metabolism, plant hormone signal transduction, biosynthesis of amino acids, and starch and sucrose metabolism are involved in fruit ripening. 1-MCP treatment significantly affected fruit transcript levels. A total of 3595 and 5998 differently expressed genes (DEGs) were identified between short-term 1-MCP, long-term 1-MCP treatment and the control, respectively. DEGs are mostly enriched in the similar pathway involved in fruit ripening. A large number of DEGs were also identified between long-term and short-term 1-MCP treatment, with most of the DEGs being enriched in carbon metabolism, starch and sucrose metabolism, plant hormone signal transduction, and biosynthesis of amino acids. The 1-MCP treatments accelerated the lignin accumulation and delayed cellulose degradation during fruit ripening. Considering the rubbery phenotype, we inferred that the cell wall metabolism and hormone signal pathways are closely related to papaya fruit ripening disorder. The RNA-Seq output was confirmed using RT-qPCR by 28 selected genes that were involved in cell wall metabolism and hormone signal pathways. CONCLUSIONS These results showed that long-term 1-MCP treatment severely inhibited ethylene signaling and the cell wall metabolism pathways, which may result in the failure of cell wall degradation and fruit softening. Our results reveal multiple ripening-associated events during papaya fruit ripening and provide a foundation for understanding the molecular mechanisms underlying 1-MCP treatment on fruit ripening and the regulatory networks.
Collapse
Affiliation(s)
- Xiaoyang Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642 Guangdong China
| | - Lanlan Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642 Guangdong China
| | - Xiaochun Ding
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642 Guangdong China
| | - Qiyang Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642 Guangdong China
| | - Shuangling Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642 Guangdong China
| | - Qinqin Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642 Guangdong China
| | - Jiling Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642 Guangdong China
| | - Weixin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642 Guangdong China
| | - Xueping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642 Guangdong China
| |
Collapse
|
33
|
Wang M, Du Y, Liu C, Yang X, Qin P, Qi Z, Ji M, Li X. Development of novel 2-substituted acylaminoethylsulfonamide derivatives as fungicides against Botrytis cinerea. Bioorg Chem 2019; 87:56-69. [DOI: 10.1016/j.bioorg.2019.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/16/2022]
|
34
|
Sui Y, Ma Z, Meng X. Proteomic analysis of the inhibitory effect of oligochitosan on the fungal pathogen, Botrytis cinerea. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2622-2628. [PMID: 30417388 DOI: 10.1002/jsfa.9480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND The fungal pathogen Botrytis cinerea infects a broad range of horticultural plants worldwide, resulting in significant economic losses. A derivative of chitosan, oligochitosan, has been reported to be an eco-friendly alternative to synthetic fungicides. RESULTS Oligochitosan can greatly inhibit B. cinerea spore germination and induce protein carbonylation. To further investigate the molecular mechanism underlying the inhibitory effect, a comparative proteome analysis was conducted of oligochitosan-treated versus non-treated B. cinerea spores. The cellular proteins were obtained from B. cinerea spore samples and subjected to two-dimensional gel electrophoresis. In total, 21 differentially expressed proteins (DEPs) were identified. Three DEPs were up-regulated in the oligochitosan-treated versus the untreated spores, including scytalone dehydratase and a serine carboxypeptidase III precursor. By contrast, seven DEPs, including Hsp 88 and cell division cycle protein 48, were down-regulated by oligochitosan treatment. Notably, 10 DEPs, including phosphatidylserine decarboxylase proenzyme and ATP-dependent molecular chaperone HSC82, were only detected in the control spores, whereas one DEP, a non-annotated predicted protein, was only detected in the oligochitosan-treated spores. CONCLUSION Oligochitosan may affect the spore germination of B. cinerea by impairing protein function. These findings have practical implications with respect to the use of oligochitosan for controlling fungal pathogens. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuan Sui
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | - Zengxin Ma
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xianghong Meng
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
35
|
Haile ZM, Nagpala-De Guzman EG, Moretto M, Sonego P, Engelen K, Zoli L, Moser C, Baraldi E. Transcriptome Profiles of Strawberry ( Fragaria vesca) Fruit Interacting With Botrytis cinerea at Different Ripening Stages. FRONTIERS IN PLANT SCIENCE 2019; 10:1131. [PMID: 31620156 PMCID: PMC6759788 DOI: 10.3389/fpls.2019.01131] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/15/2019] [Indexed: 05/04/2023]
Abstract
Gray mold caused by Botrytis cinerea is a major cause of economic losses in strawberry fruit production, limiting fruit shelf life and commercialization. When the fungus infects Fragaria × ananassa strawberry at flowering or unripe fruit stages, symptoms develop after an extended latent phase on ripe fruits before or after harvesting. To elucidate the growth kinetics of B. cinerea on flower/fruit and the molecular responses associated with low susceptibility of unripe fruit stages, woodland strawberry Fragaria vesca flowers and fruits, at unripe white and ripe red stages, were inoculated with B. cinerea. Quantification of fungal genomic DNA within 72 h postinoculation (hpi) showed limited fungal growth on open flower and white fruit, while on red fruit, the growth was exponential starting from 24 hpi and sporulation was observed within 48 hpi. RNA sequencing applied to white and red fruit at 24 hpi showed that a total of 2,141 genes (12.5% of the total expressed genes) were differentially expressed due to B. cinerea infection. A broad transcriptional reprogramming was observed in both unripe and ripe fruits, involving in particular receptor and signaling, secondary metabolites, and defense response pathways. Membrane-localized receptor-like kinases and nucleotide-binding site leucine-rich repeat genes were predominant in the surveillance system of the fruits, most of them being downregulated in white fruits and upregulated in red fruits. In general, unripe fruits exhibited a stronger defense response than red fruits. Genes encoding for pathogenesis-related proteins and flavonoid polyphenols as well as genes involved in cell-wall strengthening were upregulated, while cell-softening genes appeared to be switched off. As a result, B. cinerea remained quiescent in white fruits, while it was able to colonize ripe red fruits.
Collapse
Affiliation(s)
- Zeraye Mehari Haile
- Laboratory of Biotechnology and Plant Pathology, DISTAL, University of Bologna, Bologna, Italy
- Plant Protection Research Division of Melkasa Agricultural Research Center, Ethiopian Institute of Agricultural Research (EIAR), Addis Ababa, Ethiopia
- Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | | | - Marco Moretto
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Paolo Sonego
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Kristof Engelen
- ESAT-ELECTA, Electrical Energy and Computer Architectures, Leuven, Belgium
| | - Lisa Zoli
- Laboratory of Biotechnology and Plant Pathology, DISTAL, University of Bologna, Bologna, Italy
| | - Claudio Moser
- Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Elena Baraldi
- Laboratory of Biotechnology and Plant Pathology, DISTAL, University of Bologna, Bologna, Italy
- *Correspondence: Elena Baraldi,
| |
Collapse
|
36
|
Ryu M, Mishra RC, Jeon J, Lee SK, Bae H. Drought-induced susceptibility for Cenangium ferruginosum leads to progression of Cenangium-dieback disease in Pinus koraiensis. Sci Rep 2018; 8:16368. [PMID: 30401938 PMCID: PMC6219526 DOI: 10.1038/s41598-018-34318-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/15/2018] [Indexed: 11/09/2022] Open
Abstract
Recently, the occurrence of "Cenangium-dieback" has been frequent and devastating. Cenangium-dieback is caused by an endophytic fungus Cenangium ferruginosum in stressed pine trees. Progression of the disease in terms of molecular interaction between host and pathogen is not well studied and there is a need to develop preventive strategies. Thus, we simulated disease conditions and studied the associated transcriptomics, metabolomics, and hormonal changes. Pinus koraiensis seedlings inoculated with C. ferruginosum were analyzed both under drought and well-watered conditions. Transcriptomic analysis suggested decreased expression of defense-related genes in C. ferruginosum-infected seedlings experiencing water-deficit. Further, metabolomic analysis indicated a decrease in the key antimicrobial terpenoids, flavonoids, and phenolic acids. Hormonal analysis revealed a drought-induced accumulation of abscisic acid and a corresponding decline in the defense-associated jasmonic acid levels. Pathogen-associated changes were also studied by treating C. ferruginosum with metabolic extracts from pine seedlings (with and without drought) and polyethylene glycol to simulate the effects of direct drought. From RNA sequencing and metabolomic analysis it was determined that drought did not directly induce pathogenicity of C. ferruginosum. Collectively, we propose that drought weakens pine immunity, which facilitates increased C. ferruginosum growth and results in conversion of the endophyte into the phytopathogen causing dieback.
Collapse
Affiliation(s)
- Minji Ryu
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Ratnesh Chandra Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Junhyun Jeon
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Sun Keun Lee
- Division of Forest Insect Pests and Diseases, National Institute of Forest Science, Seoul, 02455, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
37
|
Naureen Z, Sham A, Al Ashram H, Gilani SA, Al Gheilani S, Mabood F, Hussain J, Al Harrasi A, AbuQamar SF. Effect of phosphate nutrition on growth, physiology and phosphate transporter expression of cucumber seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:211-222. [PMID: 29614440 DOI: 10.1016/j.plaphy.2018.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
Although abundantly present in soils, inorganic phosphate (Pi) acquisition by plants is highly dependent on the transmembrane phosphate transporter (PT) gene family. Cucumber (Cucumis sativus) requires a large amount of phosphorus (P). The purpose of this study was to isolate the CsPT2-1 from cucumber roots, and to determine the influence of Pi nutrition on cucumber growth, metabolism and transcript levels of CsPT2-1 in tissues. Full length CsPT2-1 was cloned and phylogenetically identified. In two greenhouse experiments, P-deficient seedlings provided with low or high P concentrations were sampled at 10 and 21 days post treatment, respectively. Addition of P dramatically reduced growth of roots but not shoots. Supplying plants with high P resulted in increased total protein in leaves. Acid phosphatase activity increased significantly in leaves at any rate higher than 4 mM P. Increasing P concentration had a notable decrease in glucose concentrations in leaves of plants supplied with >0.5 mM P. In roots, glucose and starch concentrations increased with increasing P supply. Steady-state transcript levels of CsPT2-1 were high in P-deprived roots, but declined when plants were provided >10 mM P. To our knowledge, this is the first report focusing on a PT and its expression levels in cucumber.
Collapse
Affiliation(s)
- Zakira Naureen
- Department of Biological Sciences and Chemistry, University of Nizwa, Nizwa, Oman
| | - Arjun Sham
- Department of Biology, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates
| | - Hibatullah Al Ashram
- Department of Biology, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates
| | - Syed A Gilani
- Department of Biological Sciences and Chemistry, University of Nizwa, Nizwa, Oman
| | - Salma Al Gheilani
- Department of Biological Sciences and Chemistry, University of Nizwa, Nizwa, Oman
| | - Fazal Mabood
- Department of Biological Sciences and Chemistry, University of Nizwa, Nizwa, Oman
| | - Javid Hussain
- Department of Biological Sciences and Chemistry, University of Nizwa, Nizwa, Oman
| | - Ahmed Al Harrasi
- UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa, Oman
| | - Synan F AbuQamar
- Department of Biology, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates.
| |
Collapse
|
38
|
Tian L, Shi S, Nasir F, Chang C, Li W, Tran LSP, Tian C. Comparative analysis of the root transcriptomes of cultivated and wild rice varieties in response to Magnaporthe oryzae infection revealed both common and species-specific pathogen responses. RICE (NEW YORK, N.Y.) 2018; 11:26. [PMID: 29679239 PMCID: PMC5910329 DOI: 10.1186/s12284-018-0211-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/20/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Magnaporthe oryzae, the causal fungus of rice blast disease, negatively impacts global rice production. Wild rice (Oryza rufipogon), a relative of cultivated rice (O. sativa), possesses unique attributes that enable it to resist pathogen invasion. Although wild rice represents a major resource for disease resistance, relative to current cultivated rice varieties, no prior studies have compared the immune and transcriptional responses in the roots of wild and cultivated rice to M. oryzae. RESULTS In this study, we showed that M. oryzae could act as a typical root-infecting pathogen in rice, in addition to its common infection of leaves, and wild rice roots were more resistant to M. oryzae than cultivated rice roots. Next, we compared the differential responses of wild and cultivated rice roots to M. oryzae using RNA-sequencing (RNA-seq) to unravel the molecular mechanisms underlying the enhanced resistance of the wild rice roots. Results indicated that both common and genotype-specific mechanisms exist in both wild and cultivated rice that are associated with resistance to M. oryzae. In wild rice, resistance mechanisms were associated with lipid metabolism, WRKY transcription factors, chitinase activities, jasmonic acid, ethylene, lignin, and phenylpropanoid and diterpenoid metabolism; while the pathogen responses in cultivated rice were mainly associated with phenylpropanoid, flavone and wax metabolism. Although modulations in primary metabolism and phenylpropanoid synthesis were common to both cultivated and wild rice, the modulation of secondary metabolism related to phenylpropanoid synthesis was associated with lignin synthesis in wild rice and flavone synthesis in cultivated rice. Interestingly, while the expression of fatty acid and starch metabolism-related genes was altered in both wild and cultivated rice in response to the pathogen, changes in lipid acid synthesis and lipid acid degradation were dominant in cultivated and wild rice, respectively. CONCLUSIONS The response mechanisms to M. oryzae were more complex in wild rice than what was observed in cultivated rice. Therefore, this study may have practical implications for controlling M. oryzae in rice plantings and will provide useful information for incorporating and assessing disease resistance to M. oryzae in rice breeding programs.
Collapse
Affiliation(s)
- Lei Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Shaohua Shi
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
| | - Fahad Nasir
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
- School of Life Sciences, Northeast Normal University, Changchun City, Jilin China
| | - Chunling Chang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Weiqiang Li
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam; Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
| |
Collapse
|
39
|
Where are we going with genomics in plant pathogenic bacteria? Genomics 2018; 111:729-736. [PMID: 29678682 DOI: 10.1016/j.ygeno.2018.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022]
Abstract
Genome sequencing is commonly used in research laboratories right now thanks to the rise of high-throughput sequencing with higher speed and output-to-cost ratios. Here, we summarized the application of genomics in different aspects of plant bacterial pathosystems. Genomics has been used in studying the mechanisms of plant-bacteria interactions, and host specificity. It also helps with taxonomy, study of non-cultured bacteria, identification of causal agent, single cell sequencing, population genetics, and meta-transcriptomic. Overall, genomics has significantly improved our understanding of plant-microbe interaction.
Collapse
|
40
|
Chagas FO, Pessotti RDC, Caraballo-Rodríguez AM, Pupo MT. Chemical signaling involved in plant-microbe interactions. Chem Soc Rev 2018; 47:1652-1704. [PMID: 29218336 DOI: 10.1039/c7cs00343a] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microorganisms are found everywhere, and they are closely associated with plants. Because the establishment of any plant-microbe association involves chemical communication, understanding crosstalk processes is fundamental to defining the type of relationship. Although several metabolites from plants and microbes have been fully characterized, their roles in the chemical interplay between these partners are not well understood in most cases, and they require further investigation. In this review, we describe different plant-microbe associations from colonization to microbial establishment processes in plants along with future prospects, including agricultural benefits.
Collapse
Affiliation(s)
- Fernanda Oliveira Chagas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, 14040-903, Ribeirão Preto-SP, Brazil.
| | | | | | | |
Collapse
|
41
|
Transcriptomic responses to biotic stresses in Malus x domestica: a meta-analysis study. Sci Rep 2018; 8:1970. [PMID: 29386527 PMCID: PMC5792587 DOI: 10.1038/s41598-018-19348-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 12/21/2017] [Indexed: 12/21/2022] Open
Abstract
RNA-Seq analysis is a strong tool to gain insight into the molecular responses to biotic stresses in plants. The objective of this work is to identify specific and common molecular responses between different transcriptomic data related to fungi, virus and bacteria attacks in Malus x domestica. We analyzed seven transcriptomic datasets in Malus x domestica divided in responses to fungal pathogens, virus (Apple Stem Grooving Virus) and bacteria (Erwinia amylovora). Data were dissected using an integrated approach of pathway- and gene- set enrichment analysis, Mapman visualization tool, gene ontology analysis and inferred protein-protein interaction network. Our meta-analysis revealed that the bacterial infection enhanced specifically genes involved in sugar alcohol metabolism. Brassinosteroids were upregulated by fungal pathogens while ethylene was highly affected by Erwinia amylovora. Gibberellins and jasmonates were strongly repressed by fungal and viral infections. The protein-protein interaction network highlighted the role of WRKYs in responses to the studied pathogens. In summary, our meta-analysis provides a better understanding of the Malus X domestica transcriptome responses to different biotic stress conditions; we anticipate that these insights will assist in the development of genetic resistance and acute therapeutic strategies. This work would be an example for next meta-analysis works aiming at identifying specific common molecular features linked with biotic stress responses in other specialty crops.
Collapse
|
42
|
Liang Y, Xie SB, Wu CH, Hu Y, Zhang Q, Li S, Fan YG, Leng RX, Pan HF, Xiong HB, Ye DQ. Coagulation cascade and complement system in systemic lupus erythematosus. Oncotarget 2017; 9:14862-14881. [PMID: 29599912 PMCID: PMC5871083 DOI: 10.18632/oncotarget.23206] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/16/2017] [Indexed: 12/26/2022] Open
Abstract
This study was conducted to (1) characterize coagulation cascade and complement system in systemic lupus erythematosus (SLE); (2) evaluate the associations between coagulation cascade, complement system, inflammatory response and SLE disease severity; (3) test the diagnostic value of a combination of D-dimer and C4 for lupus activity. Transcriptomics, proteomics and metabolomics were performed in 24 SLE patients and 24 healthy controls. The levels of ten coagulations, seven complements and three cytokines were measured in 112 SLE patients. Clinical data were collected from 2025 SLE patients. The analysis of multi-omics data revealed the common links for the components of coagulation cascade and complement system. The results of ELISA showed coagulation cascade and complement system had an interaction effect on SLE disease severity, this effect was pronounced among patients with excess inflammation. The analysis of clinical data revealed a combination of D-dimer and C4 provided good diagnostic performance for lupus activity. This study suggested that coagulation cascade and complement system become 'partners in crime', contributing to SLE disease severity and identified the diagnostic value of D-dimer combined with C4for lupus activity.
Collapse
Affiliation(s)
- Yan Liang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | | | - Chang-Hao Wu
- Department of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Yuan Hu
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qin Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, PR China
| | - Si Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, PR China
| | - Yin-Guang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, PR China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, PR China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, PR China
| | - Hua-Bao Xiong
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui, PR China
| |
Collapse
|
43
|
Current understanding of pattern-triggered immunity and hormone-mediated defense in rice (Oryza sativa) in response to Magnaporthe oryzae infection. Semin Cell Dev Biol 2017; 83:95-105. [PMID: 29061483 DOI: 10.1016/j.semcdb.2017.10.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/21/2017] [Accepted: 10/20/2017] [Indexed: 11/22/2022]
Abstract
Plant pathogens represent a huge threat to world food security, affecting both crop production and quality. Although significant progress has been made in improving plant immunity by expressing key, defense-related genes and proteins from different species in transgenic crops, a challenge remains for molecular breeders and biotechnologists to successfully engineer elite, transgenic crop varieties with improved resistance against critical plant pathogens. Upon pathogen attack, including infection of rice (Oryza sativa) by Magnaporthe oryzae, host plants initiate a complex defense response at molecular, biochemical and physiological levels. Plants perceive the presence of pathogens by detecting microbe-associated molecular patterns via pattern recognition receptors, and initiate a first line of innate immunity, the so-called pattern-triggered immunity (PTI). This results in a series of downstream defense responses, including the production of hormones, which collectively function to fend off pathogen attacks. A variety of studies have demonstrated that many genes are involved in the defense response of rice to M. oryzae. In this review, the current understanding of mechanisms that improve rice defense response to M. oryzae will be discussed, with special focus on PTI and the phytohormones ethylene, jasmonic acid, salicylic acid, and abscisic acid; as well as on the mediation of defense signaling mechanisms by PTI and these hormones. Potential target genes that may serve as promising candidates for improving rice immunity against M. oryzae will also be discussed.
Collapse
|
44
|
Saeed EE, Sham A, AbuZarqa A, A Al Shurafa K, S Al Naqbi T, Iratni R, El-Tarabily K, F AbuQamar S. Detection and Management of Mango Dieback Disease in the United Arab Emirates. Int J Mol Sci 2017; 18:E2086. [PMID: 29053600 PMCID: PMC5666768 DOI: 10.3390/ijms18102086] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 11/20/2022] Open
Abstract
Mango is affected by different decline disorders causing significant losses to mango growers. In the United Arab Emirates (UAE), the pathogen was isolated from all tissues sampled from diseased trees affected by Lasiodiplodia theobromae. Symptoms at early stages of the disease included general wilting appearance of mango trees, and dieback of twigs. In advanced stages, the disease symptoms were also characterized by the curling and drying of leaves, leading to complete defoliation of the tree and discolouration of vascular regions of the stems and branches. To substantially reduce the devastating impact of dieback disease on mango, the fungus was first identified based on its morphological and cultural characteristics. Target regions of 5.8S rRNA (ITS) and elongation factor 1-α (EF1-α) genes of the pathogen were amplified and sequenced. We also found that the systemic chemical fungicides, Score®, Cidely® Top, and Penthiopyrad®, significantly inhibited the mycelial growth of L. theobromae both in vitro and in the greenhouse. Cidely® Top proved to be a highly effective fungicide against L. theobromae dieback disease also under field conditions. Altogether, the morphology of the fruiting structures, molecular identification and pathogenicity tests confirm that the causal agent of the mango dieback disease in the UAE is L. theobromae.
Collapse
Affiliation(s)
- Esam Eldin Saeed
- Department of Biology, United Arab Emirates University, Al-Ain 15551, UAE.
| | - Arjun Sham
- Department of Biology, United Arab Emirates University, Al-Ain 15551, UAE.
| | - Ayah AbuZarqa
- Department of Biology, United Arab Emirates University, Al-Ain 15551, UAE.
| | | | | | - Rabah Iratni
- Department of Biology, United Arab Emirates University, Al-Ain 15551, UAE.
| | - Khaled El-Tarabily
- Department of Biology, United Arab Emirates University, Al-Ain 15551, UAE.
| | - Synan F AbuQamar
- Department of Biology, United Arab Emirates University, Al-Ain 15551, UAE.
| |
Collapse
|
45
|
Gomes de Oliveira Dal'Molin C, Nielsen LK. Plant genome-scale reconstruction: from single cell to multi-tissue modelling and omics analyses. Curr Opin Biotechnol 2017; 49:42-48. [PMID: 28806583 DOI: 10.1016/j.copbio.2017.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/17/2017] [Accepted: 07/17/2017] [Indexed: 10/25/2022]
Abstract
In this review, we present the latest developments in plant systems biology with particular emphasis on plant genome-scale reconstructions and multi-omics analyses. Understanding multicellular metabolism is far from trivial and 'omics' data are difficult to interpret in the absence of a systems framework. 'Omics' data appropriately integrated with genome-scale reconstructions and modelling facilitates our understanding of how individual components interact and influence overall cell, tissue or organisms function. Here we present examples of how plant metabolic reconstructions and modelling are used as a systems-based framework for improving our understanding of the plant metabolic processes in single cells and multiple tissues.
Collapse
Affiliation(s)
| | - Lars Keld Nielsen
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
46
|
Mishra B, Sun Y, Ahmed H, Liu X, Mukhtar MS. Global temporal dynamic landscape of pathogen-mediated subversion of Arabidopsis innate immunity. Sci Rep 2017; 7:7849. [PMID: 28798368 PMCID: PMC5552879 DOI: 10.1038/s41598-017-08073-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/29/2017] [Indexed: 12/22/2022] Open
Abstract
The universal nature of networks’ structural and physical properties across diverse systems offers a better prospect to elucidate the interplay between a system and its environment. In the last decade, several large-scale transcriptome and interactome studies were conducted to understand the complex and dynamic nature of interactions between Arabidopsis and its bacterial pathogen, Pseudomonas syringae pv. tomato DC3000. We took advantage of these publicly available datasets and performed “-omics”-based integrative, and network topology analyses to decipher the transcriptional and protein-protein interaction activities of effector targets. We demonstrated that effector targets exhibit shorter distance to differentially expressed genes (DEGs) and possess increased information centrality. Intriguingly, effector targets are differentially expressed in a sequential manner and make for 1% of the total DEGs at any time point of infection with virulent or defense-inducing DC3000 strains. We revealed that DC3000 significantly alters the expression levels of 71% effector targets and their downstream physical interacting proteins in Arabidopsis interactome. Our integrative “-omics”-–based analyses identified dynamic complexes associated with MTI and disease susceptibility. Finally, we discovered five novel plant defense players using a systems biology-fueled top-to-bottom approach and demonstrated immune-related functions for them, further validating the power and resolution of our network analyses.
Collapse
Affiliation(s)
- Bharat Mishra
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Yali Sun
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Hadia Ahmed
- Department of Computer & Information Sciences, University of Alabama at Birmingham, Birmingham, USA
| | - Xiaoyu Liu
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA
| | - M Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA. .,Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA.
| |
Collapse
|
47
|
Saeed EE, Sham A, Salmin Z, Abdelmowla Y, Iratni R, El-Tarabily K, AbuQamar S. Streptomyces globosus UAE1, a Potential Effective Biocontrol Agent for Black Scorch Disease in Date Palm Plantations. Front Microbiol 2017; 8:1455. [PMID: 28824584 PMCID: PMC5534479 DOI: 10.3389/fmicb.2017.01455] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/18/2017] [Indexed: 12/21/2022] Open
Abstract
Many fungal diseases affect date palm causing considerable losses in date production worldwide. We found that the fungicide Cidely® Top inhibited the mycelial growth of the soil-borne pathogenic fungus Thielaviopsis punctulata, the causal agent of black scorch disease of date palm, both in vitro and in vivo. Because the use of biocontrol agents (BCAs) can minimize the impact of pathogen control on economic and environmental concerns related to chemical control, we aimed at testing local actinomycete strains isolated from the rhizosphere soil of healthy date palm cultivated in the United Arab Emirates (UAE) against T. punctulata. The selected isolate can thus be used as a potential agent for integrated disease management programs. In general, the BCA showed antagonism in vitro and in greenhouse experiments against this pathogen. The most promising actinomycete isolate screened showed the highest efficacy against the black scorch disease when applied before or at the same time of inoculation with T. punctulata, compared with BCA or fungicide application after inoculation. The nucleotide sequence and phylogenetic analyses using the 16S ribosomal RNA gene with other Streptomyces spp. in addition to morphological and cultural characteristics revealed that the isolated UAE strain belongs to Streptomyces globosus UAE1. The antagonistic activity of S. globosus against T. punctulata, was associated with the production by this strain of diffusible antifungal metabolites i.e., metabolites that can inhibit mycelial growth of the pathogen. This was evident in the responses of the vegetative growth of pure cultures of the pathogen when exposed to the culture filtrates of the BCA. Altogether, the pathogenicity tests, disease severity indices and mode of action tests confirmed that the BCA was not only capable of suppressing black scorch disease symptoms, but also could prevent the spread of the pathogen, as a potential practical method to improve disease management in the palm plantations. This is the first report of an actinomycete, naturally occurring in the UAE with the potential for use as a BCA in the management of the black scorch disease of date palms in the region.
Collapse
Affiliation(s)
| | | | | | | | | | - Khaled El-Tarabily
- Department of Biology, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Synan AbuQamar
- Department of Biology, United Arab Emirates UniversityAl Ain, United Arab Emirates
| |
Collapse
|
48
|
Isolated Bacillus subtilis strain 330-2 and its antagonistic genes identified by the removing PCR. Sci Rep 2017; 7:1777. [PMID: 28496135 PMCID: PMC5431837 DOI: 10.1038/s41598-017-01940-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/04/2017] [Indexed: 11/25/2022] Open
Abstract
Plant growth-promoting bacteria (PGPB) may trigger tolerance against biotic/abiotic stresses and growth enhancement in plants. In this study, an endophytic bacterial strain from rapeseed was isolated to assess its role in enhancing plant growth and tolerance to abiotic stresses, as well as banded leaf and sheath blight disease in maize. Based on 16S rDNA and BIOLOG test analysis, the 330-2 strain was identified as Bacillus subtilis. The strain produced indole-3-acetic acid, siderophores, lytic enzymes and solubilized different sources of organic/inorganic phosphates and zinc. Furthermore, the strain strongly suppressed the in vitro growth of Rhizoctonia solani AG1-IA, Botrytis cinerea, Fusarium oxysporum, Alternaria alternata, Cochliobolus heterostrophus, and Nigrospora oryzae. The strain also significantly increased the seedling growth (ranging 14–37%) of rice and maize. Removing PCR analysis indicated that 114 genes were differentially expressed, among which 10%, 32% and 10% were involved in antibiotic production (e.g., srfAA, bae, fen, mln, and dfnI), metabolism (e.g., gltA, pabA, and ggt) and transportation of nutrients (e.g., fhu, glpT, and gltT), respectively. In summary, these results clearly indicate the effectiveness and mechanisms of B. subtilis strain 330-2 in enhancing plant growth, as well as tolerance to biotic/abiotic stresses, which suggests that the strain has great potential for commercialization as a vital biological control agent.
Collapse
|
49
|
Sham A, Moustafa K, Al-Shamisi S, Alyan S, Iratni R, AbuQamar S. Microarray analysis of Arabidopsis WRKY33 mutants in response to the necrotrophic fungus Botrytis cinerea. PLoS One 2017; 12:e0172343. [PMID: 28207847 PMCID: PMC5313235 DOI: 10.1371/journal.pone.0172343] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/03/2017] [Indexed: 11/19/2022] Open
Abstract
The WRKY33 transcription factor was reported for resistance to the necrotrophic fungus Botrytis cinerea. Using microarray-based analysis, we compared Arabidopsis WRKY33 overexpressing lines and wrky33 mutant that showed altered susceptibility to B. cinerea with their corresponding wild-type plants. In the wild-type, about 1660 genes (7% of the transcriptome) were induced and 1054 genes (5% of the transcriptome) were repressed at least twofold at early stages of inoculation with B. cinerea, confirming previous data of the contribution of these genes in B. cinerea resistance. In Arabidopsis wild-type plant infected with B. cinerea, the expressions of the differentially expressed genes encoding for proteins and metabolites involved in pathogen defense and non-defense responses, seem to be dependent on a functional WRKY33 gene. The expression profile of 12-oxo-phytodienoic acid- and phytoprostane A1-treated Arabidopsis plants in response to B. cinerea revealed that cyclopentenones can also modulate WRKY33 regulation upon inoculation with B. cinerea. These results support the role of electrophilic oxylipins in mediating plant responses to B. cinerea infection through the TGA transcription factor. Future directions toward the identification of the molecular components in cyclopentenone signaling will elucidate the novel oxylipin signal transduction pathways in plant defense.
Collapse
Affiliation(s)
- Arjun Sham
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | | | - Shamma Al-Shamisi
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sofyan Alyan
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Synan AbuQamar
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
50
|
Landi L, De Miccolis Angelini RM, Pollastro S, Feliziani E, Faretra F, Romanazzi G. Global Transcriptome Analysis and Identification of Differentially Expressed Genes in Strawberry after Preharvest Application of Benzothiadiazole and Chitosan. FRONTIERS IN PLANT SCIENCE 2017; 8:235. [PMID: 28286508 PMCID: PMC5323413 DOI: 10.3389/fpls.2017.00235] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/07/2017] [Indexed: 05/07/2023]
Abstract
The use of resistance inducers is a novel strategy to elicit defense responses in strawberry fruit to protect against preharvest and postharvest decay. However, the mechanisms behind the specific resistance inducers are not completely understood. Here, global transcriptional changes in strawberry fruit were investigated using RNA-Seq technology. Preharvest, benzothiadiazole (BTH) and chitosan were applied to the plant canopy, and the fruit were harvested at 6, 12, and 24 h post-treatment. Overall, 5,062 and 5,210 differentially expressed genes (fold change ≥ 2) were identified in these fruits under the BTH and chitosan treatments, respectively, as compared to the control expression. About 80% of these genes were differentially expressed by both elicitors. Comprehensive functional enrichment analysis highlighted different gene modulation over time for transcripts associated with photosynthesis and heat-shock proteins, according to elicitor. Up-regulation of genes associated with reprogramming of protein metabolism was observed in fruit treated with both elicitors, which led to increased storage proteins. Several genes associated with the plant immune system, hormone metabolism, systemic acquired resistance, and biotic and abiotic stresses were differentially expressed in treated versus untreated plants. The RNA-Seq output was confirmed using RT-qPCR for 12 selected genes. This study demonstrates that these two elicitors affect cell networks associated with plant defenses in different ways, and suggests a role for chloroplasts as the primary target in this modulation of the plant defense responses, which actively communicate these signals through changes in redox status. The genes identified in this study represent markers to better elucidate plant/pathogen/resistance-inducer interactions, and to plan novel sustainable disease management strategies.
Collapse
Affiliation(s)
- Lucia Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic UniversityAncona, Italy
| | | | - Stefania Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari ‘Aldo Moro’Bari, Italy
| | - Erica Feliziani
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic UniversityAncona, Italy
| | - Franco Faretra
- Department of Soil, Plant and Food Sciences, University of Bari ‘Aldo Moro’Bari, Italy
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic UniversityAncona, Italy
- *Correspondence: Gianfranco Romanazzi,
| |
Collapse
|