1
|
Hoberg N, Harms K, Surup F, Rühl M. Bifunctional Sesquiterpene/Diterpene Synthase Agr2 from Cyclocybe aegerita Gives Rise to the Novel Diterpene Cyclocybene. ACS Chem Biol 2024; 19:2144-2151. [PMID: 39293797 PMCID: PMC11495317 DOI: 10.1021/acschembio.4c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
Cyclocybe aegerita is a model mushroom belonging to the fungal phylum Basidiomycota. Among others, C. aegerita is known for its diverse terpenome, containing various volatile and nonvolatile terpenes and terpenoids. Here, we deepen the knowledge on their biosynthetic pathways by studying the terpene synthase Agr2 in detail. In contrast to previous studies, the heterologous production of Agr2 in the agaric host Coprinopsis cinerea revealed the production of two terpenes, one of which was the already known sesquiterpene viridiflorene. The other one was a so far unknown diterpene that had to be isolated and purified by means of preparative RP-HPLC for structure elucidation. 1D- and 2D-NMR experiments revealed the compound as the novel diterpene cyclocybene, pointing to the bifunctionality of Agr2 to produce both a sesquiterpene and a diterpene.
Collapse
Affiliation(s)
- Nikolas Hoberg
- Department
of Biology and Chemistry, Justus-Liebig-University
Giessen (JLU) Institute of Food Chemistry and Food Biotechnology, Heinrich-Buff-Ring 17, Giessen 35392, Germany
| | - Karen Harms
- Department
Microbial Drugs and German Center for Infection Research (DZIF), partner
side Hannover − Braunschweig, Helmholtz
Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, Braunschweig 38124, Germany
| | - Frank Surup
- Department
Microbial Drugs and German Center for Infection Research (DZIF), partner
side Hannover − Braunschweig, Helmholtz
Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, Braunschweig 38124, Germany
| | - Martin Rühl
- Department
of Biology and Chemistry, Justus-Liebig-University
Giessen (JLU) Institute of Food Chemistry and Food Biotechnology, Heinrich-Buff-Ring 17, Giessen 35392, Germany
- Fraunhofer
Institute for Molecular Biology and Applied Ecology IME Business Area
Bioressources, Ohlebergsweg
12, Giessen 35392, Germany
| |
Collapse
|
2
|
Ivamoto-Suzuki ST, Celedón JM, Yuen MMS, Kitzberger CSG, Silva Domingues D, Bohlmann J, Protasio Pereira LF. Functional Characterization of ent-Copalyl Diphosphate Synthase and Kaurene Synthase Genes from Coffea arabica L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15863-15873. [PMID: 37816128 DOI: 10.1021/acs.jafc.2c09087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The biochemical profile of coffee beans translates directly into quality traits, nutraceutical and health promoting properties of the coffee beverage. Ent-kaurene is the ubiquitous precursor for gibberellin biosynthesis in plants, but it also serves as an intermediate in specialized (i.e., secondary) diterpenoid metabolism that leads to a diversity of more than 1,000 different metabolites. Nutraceutical effects on human health attributed to diterpenes include antioxidant, anticarcinogenic, and anti-inflammatory properties. Cafestol (CAF) and kahweol (KAH) are two diterpenes found exclusively in the Coffea genus. Our objective was to identify and functionally characterize genes involved in the central step of ent-kaurene production. We identified 17 putative terpene synthase genes in the transcriptome of Coffea arabica. Two ent-copalyl diphosphate synthase (CaCPS) and three kaurene synthase (CaKS) were selected and manually annotated. Transcript expression profiles of CaCPS1 and CaKS3 best matched the CAF and KAH metabolite profiles in different tissues. CaCPS1 and CaKS3 proteins were heterologously expressed and functionally characterized. CaCPS1 catalyzes the cyclization of geranylgeranyl diphosphate (GGPP) to ent-copalyl diphosphate (ent-CPP), which is converted to ent-kaurene by CaKS3. Knowledge about the central steps of diterpene formation in coffee provides a foundation for future characterization of the subsequent enzymes involved in CAF and KAH biosynthesis.
Collapse
Affiliation(s)
- Suzana Tiemi Ivamoto-Suzuki
- Grupo de Genômica e Transcriptômica em Plantas, Instituto de Biociências, Departamento de Biodiversidade, Universidade Estadual Paulista, CEP 13506-900 Rio Claro, Sao Paulo, Brazil
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver, BC, Canada
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Estadual de Londrina, 86057-970 Londrina, Brazil
| | - José Miguel Celedón
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver, BC, Canada
| | - Macaire M S Yuen
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver, BC, Canada
| | | | - Douglas Silva Domingues
- Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Genética, Universidade de São Paulo, 13418-900 Piracicaba, Brazil
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver, BC, Canada
| | - Luiz Filipe Protasio Pereira
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Café, 70770-901 Brasília, Brazil
- Laboratório de Biotecnologia Vegetal, Instituto de Desenvolvimento Rural do Paraná, 86047-902 Londrina, Brazil
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Estadual de Londrina, 86057-970 Londrina, Brazil
| |
Collapse
|
3
|
Du YQ, Gao Y, Zang Y, Li J, Li XW, Guo YW. Extending the record of dolabellane-type diterpenoids from the soft coral Clavularia viridis: Structures and stereochemistry. PHYTOCHEMISTRY 2023; 210:113671. [PMID: 37024001 DOI: 10.1016/j.phytochem.2023.113671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Five undescribed dolabellane-type diterpenoids (1-5), together with three related known ones (6-8), were isolated from the soft coral Clavularia viridis. Their structures and stereochemistry were elucidated by extensive spectroscopic analysis and NMR calculation with DP4+ probability analysis. The absolute configurations of 1 and 5 were unambiguously determined by X-ray crystallographic analysis. A plausible biosynthetic connection between undescribed compounds 1-5 was proposed.
Collapse
Affiliation(s)
- Ye-Qing Du
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuan Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Shandong Laboratory of Yantai Drug Discovery, Bohai rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Xu-Wen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Shandong Laboratory of Yantai Drug Discovery, Bohai rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Shandong Laboratory of Yantai Drug Discovery, Bohai rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
4
|
Krause T, Wiesinger P, González-Cabanelas D, Lackus N, Köllner TG, Klüpfel T, Williams J, Rohwer J, Gershenzon J, Schmidt A. HDR, the last enzyme in the MEP pathway, differently regulates isoprenoid biosynthesis in two woody plants. PLANT PHYSIOLOGY 2023; 192:767-788. [PMID: 36848194 DOI: 10.1093/plphys/kiad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 06/01/2023]
Abstract
Dimethylallyl diphosphate (DMADP) and isopentenyl diphosphate (IDP) serves as the universal C5 precursors of isoprenoid biosynthesis in plants. These compounds are formed by the last step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway, catalyzed by (E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate reductase (HDR). In this study, we investigated the major HDR isoforms of two woody plant species, Norway spruce (Picea abies) and gray poplar (Populus × canescens), to determine how they regulate isoprenoid formation. Since each of these species has a distinct profile of isoprenoid compounds, they may require different proportions of DMADP and IDP with proportionally more IDP being needed to make larger isoprenoids. Norway spruce contained two major HDR isoforms differing in their occurrence and biochemical characteristics. PaHDR1 produced relatively more IDP than PaHDR2 and it encoding gene was expressed constitutively in leaves, likely serving to form substrate for production of carotenoids, chlorophylls, and other primary isoprenoids derived from a C20 precursor. On the other hand, Norway spruce PaHDR2 produced relatively more DMADP than PaHDR1 and its encoding gene was expressed in leaves, stems, and roots, both constitutively and after induction with the defense hormone methyl jasmonate. This second HDR enzyme likely forms a substrate for the specialized monoterpene (C10), sesquiterpene (C15), and diterpene (C20) metabolites of spruce oleoresin. Gray poplar contained only one dominant isoform (named PcHDR2) that produced relatively more DMADP and the gene of which was expressed in all organs. In leaves, where the requirement for IDP is high to make the major carotenoid and chlorophyll isoprenoids derived from C20 precursors, excess DMADP may accumulate, which could explain the high rate of isoprene (C5) emission. Our results provide new insights into the biosynthesis of isoprenoids in woody plants under conditions of differentially regulated biosynthesis of the precursors IDP and DMADP.
Collapse
Affiliation(s)
- Toni Krause
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Piera Wiesinger
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Diego González-Cabanelas
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Nathalie Lackus
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Thomas Klüpfel
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, Germany
| | - Jonathan Williams
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, Germany
| | - Johann Rohwer
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602 Stellenbosch, South Africa
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| |
Collapse
|
5
|
Biosynthesis of fusicoccane-type diterpenoids featuring a 5–8–5 tricyclic carbon skeleton. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Ali M, Miao L, Soudy FA, Darwish DBE, Alrdahe SS, Alshehri D, Benedito VA, Tadege M, Wang X, Zhao J. Overexpression of Terpenoid Biosynthesis Genes Modifies Root Growth and Nodulation in Soybean (Glycine max). Cells 2022; 11:cells11172622. [PMID: 36078031 PMCID: PMC9454526 DOI: 10.3390/cells11172622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 12/03/2022] Open
Abstract
Root nodule formation in many leguminous plants is known to be affected by endogen ous and exogenous factors that affect formation, development, and longevity of nodules in roots. Therefore, it is important to understand the role of the genes which are involved in the regulation of the nodulation signaling pathway. This study aimed to investigate the effect of terpenoids and terpene biosynthesis genes on root nodule formation in Glycine max. The study aimed to clarify not only the impact of over-expressing five terpene synthesis genes isolated from G. max and Salvia guaranitica on soybean nodulation signaling pathway, but also on the strigolactones pathway. The obtained results revealed that the over expression of GmFDPS, GmGGPPS, SgGPS, SgFPPS, and SgLINS genes enhanced the root nodule numbers, fresh weight of nodules, root, and root length. Moreover, the terpene content in the transgenic G. max hairy roots was estimated. The results explored that the monoterpenes, sesquiterpenes and diterpenes were significantly increased in transgenic soybean hairy roots in comparison with the control. Our results indicate the potential effects of terpenoids and terpene synthesis genes on soybean root growth and nodulation. The study provides novel insights for understanding the epistatic relationship between terpenoids, root development, and nodulation in soybean.
Collapse
Affiliation(s)
- Mohammed Ali
- Egyptian Deserts Gene Bank, North Sinai Research Station, Desert Research Center, Department of Genetic Resources, Cairo 11753, Egypt
| | - Long Miao
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Fathia A. Soudy
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Doaa Bahaa Eldin Darwish
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35511, Egypt
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Salma Saleh Alrdahe
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Dikhnah Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Vagner A. Benedito
- Plant and Soil Sciences Division, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV 26506, USA
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA
| | - Xiaobo Wang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (X.W.); (J.Z.); Tel.: +86-186-7404-7685 (J.Z.)
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (X.W.); (J.Z.); Tel.: +86-186-7404-7685 (J.Z.)
| |
Collapse
|
7
|
Domingues DS, Oliveira LS, Lemos SMC, Barros GCC, Ivamoto-Suzuki ST. A Bioinformatics Tool for Efficient Retrieval of High-Confidence Terpene Synthases (TPS) and Application to the Identification of TPS in Coffea and Quillaja. Methods Mol Biol 2022; 2469:43-53. [PMID: 35508828 DOI: 10.1007/978-1-0716-2185-1_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Terpenoids are a class of compounds that are found in all living organisms. In plants, some terpenoids are part of primary metabolism, but most terpenes found in plants are classified as specialized metabolites, encoded by terpene synthases (TPS). It is not obvious how to assign the putative product of a given TPS using bioinformatics tools. Phylogenetic analyses easily assign TPS into families; however members of the same TPS family can synthetize more than one terpenoid-and, in many biotechnological applications, researchers are more interested in the product of a given TPS rather than its phylogenetic profile. Automated protein annotation can be used to classify TPS based on their products, despite the family they belong to. Here, we implement an automated bioinformatics method, search_TPS, to identify TPS proteins that synthesize mono, sesqui and diterpenes in Angiosperms. We verified the applicability of the method by classifying wet lab validated TPS and applying it to find TPS proteins in Coffea arabica, C. canephora, C. eugenioides, and Quillaja saponaria. Search_TPS is a computational tool based on PERL scripts that carries out a series of HMMER searches against a curated database of TPS profile hidden Markov models. The tool is freely available at https://github.com/liliane-sntn/TPS .
Collapse
Affiliation(s)
- Douglas S Domingues
- Group of Genomics and Transcriptomes in Plants, Institute of Biosciences, São Paulo State University, UNESP, Rio Claro, Brazil.
- Graduate Program in Bioinformatics, Federal University of Technology - Paraná, UTFPR, Cornélio Procópio, Brazil.
- Graduate Program in Genetics, Institute of Biosciences, São Paulo State University, UNESP, Botucatu, Brazil.
- Graduate Program in Plant Biology, Institute of Biosciences, São Paulo State University, UNESP, Rio Claro, Brazil.
| | - Liliane S Oliveira
- Graduate Program in Bioinformatics, Federal University of Technology - Paraná, UTFPR, Cornélio Procópio, Brazil.
| | - Samara M C Lemos
- Group of Genomics and Transcriptomes in Plants, Institute of Biosciences, São Paulo State University, UNESP, Rio Claro, Brazil
- Graduate Program in Genetics, Institute of Biosciences, São Paulo State University, UNESP, Botucatu, Brazil
| | - Gian C C Barros
- Group of Genomics and Transcriptomes in Plants, Institute of Biosciences, São Paulo State University, UNESP, Rio Claro, Brazil
- Graduate Program in Plant Biology, Institute of Biosciences, São Paulo State University, UNESP, Rio Claro, Brazil
| | - Suzana T Ivamoto-Suzuki
- Group of Genomics and Transcriptomes in Plants, Institute of Biosciences, São Paulo State University, UNESP, Rio Claro, Brazil.
- Department of Agronomy, State University of Londrina, UEL, Londrina, Brazil.
| |
Collapse
|
8
|
Ali M, Miao L, Hou Q, Darwish DB, Alrdahe SS, Ali A, Benedito VA, Tadege M, Wang X, Zhao J. Overexpression of Terpenoid Biosynthesis Genes From Garden Sage ( Salvia officinalis) Modulates Rhizobia Interaction and Nodulation in Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:783269. [PMID: 35003167 PMCID: PMC8733304 DOI: 10.3389/fpls.2021.783269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/24/2021] [Indexed: 05/17/2023]
Abstract
In legumes, many endogenous and environmental factors affect root nodule formation through several key genes, and the regulation details of the nodulation signaling pathway are yet to be fully understood. This study investigated the potential roles of terpenoids and terpene biosynthesis genes on root nodule formation in Glycine max. We characterized six terpenoid synthesis genes from Salvia officinalis by overexpressing SoTPS6, SoNEOD, SoLINS, SoSABS, SoGPS, and SoCINS in soybean hairy roots and evaluating root growth and nodulation, and the expression of strigolactone (SL) biosynthesis and early nodulation genes. Interestingly, overexpression of some of the terpenoid and terpene genes increased nodule numbers, nodule and root fresh weight, and root length, while others inhibited these phenotypes. These results suggest the potential effects of terpenoids and terpene synthesis genes on soybean root growth and nodulation. This study provides novel insights into epistatic interactions between terpenoids, root development, and nodulation in soybean root biology and open new avenues for soybean research.
Collapse
Affiliation(s)
- Mohammed Ali
- Egyptian Deserts Gene Bank, North Sinai Research Station, Department of Genetic Resources, Desert Research Center, Cairo, Egypt
| | - Long Miao
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Qiuqiang Hou
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Doaa B. Darwish
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Salma Saleh Alrdahe
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmed Ali
- Department of Plant Agricultural, Faculty of Agriculture Science, Al-Azhar University, Assiut, Egypt
| | - Vagner A. Benedito
- Plant and Soil Sciences Division, Davis College of Agriculture, Natural Resources, and Design, West Virginia University, Morgantown, WV, United States
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, United States
| | - Xiaobo Wang
- College of Agronomy, Anhui Agricultural University, Hefei, China
- *Correspondence: Xiaobo Wang,
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
- Jian Zhao, ; orcid.org/0000-0002-4416-7334
| |
Collapse
|
9
|
Ioannidis K, Dadiotis E, Mitsis V, Melliou E, Magiatis P. Biotechnological Approaches on Two High CBD and CBG Cannabis sativa L. (Cannabaceae) Varieties: In Vitro Regeneration and Phytochemical Consistency Evaluation of Micropropagated Plants Using Quantitative 1H-NMR. Molecules 2020; 25:E5928. [PMID: 33333745 PMCID: PMC7765244 DOI: 10.3390/molecules25245928] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023] Open
Abstract
High cannabidiol (CBD) and cannabigerol (CBG) varieties of Cannabis sativa L., a species with medicinal properties, were regenerated in vitro. Explants of nodal segments including healthy axillary bud, after sterilization, were placed in Murashige-Skoog (MS) culture medium. The shoots formed after 30 days were subcultured in full- or half-strength MS medium supplemented with several concentrations of 6-benzyl-amino-purine (BA) or thidiazuron (TDZ). The highest average number and length of shoots was achieved when both full and half-strength MS media were supplemented with 4.0 μM BA. The presence of 4.0 μM TDZ showed also comparable results. BA and TDZ at concentrations of 4.0, 8.0 μM and 2.0, 4.0 μM respectively, displayed the maximum shooting frequency. The new shoots were transferred on the same media and were either self-rooted or after being enhanced with different concentrations of indole-3-butyric acid (IBA) or α-naphthalene acetic acid (NAA). Presence of 2.0 or 4.0 μM IBA or 4.0 μM NAA resulted to the optimum rooting rates. The maximum average number and length of roots per shoot was observed when the culture media was supplemented with 4.0 μM IBA or NAA. Approximately 92% of the plantlets were successfully established and acclimatized in field. The consistency of the chemical profile of the acclimatized in vitro propagated clones was assessed using quantitative 1H-NMR high throughput screening. In each variety, analysis of the micropropagated plant in comparison with the mother plant showed no statistically significant differences (p ≤ 0.05) in CBD+ cannabidiolic acid (CBDA) and CBG+ cannabigerolic acid (CBGA) content respectively, thus indicating stability of their chemical profile.
Collapse
Affiliation(s)
- Kostas Ioannidis
- Laboratory of Sylviculture, Forest Genetics and Biotechnology, Institute of Mediterranean and Forest Ecosystems, Hellenic Agricultural Organization “Demeter”, Ilissia, 11528 Athens, Greece
| | - Evangelos Dadiotis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (E.D.); (E.M.); (P.M.)
| | | | - Eleni Melliou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (E.D.); (E.M.); (P.M.)
| | - Prokopios Magiatis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (E.D.); (E.M.); (P.M.)
| |
Collapse
|
10
|
Miller GP, Bhat WW, Lanier ER, Johnson SR, Mathieu DT, Hamberger B. The biosynthesis of the anti-microbial diterpenoid leubethanol in Leucophyllum frutescens proceeds via an all-cis prenyl intermediate. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:693-705. [PMID: 32777127 PMCID: PMC7649979 DOI: 10.1111/tpj.14957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/17/2020] [Accepted: 07/16/2020] [Indexed: 05/04/2023]
Abstract
Serrulatane diterpenoids are natural products found in plants from a subset of genera within the figwort family (Scrophulariaceae). Many of these compounds have been characterized as having anti-microbial properties and share a common diterpene backbone. One example, leubethanol from Texas sage (Leucophyllum frutescens) has demonstrated activity against multi-drug-resistant tuberculosis. Leubethanol is the only serrulatane diterpenoid identified from this genus; however, a range of such compounds have been found throughout the closely related Eremophila genus. Despite their potential therapeutic relevance, the biosynthesis of serrulatane diterpenoids has not been previously reported. Here we leverage the simple product profile and high accumulation of leubethanol in the roots of L. frutescens and compare tissue-specific transcriptomes with existing data from Eremophila serrulata to decipher the biosynthesis of leubethanol. A short-chain cis-prenyl transferase (LfCPT1) first produces the rare diterpene precursor nerylneryl diphosphate, which is cyclized by an unusual plastidial terpene synthase (LfTPS1) into the characteristic serrulatane diterpene backbone. Final conversion to leubethanol is catalyzed by a cytochrome P450 (CYP71D616) of the CYP71 clan. This pathway documents the presence of a short-chain cis-prenyl diphosphate synthase, previously only found in Solanaceae, which is likely involved in the biosynthesis of other known diterpene backbones in Eremophila. LfTPS1 represents neofunctionalization of a compartment-switching terpene synthase accepting a novel substrate in the plastid. Biosynthetic access to leubethanol will enable pathway discovery to more complex serrulatane diterpenoids which share this common starting structure and provide a platform for the production and diversification of this class of promising anti-microbial therapeutics in heterologous systems.
Collapse
Affiliation(s)
- Garret P. Miller
- Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMIUSA
| | - Wajid Waheed Bhat
- Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMIUSA
| | - Emily R. Lanier
- Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMIUSA
| | - Sean R. Johnson
- Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMIUSA
| | - Davis T. Mathieu
- Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMIUSA
| | - Björn Hamberger
- Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMIUSA
| |
Collapse
|
11
|
Jiménez-Morales E, Aguilar-Hernández V, Aguilar-Henonin L, Guzmán P. Molecular basis for neofunctionalization of duplicated E3 ubiquitin ligases underlying adaptation to drought tolerance in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:474-492. [PMID: 33164265 DOI: 10.1111/tpj.14938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Multigene families in plants expanded from ancestral genes via gene duplication mechanisms constitute a significant fraction of the coding genome. Although most duplicated genes are lost over time, many are retained in the genome. Clusters of tandemly arrayed genes are commonly found in the plant genome where they can promote expansion of gene families. In the present study, promoter fusion to the GUS reporter gene was used to examine the promoter architecture of duplicated E3 ligase genes that are part of group C in the Arabidopsis thaliana ATL family. Acquisition of gene expression by AtATL78, possibly generated from defective AtATL81 expression, is described. AtATL78 expression was purportedly enhanced by insertion of a TATA box within the core promoter region after a short tandem duplication that occurred during evolution of Brassicaceae lineages. This gene is associated with an adaptation to drought tolerance of A. thaliana. These findings also suggest duplicated genes could serve as a reservoir of tacit genetic information, and expression of these duplicated genes is activated upon acquisition of core promoter sequences. Remarkably, drought transcriptome profiling in response to rehydration suggests that ATL78-dependent gene expression predominantly affects genes with root-specific activities.
Collapse
Affiliation(s)
- Estela Jiménez-Morales
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato, 36824, México
| | - Victor Aguilar-Hernández
- CONACYT, Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, CP 97200, Mérida, Yucatán, México
| | - Laura Aguilar-Henonin
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato, 36824, México
| | - Plinio Guzmán
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato, 36824, México
| |
Collapse
|
12
|
Chen Q, Li J, Liu Z, Mitsuhashi T, Zhang Y, Liu H, Ma Y, He J, Shinada T, Sato T, Wang Y, Liu H, Abe I, Zhang P, Wang G. Molecular Basis for Sesterterpene Diversity Produced by Plant Terpene Synthases. PLANT COMMUNICATIONS 2020; 1:100051. [PMID: 33367256 PMCID: PMC7747971 DOI: 10.1016/j.xplc.2020.100051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/10/2020] [Accepted: 04/26/2020] [Indexed: 05/04/2023]
Abstract
Class I terpene synthase (TPS) generates bioactive terpenoids with diverse backbones. Sesterterpene synthase (sester-TPS, C25), a branch of class I TPSs, was recently identified in Brassicaceae. However, the catalytic mechanisms of sester-TPSs are not fully understood. Here, we first identified three nonclustered functional sester-TPSs (AtTPS06, AtTPS22, and AtTPS29) in Arabidopsis thaliana. AtTPS06 utilizes a type-B cyclization mechanism, whereas most other sester-TPSs produce various sesterterpene backbones via a type-A cyclization mechanism. We then determined the crystal structure of the AtTPS18-FSPP complex to explore the cyclization mechanism of plant sester-TPSs. We used structural comparisons and site-directed mutagenesis to further elucidate the mechanism: (1) mainly due to the outward shift of helix G, plant sester-TPSs have a larger catalytic pocket than do mono-, sesqui-, and di-TPSs to accommodate GFPP; (2) type-A sester-TPSs have more aromatic residues (five or six) in their catalytic pocket than classic TPSs (two or three), which also determines whether the type-A or type-B cyclization mechanism is active; and (3) the other residues responsible for product fidelity are determined by interconversion of AtTPS18 and its close homologs. Altogether, this study improves our understanding of the catalytic mechanism of plant sester-TPS, which ultimately enables the rational engineering of sesterterpenoids for future applications.
Collapse
Affiliation(s)
- Qingwen Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxu Li
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhixi Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Takaaki Mitsuhashi
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuting Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haili Liu
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yihua Ma
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Juan He
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Tetsuro Shinada
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Tsutomu Sato
- Department of Applied Biological Chemistry, Faculty of Agriculture, Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2, Niigata 950-2181, Japan
| | - Yong Wang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Corresponding author
| | - Guodong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100039, China
- Corresponding author
| |
Collapse
|
13
|
Aslam MZ, Lin X, Li X, Yang N, Chen L. Molecular Cloning and Functional Characterization of CpMYC2 and CpBHLH13 Transcription Factors from Wintersweet ( Chimonanthus praecox L.). PLANTS 2020; 9:plants9060785. [PMID: 32585874 PMCID: PMC7356763 DOI: 10.3390/plants9060785] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023]
Abstract
Wintersweet (Chimonanthus praecox L.) is an ornamental and economically significant shrub known for its unique flowering characteristics, especially the emission of abundant floral volatile organic compounds. Thus, an understanding of the molecular mechanism of the production of these compounds is necessary to create new breeds with high volatile production. In this study, two bHLH transcription factors (CpMYC2 and CpbHLH13) of Wintersweet H29 were functionally characterized to illustrate their possible role in the production of volatile compounds. The qRT-PCR results showed that the expression of CpMYC2 and CpbHLH13 increased from the flower budding to full bloom stage, indicating that these two genes may play an essential role in blooming and aroma production in wintersweet. Gas chromatography-mass spectroscopy (GC-MS) analysis revealed that the overexpression of CpMYC2 in arabidopsis (Arabidopsis thaliana) AtMYC2-2 mutant (Salk_083483) and tobacco (Nicotiana tabaccum) genotype Petit Havana SR1 significantly increased floral volatile monoterpene, especially linalool, while the overexpression of CpbHLH13 in Arabidopsis thaliana ecotype Columbia-0 (Col-0) and tobacco genotype SR1 increased floral sesquiterpene β-caryophyllene production in both types of transgenic plants respectively. High expression of terpene synthase (TPS) genes in transgenic A. thaliana along with high expression of CpMYC2 and CpbHLH13 in transgenic plants was also observed. The application of a combination of methyl jasmonic acid (MeJA) and gibberellic acid (GA3) showed an increment in linalool production in CpMYC2-overexpressing arabidopsis plants, and the high transcript level of TPS genes also suggested the involvement of CpMYC2 in the jasmonic acid (JA) signaling pathway. These results indicate that both the CpMYC2 and CpbHLH13 transcription factors of wintersweet are possibly involved in the positive regulation and biosynthesis of monoterpene (linalool) and sesquiterpene (β-caryophyllene) in transgenic plants. This study also indicates the potential application of wintersweet as a valuable genomic material for the genetic modification of floral scent in other flowering plants that produce less volatile compounds.
Collapse
Affiliation(s)
- Muhammad Zeshan Aslam
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (M.Z.A.); (X.L.); (X.L.)
| | - Xiang Lin
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (M.Z.A.); (X.L.); (X.L.)
| | - Xiang Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (M.Z.A.); (X.L.); (X.L.)
| | - Nan Yang
- Southwest Research Centre for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Southwest Forestry University, Kunming 650224, China;
| | - Longqing Chen
- Southwest Research Centre for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Southwest Forestry University, Kunming 650224, China;
- Correspondence:
| |
Collapse
|
14
|
Zhou F, Pichersky E. The complete functional characterisation of the terpene synthase family in tomato. THE NEW PHYTOLOGIST 2020; 226:1341-1360. [PMID: 31943222 PMCID: PMC7422722 DOI: 10.1111/nph.16431] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/05/2020] [Indexed: 05/14/2023]
Abstract
Analysis of the updated reference tomato genome found 34 full-length TPS genes and 18 TPS pseudogenes. Biochemical analysis has now identified the catalytic activities of all enzymes encoded by the 34 TPS genes: one isoprene synthase, 10 exclusively or predominantly monoterpene synthases, 17 sesquiterpene synthases and six diterpene synthases. Among the monoterpene and sesquiterpene and diterpene synthases, some use trans-prenyl diphosphates, some use cis-prenyl diphosphates and some use both. The isoprene synthase is cytosolic; six monoterpene synthases are plastidic, and four are cytosolic; the sesquiterpene synthases are almost all cytosolic, with the exception of one found in the mitochondria; and three diterpene synthases are found in the plastids, one in the cytosol and two in the mitochondria. New trans-prenyltransferases (TPTs) were characterised; together with previously characterised TPTs and cis-prenyltransferases (CPTs), tomato plants can make all cis and trans C10 , C15 and C20 prenyl diphosphates. Every type of plant tissue examined expresses some TPS genes and some TPTs and CPTs. Phylogenetic comparison of the TPS genes from tomato and Arabidopsis shows expansions in each clade of the TPS gene family in each lineage (and inferred losses), accompanied by changes in subcellular localisations and substrate specificities.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborMI48109USA
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
15
|
Gericke O, Hansen NL, Pedersen GB, Kjaerulff L, Luo D, Staerk D, Møller BL, Pateraki I, Heskes AM. Nerylneryl diphosphate is the precursor of serrulatane, viscidane and cembrane-type diterpenoids in Eremophila species. BMC PLANT BIOLOGY 2020; 20:91. [PMID: 32111159 PMCID: PMC7049213 DOI: 10.1186/s12870-020-2293-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/17/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Eremophila R.Br. (Scrophulariaceae) is a diverse genus of plants with species distributed across semi-arid and arid Australia. It is an ecologically important genus that also holds cultural significance for many Indigenous Australians who traditionally use several species as sources of medicines. Structurally unusual diterpenoids, particularly serrulatane and viscidane-types, feature prominently in the chemical profile of many species and recent studies indicate that these compounds are responsible for much of the reported bioactivity. We have investigated the biosynthesis of diterpenoids in three species: Eremophila lucida, Eremophila drummondii and Eremophila denticulata subsp. trisulcata. RESULTS In all studied species diterpenoids were localised to the leaf surface and associated with the occurrence of glandular trichomes. Trichome-enriched transcriptome databases were generated and mined for candidate terpene synthases (TPS). Four TPSs with diterpene biosynthesis activity were identified: ElTPS31 and ElTPS3 from E. lucida were found to produce (3Z,7Z,11Z)-cembratrien-15-ol and 5-hydroxyviscidane, respectively, and EdTPS22 and EdtTPS4, from E. drummondii and E. denticulata subsp. trisulcata, respectively, were found to produce 8,9-dihydroserrulat-14-ene which readily aromatized to serrulat-14-ene. In all cases, the identified TPSs used the cisoid substrate, nerylneryl diphosphate (NNPP), to form the observed products. Subsequently, cis-prenyl transferases (CPTs) capable of making NNPP were identified in each species. CONCLUSIONS We have elucidated two biosynthetic steps towards three of the major diterpene backbones found in this genus. Serrulatane and viscidane-type diterpenoids are promising candidates for new drug leads. The identification of an enzymatic route to their synthesis opens up the possibility of biotechnological production, making accessible a ready source of scaffolds for further modification and bioactivity testing.
Collapse
Affiliation(s)
- Oliver Gericke
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Nikolaj Lervad Hansen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Gustav Blichfeldt Pedersen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Louise Kjaerulff
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Dan Luo
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Irini Pateraki
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Allison Maree Heskes
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark.
- Center for Synthetic Biology "bioSYNergy", Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark.
| |
Collapse
|
16
|
Johnson SR, Bhat WW, Sadre R, Miller GP, Garcia AS, Hamberger B. Promiscuous terpene synthases from Prunella vulgaris highlight the importance of substrate and compartment switching in terpene synthase evolution. THE NEW PHYTOLOGIST 2019; 223:323-335. [PMID: 30843212 PMCID: PMC6593445 DOI: 10.1111/nph.15778] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/22/2019] [Indexed: 05/20/2023]
Abstract
The mint family (Lamiaceae) is well documented as a rich source of terpene natural products. More than 200 diterpene skeletons have been reported from mints, but biosynthetic pathways are known for just a few of these. We crossreferenced chemotaxonomic data with publicly available transcriptomes to select common selfheal (Prunella vulgaris) and its highly unusual vulgarisin diterpenoids as a case study for exploring the origins of diterpene skeletal diversity in Lamiaceae. Four terpene synthases (TPS) from the TPS-a subfamily, including two localised to the plastid, were cloned and functionally characterised. Previous examples of TPS-a enzymes from Lamiaceae were cytosolic and reported to act on the 15-carbon farnesyl diphosphate. Plastidial TPS-a enzymes using the 20-carbon geranylgeranyl diphosphate are known from other plant families, having apparently arisen independently in each family. All four new enzymes were found to be active on multiple prenyl-diphosphate substrates with different chain lengths and stereochemistries. One of the new enzymes catalysed the cyclisation of geranylgeranyl diphosphate into 11-hydroxy vulgarisane, the likely biosynthetic precursor of the vulgarisins. We uncovered the pathway to a rare diterpene skeleton. Our results support an emerging paradigm of substrate and compartment switching as important aspects of TPS evolution and diversification.
Collapse
Affiliation(s)
- Sean R. Johnson
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Wajid Waheed Bhat
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
- Department of Pharmacology and ToxicologyMichigan State UniversityEast LansingMI48824USA
| | - Radin Sadre
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Garret P. Miller
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Alekzander Sky Garcia
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Björn Hamberger
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
17
|
Olanrewaju OS, Ayangbenro AS, Glick BR, Babalola OO. Plant health: feedback effect of root exudates-rhizobiome interactions. Appl Microbiol Biotechnol 2019; 103:1155-1166. [PMID: 30570692 PMCID: PMC6394481 DOI: 10.1007/s00253-018-9556-6] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/01/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022]
Abstract
The well-being of the microbial community that densely populates the rhizosphere is aided by a plant's root exudates. Maintaining a plant's health is a key factor in its continued existence. As minute as rhizospheric microbes are, their importance in plant growth cannot be overemphasized. They depend on plants for nutrients and other necessary requirements. The relationship between the rhizosphere-microbiome (rhizobiome) and plant hosts can be beneficial, non-effectual, or pathogenic depending on the microbes and the plant involved. This relationship, to a large extent, determines the fate of the host plant's survival. Modern molecular techniques have been used to unravel rhizobiome species' composition, but the interplay between the rhizobiome root exudates and other factors in the maintenance of a healthy plant have not as yet been thoroughly investigated. Many functional proteins are activated in plants upon contact with external factors. These proteins may elicit growth promoting or growth suppressing responses from the plants. To optimize the growth and productivity of host plants, rhizobiome microbial diversity and modulatory techniques need to be clearly understood for improved plant health.
Collapse
Affiliation(s)
- Oluwaseyi Samuel Olanrewaju
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, 2735, South Africa
| | - Ayansina Segun Ayangbenro
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, 2735, South Africa
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, 2735, South Africa.
| |
Collapse
|
18
|
Guarino S, Arif MA, Millar JG, Colazza S, Peri E. Volatile unsaturated hydrocarbons emitted by seedlings of Brassica species provide host location cues to Bagrada hilaris. PLoS One 2018; 13:e0209870. [PMID: 30589910 PMCID: PMC6307740 DOI: 10.1371/journal.pone.0209870] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/12/2018] [Indexed: 01/17/2023] Open
Abstract
Bagrada hilaris Burmeister, is a stink bug native to Asia and Africa and invasive in the United States, Mexico, and more recently, South America. This species can cause serious damage to various vegetable crops in the genus Brassica, with seedlings being particularly susceptible to B. hilaris feeding activity. In this study, the role of volatile organic compounds (VOCs) emitted by seedlings of three Brassica species on the host preference of B. hilaris was evaluated. In dual choice arena and olfactometer bioassays, adult painted bugs preferred B. oleracea var. botrytis and B. napus over B. carinata. Volatiles from B. oleracea seedlings were collected and bioassayed with B. hilaris adults and late stage nymphs, using electroantennographic (EAG) and behavioral (olfactometer) techniques. When crude extracts of the VOCs from B. oleracea var. botrytis seedlings and liquid chromatography fractions thereof were bioassayed, B. hilaris adults and nymphs were attracted to the crude extract, and to a non-polar fraction containing hydrocarbons, whereas there were no responses to the more polar fractions. GC-MS analysis indicated that the main constituents of the non-polar fraction was an as yet unidentified diterpene hydrocarbon, with trace amounts of several other diterpene hydrocarbons. The major diterpene occurred in VOCs from both of the preferred host plants B. oleracea and B. napus, but not in VOCs of B. carinata. Our results suggest that this diterpene, alone or in combination with one or more of the minor compounds, is a key mediator in this insect-plant interaction, and could be a good candidate for use in lures for monitoring B. hilaris in the field.
Collapse
Affiliation(s)
- Salvatore Guarino
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Mokhtar Abdulsattar Arif
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Jocelyn G. Millar
- Department of Entomology, University of California, Riverside, California, United States of America
| | - Stefano Colazza
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Ezio Peri
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
19
|
Huang AC, Kautsar SA, Hong YJ, Medema MH, Bond AD, Tantillo DJ, Osbourn A. Unearthing a sesterterpene biosynthetic repertoire in the Brassicaceae through genome mining reveals convergent evolution. Proc Natl Acad Sci U S A 2017; 114:E6005-E6014. [PMID: 28673978 PMCID: PMC5530694 DOI: 10.1073/pnas.1705567114] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sesterterpenoids are a rare terpene class harboring untapped chemodiversity and bioactivities. Their structural diversity originates primarily from the scaffold-generating sesterterpene synthases (STSs). In fungi, all six known STSs are bifunctional, containing C-terminal trans-prenyltransferase (PT) and N-terminal terpene synthase (TPS) domains. In plants, two colocalized PT and TPS gene pairs from Arabidopsis thaliana were recently reported to synthesize sesterterpenes. However, the landscape of PT and TPS genes in plant genomes is unclear. Here, using a customized algorithm for systematically searching plant genomes, we reveal a suite of physically colocalized pairs of PT and TPS genes for the biosynthesis of a large sesterterpene repertoire in the wider Brassicaceae. Transient expression of seven TPSs from A. thaliana, Capsella rubella, and Brassica oleracea in Nicotiana benthamiana yielded fungal-type sesterterpenes with tri-, tetra-, and pentacyclic scaffolds, and notably (-)-ent-quiannulatene, an enantiomer of the fungal metabolite (+)-quiannulatene. Protein and structural modeling analysis identified an amino acid site implicated in structural diversification. Mutation of this site in one STS (AtTPS19) resulted in premature termination of carbocation intermediates and accumulation of bi-, tri-, and tetracyclic sesterterpenes, revealing the cyclization path for the pentacyclic sesterterpene (-)-retigeranin B. These structural and mechanistic insights, together with phylogenetic analysis, suggest convergent evolution of plant and fungal STSs, and also indicate that the colocalized PT-TPS gene pairs in the Brassicaceae may have originated from a common ancestral gene pair present before speciation. Our findings further provide opportunities for rapid discovery and production of sesterterpenes through metabolic and protein engineering.
Collapse
Affiliation(s)
- Ancheng C Huang
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Satria A Kautsar
- Bioinformatics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Young J Hong
- Department of Chemistry, University of California, Davis, CA 95616
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Andrew D Bond
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, CA 95616
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom;
| |
Collapse
|
20
|
Abstract
Due to their efficacy, cannabis based therapies are currently being prescribed for the treatment of many different medical conditions. Interestingly, treatments based on the use of cannabis flowers or their derivatives have been shown to be very effective, while therapies based on drugs containing THC alone lack therapeutic value and lead to increased side effects, likely resulting from the absence of other pivotal entourage compounds found in the Phyto-complex. Among these compounds are terpenoids, which are not produced exclusively by cannabis plants, so other plant species must share many of the enzymes involved in their metabolism. In the present work, 23,630 transcripts from the canSat3 reference transcriptome were scanned for evolutionarily conserved protein domains and annotated in accordance with their predicted molecular functions. A total of 215 evolutionarily conserved genes encoding enzymes presumably involved in terpenoid metabolism are described, together with their expression profiles in different cannabis plant tissues at different developmental stages. The resource presented here will aid future investigations on terpenoid metabolism in
Cannabis sativa.
Collapse
Affiliation(s)
- Luca Massimino
- Molecular Oncology Unit, San Gerardo Hospital, Monza, Italy
| |
Collapse
|