1
|
Lv X, Yao Q, Mao F, Liu M, Wang Y, Wang X, Gao Y, Wang Y, Liao S, Wang P, Huang S. Heat stress and sexual reproduction in maize: unveiling the most pivotal factors and the greatest opportunities. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4219-4243. [PMID: 38183327 DOI: 10.1093/jxb/erad506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/05/2024] [Indexed: 01/08/2024]
Abstract
The escalation in the intensity, frequency, and duration of high-temperature (HT) stress is currently unparalleled, which aggravates the challenges for crop production. Yet, the stage-dependent responses of reproductive organs to HT stress at the morphological, physiological, and molecular levels remain inadequately explored in pivotal staple crops. This review synthesized current knowledge regarding the mechanisms by which HT stress induces abnormalities and aberrations in reproductive growth and development, as well as by which it alters the morphology and function of florets, flowering patterns, and the processes of pollination and fertilization in maize (Zea mays L.). We identified the stage-specific sensitivities to HT stress and accurately defined the sensitive period from a time scale of days to hours. The microspore tetrad phase of pollen development and anthesis (especially shortly after pollination) are most sensitive to HT stress, and even brief temperature spikes during these stages can lead to significant kernel loss. The impetuses behind the heat-induced impairments in seed set are closely related to carbon, reactive oxygen species, phytohormone signals, ion (e.g. Ca2+) homeostasis, plasma membrane structure and function, and others. Recent advances in understanding the genetic mechanisms underlying HT stress responses during maize sexual reproduction have been systematically summarized.
Collapse
Affiliation(s)
- Xuanlong Lv
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qian Yao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Fen Mao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Mayang Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yudong Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yingbo Gao
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuanyuan Wang
- College of Agronomy, South China Agricultural University, Guangdong, China
| | - Shuhua Liao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Pu Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shoubing Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Tian W, Mu Q, Gao Y, Zhang Y, Wang Y, Ding S, Aloryi KD, Okpala NE, Tian X. Micrometeorological monitoring reveals that canopy temperature is a reliable trait for the screening of heat tolerance in rice. FRONTIERS IN PLANT SCIENCE 2024; 15:1326606. [PMID: 38434427 PMCID: PMC10904656 DOI: 10.3389/fpls.2024.1326606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
Micrometeorological monitoring is not just an effective method of determining the impact of heat stress on rice, but also a reliable way of understanding how to screen for heat tolerance in rice. The aim of this study was to use micrometeorological monitoring to determine varietal differences in rice plants grown under two weather scenarios-Long-term Heat Scenario (LHS) and Normal Weather Scenario (NWS)- so as to establish reliable methods for heat tolerance screening. Experiments were conducted with two heat susceptible varieties-Mianhui 101 and IR64-and two heat tolerant varieties, Quanliangyou 681 and SDWG005. We used staggered sowing method to ensure that all varieties flower at the same time. Our results showed that heat tolerant varieties maintained lower canopy temperature compared to heat susceptible varieties, not just during the crucial flowering period of 10 am to 12 pm, but throughout the entire day and night. The higher stomatal conductance rate observed in heat tolerant varieties possibly decreased their canopy temperatures through the process of evaporative cooling during transpiration. Conversely, we found that panicle temperature cannot be used to screen for heat tolerance at night, as we observed no significant difference in the panicle temperature of heat tolerant and heat susceptible varieties at night. However, we also reported that higher panicle temperature in heat susceptible varieties decreased spikelet fertility rate, while low panicle temperature in heat tolerant varieties increased spikelet fertility rate. In conclusion, the results of this study showed that canopy temperature is probably the most reliable trait to screen for heat tolerance in rice.
Collapse
Affiliation(s)
- Wentao Tian
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University Jingzhou, Hubei, China
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei, China
| | - Qilin Mu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei, China
| | - Yuan Gao
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei, China
| | - Yunbo Zhang
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University Jingzhou, Hubei, China
| | - Yi Wang
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University Jingzhou, Hubei, China
| | - Shuangcheng Ding
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University Jingzhou, Hubei, China
| | - Kelvin Dodzi Aloryi
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University Jingzhou, Hubei, China
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei, China
| | - Nnaemeka Emmanuel Okpala
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University Jingzhou, Hubei, China
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei, China
| | - Xiaohai Tian
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University Jingzhou, Hubei, China
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei, China
| |
Collapse
|
3
|
Liu M, Zhou Y, Sun J, Mao F, Yao Q, Li B, Wang Y, Gao Y, Dong X, Liao S, Wang P, Huang S. From the floret to the canopy: High temperature tolerance during flowering. PLANT COMMUNICATIONS 2023; 4:100629. [PMID: 37226443 PMCID: PMC10721465 DOI: 10.1016/j.xplc.2023.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/29/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
Heat waves induced by climate warming have become common in food-producing regions worldwide, frequently coinciding with high temperature (HT)-sensitive stages of many crops and thus threatening global food security. Understanding the HT sensitivity of reproductive organs is currently of great interest for increasing seed set. The responses of seed set to HT involve multiple processes in both male and female reproductive organs, but we currently lack an integrated and systematic summary of these responses for the world's three leading food crops (rice, wheat, and maize). In the present work, we define the critical high temperature thresholds for seed set in rice (37.2°C ± 0.2°C), wheat (27.3°C ± 0.5°C), and maize (37.9°C ± 0.4°C) during flowering. We assess the HT sensitivity of these three cereals from the microspore stage to the lag period, including effects of HT on flowering dynamics, floret growth and development, pollination, and fertilization. Our review synthesizes existing knowledge about the effects of HT stress on spikelet opening, anther dehiscence, pollen shedding number, pollen viability, pistil and stigma function, pollen germination on the stigma, and pollen tube elongation. HT-induced spikelet closure and arrest of pollen tube elongation have a catastrophic effect on pollination and fertilization in maize. Rice benefits from pollination under HT stress owing to bottom anther dehiscence and cleistogamy. Cleistogamy and secondary spikelet opening increase the probability of pollination success in wheat under HT stress. However, cereal crops themselves also have protective measures under HT stress. Lower canopy/tissue temperatures compared with air temperatures indicate that cereal crops, especially rice, can partly protect themselves from heat damage. In maize, husk leaves reduce inner ear temperature by about 5°C compared with outer ear temperature, thereby protecting the later phases of pollen tube growth and fertilization processes. These findings have important implications for accurate modeling, optimized crop management, and breeding of new varieties to cope with HT stress in the most important staple crops.
Collapse
Affiliation(s)
- Mayang Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yuhan Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jiaxin Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Fen Mao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qian Yao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Baole Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yuanyuan Wang
- College of Agronomy, South China Agricultural University, Guangdong, China
| | - Yingbo Gao
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xin Dong
- Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Shuhua Liao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Pu Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shoubing Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| |
Collapse
|
4
|
Wang S, Chen H, Huang Y, Zhang X, Chen Y, Du H, Wang H, Qin F, Ding S. Ubiquitin E3 ligase AtCHYR2 functions in glucose regulation of germination and post-germinative growth in Arabidopsis thaliana. PLANT CELL REPORTS 2023; 42:989-1002. [PMID: 36991149 DOI: 10.1007/s00299-023-03008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/19/2023] [Indexed: 05/12/2023]
Abstract
KEY MESSAGE Cytoplasm-localized RING ubiquitin E3 ligase AtCHYR2 involved in plant glucose responses during germination and post-germinative growth. CHY ZINC FINGER AND RING PROTEIN (CHYR) containing both a CHY zinc finger and a C3H2C3-type RING domain plays important roles in plant drought tolerance and the abscisic acid (ABA) response; however, their functions in sugar signaling pathways are less studied. Here, we report a glucose (Glc) response gene AtCHYR2, a homolog of RZFP34/CHYR1, which is induced by various abiotic stresses, ABA, and sugar treatments. In vitro, we demonstrated that AtCHYR2 is a cytoplasm-localized RING ubiquitin E3 ligase. Overexpression of AtCHYR2 led to hypersensitivity to Glc and enhanced Glc-mediated inhibition of cotyledon greening and post-germinative growth. Contrastingly, AtCHYR2 loss-of-function plants were insensitive to Glc-regulated seed germination and primary root growth, suggesting that AtCHYR2 is a positively regulator of the plant glucose response. Additionally, physiological analyses showed that overexpression AtCHYR2 increased stomata aperture and photosynthesis under normal condition, and promoted accumulation of endogenous soluble sugar and starch in response to high Glc. Genome-wide RNA sequencing analysis showed that AtCHYR2 affects a major proportion of Glc-responsive genes. Particularly, sugar marker gene expression analysis suggested that AtCHYR2 enhances the Glc response via a signaling pathway dependent on glucose metabolism. Taken together, our findings show that a novel RING ubiquitin E3 ligase, AtCHYR2, plays an important role in glucose responses in Arabidopsis.
Collapse
Affiliation(s)
- Shengyong Wang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, 1 Jingmi Road, Jingzhou, 434025, Hubei, China
| | - Huili Chen
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, 1 Jingmi Road, Jingzhou, 434025, Hubei, China
| | - Yujie Huang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, 1 Jingmi Road, Jingzhou, 434025, Hubei, China
| | - Xiaotian Zhang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, 1 Jingmi Road, Jingzhou, 434025, Hubei, China
| | - Yuhang Chen
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, 1 Jingmi Road, Jingzhou, 434025, Hubei, China
| | - Hewei Du
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Hongwei Wang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, 1 Jingmi Road, Jingzhou, 434025, Hubei, China.
| | - Feng Qin
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| | - Shuangcheng Ding
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, 1 Jingmi Road, Jingzhou, 434025, Hubei, China.
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
5
|
Liu X, Gu M, Lv X, Sheng D, Wang X, Wang P, Huang S. High temperature defense-related pathways, mediating lodicule expansion and spikelet opening in maize tassel. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad115. [PMID: 36967717 DOI: 10.1093/jxb/erad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 06/18/2023]
Abstract
High temperature (HT) at flowering hinders pollen shedding, whereas mechanisms underlying stress-induced spikelet closure are poorly known in maize. Yield components, spikelet opening, and lodicule morphology/protein profiling upon HT stress during flowering were explored in maize inbred lines Chang 7-2 and Qi 319. HT induced spikelet closure and reduced pollen shed weight (PSW) and seed set. Qi 319 that had a 7-fold lower PSW than Chang 7-2 was more susceptible to HT. A small lodicule size reduced spikelet opening rate and angle, and more vascular bundles hastened lodicule shrinking in Qi 319. Lodicules were collected for proteomics. In HT-stressed lodicules, proteins involved in stress signal, cell wall, cell constructure, carbohydrate metabolism, and phytohormone signaling were associated with stress tolerance. Among these proteins, HT downregulated expression of ADP-ribosylation factor GTPase-activating protein domain2, SNAP receptor complex member11, and sterol methyltransferase2 in Qi 319 but not in Chang 7-2, agreeing well with protein abundance changes. Exogenous epibrassinolide enlarged spikelet opening angle and extended spikelet opening duration. These results suggest that dysfunction of actin cytoskeleton and membrane remodeling induced by HT likely limits lodicule expansion. Additionally, reduced vascular bundles in lodicule and application of epibrassinolide might confer spikelet tolerance to HT stress.
Collapse
Affiliation(s)
- Xiaoli Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Mingqi Gu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xuanlong Lv
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Dechang Sheng
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Pu Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shoubing Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
6
|
Shi W, Yang J, Kumar R, Zhang X, Impa SM, Xiao G, Jagadish SVK. Heat Stress During Gametogenesis Irreversibly Damages Female Reproductive Organ in Rice. RICE (NEW YORK, N.Y.) 2022; 15:32. [PMID: 35763153 PMCID: PMC9240181 DOI: 10.1186/s12284-022-00578-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/14/2022] [Indexed: 05/14/2023]
Abstract
Heat stress during gametogenesis leads to spikelet sterility. To ascertain the role of female reproductive organ (pistil), two rice genotypes N22 and IR64 with contrasting heat stress responses were exposed to control (30 °C) and heat stress (38 °C and 40 °C) during megasporogenesis. Anatomical observations of ovule revealed greater disappearance of megaspore mother cell and nuclei at early stages, and during later stages mature embryo sac without female germ unit, improper positioning of nuclei, and shrunken embryo sac was observed in the sensitive IR64. Under heat stress, a decrease in sugar and starch, increase in H2O2 and malondialdehyde with lower antioxidant enzyme activities were recorded in pistils of both N22 and IR64. Lower accumulation of TCA cycle metabolites and amino acids were noticed in IR64 pistils under heat stress at gametogenesis, whereas N22 exhibited favorable metabolite profiles. At heading, however, N22 pistils had higher carbohydrate accumulation and better ROS homeostasis, suggesting higher recovery after heat stress exposure. In summary, the results indicate that heat stress during megasporogenesis leads to irreversible anatomical and physiological changes in pistil and alters metabolic signatures leading to increased spikelet sterility in rice. Mechanisms identified for enhanced heat tolerance in pistil can help in developing rice varieties that are better adapted to future hotter climate.
Collapse
Affiliation(s)
- Wanju Shi
- College of Agronomy, Hunan Agricultural University, Changsha, 410128 Hunan China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125 China
| | - Juan Yang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128 Hunan China
| | - Ritesh Kumar
- Department of Agronomy, Kansas State University, Manhattan, KS 66506 USA
| | - Xinzheng Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128 Hunan China
| | - Somayanda M. Impa
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409-2122 USA
| | - Gui Xiao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125 China
| | - S. V. Krishna Jagadish
- Department of Agronomy, Kansas State University, Manhattan, KS 66506 USA
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409-2122 USA
| |
Collapse
|
7
|
Hou Q, Zhao X, Pang X, Duan M, Ehmet N, Shao W, Sun K. Why flowers close at noon? A case study of an alpine species Gentianopsis paludosa (Gentianaceae). Ecol Evol 2022; 12:e8490. [PMID: 35136551 PMCID: PMC8809448 DOI: 10.1002/ece3.8490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 11/06/2022] Open
Abstract
Repeatable floral closure with diurnal rhythms, that is, flower opening in the morning and closing in the evening, was widely reported. However, the rhythm of flower opening in the morning but closing in the midday received much less attention. Gentianopsis paludosa, Gentianaceae, has an obvious petal movement rhythm opening in the morning and closing at noon at northeast of the Qinghai-Tibetan Plateau. In this study, we examined the effects of temperature (T), relative humidity (RH), and illumination intensity (II) on G. paludosa's flower closure. Furthermore, we monitored the environmental changes inside and outside of the flowers, aiming to test the effect of floral closure on the stability of microenvironment inside the flower. Finally, we artificially interrupted temporal petal closure and investigated its effects on reproductive fitness. The results showed that high/low temperature contributed more to the flower closure than low RH, while illumination intensity had no significant effect on it. The medium temperature, relative humidity and illumination intensity (environmental conditions at 10:00) did not delay flower closure when flowers at pre-closing period or stimulate reopen when flowers full closed. Floral closure provided a stable temperature condition and a higher RH condition inside the flower. Meanwhile, compulsive opening and delayed closure of flowers decreased the seed-set ratio while no effect was found when flowers were forced to close. We conclude that endogenous rhythm regulates floral closure. The rhythm of petal movement providing a stable microenvironment for G. paludosa, increasing the seed production and saving energy from flower opening maintenance, which might be an adaptive strategy to against unfavorable environmental conditions.
Collapse
Affiliation(s)
- Qinzheng Hou
- College of Life SciencesNorthwest Normal UniversityLanzhouChina
| | - Xiang Zhao
- College of Life SciencesNorthwest Normal UniversityLanzhouChina
| | - Xia Pang
- College of Life SciencesNorthwest Normal UniversityLanzhouChina
| | - Meiling Duan
- College of Life SciencesNorthwest Normal UniversityLanzhouChina
| | - Nurbiye Ehmet
- College of Life SciencesNorthwest Normal UniversityLanzhouChina
| | - Wenjuan Shao
- College of Life SciencesNorthwest Normal UniversityLanzhouChina
| | - Kun Sun
- College of Life SciencesNorthwest Normal UniversityLanzhouChina
| |
Collapse
|
8
|
Hasegawa K, Kamada S, Takehara S, Takeuchi H, Nakamura A, Satoh S, Iwai H. Rice Putative Pectin Methyltransferase Gene OsPMT10 Is Required for Maintaining the Cell Wall Properties of Pistil Transmitting Tissues via Pectin Modification. PLANT & CELL PHYSIOLOGY 2021; 62:1902-1911. [PMID: 34057184 DOI: 10.1093/pcp/pcab078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Precise directional control of pollen tube growth via mechanical guidance by pistil tissue is critical for the successful fertilization of flowering plants and requires active cell-to-cell communication and maintenance of softness in the transmitting tissue. However, the regulation of transmitting tissue softness as controlled by cell wall properties, especially pectin, has not been reported. Here we report that regulation of pectin methylesterification supports pollen elongation through pistil transmitting tissues in Oryza sativa. The rice pectin methylesterase gene OsPMT10 was strongly expressed in reproductive tissues, especially the pistil. The ospmt10 mutant did not have a significant effect on vegetative growth, but the fertility rate was reduced by approximately half. In the ospmt10 mutant, pollen tube elongation was observed in the transmitting tissue of the style, but approximately half of the pollen tubes did not extend all the way to the ovule. Tissue cross-sections of the upper ovary were prepared, and immunohistochemical staining using LM19 and LM20 showed that methylesterified pectin distribution was decreased in ospmt10 compared with the wild type. The decreased expression of methylesterified pectins in ospmt10 may have resulted in loss of fluidity in the apoplast space of the transmitting tissue, rendering it difficult for the pollen tube to elongate in the transmitting tissue and thereby preventing it from reaching the ovule.
Collapse
Affiliation(s)
- Kazuya Hasegawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Ibaraki 305-8571, Japan
| | - Shihomi Kamada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Ibaraki 305-8571, Japan
| | - Shohei Takehara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Ibaraki 305-8571, Japan
| | - Haruki Takeuchi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Ibaraki 305-8571, Japan
| | - Atsuko Nakamura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Ibaraki 305-8571, Japan
| | - Shinobu Satoh
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Ibaraki 305-8571, Japan
| | - Hiroaki Iwai
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Ibaraki 305-8571, Japan
| |
Collapse
|
9
|
Yan H, Wang C, Liu K, Tian X. Detrimental effects of heat stress on grain weight and quality in rice ( Oryza sativa L.) are aggravated by decreased relative humidity. PeerJ 2021; 9:e11218. [PMID: 33889448 PMCID: PMC8040870 DOI: 10.7717/peerj.11218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 03/15/2021] [Indexed: 12/01/2022] Open
Abstract
There is concern over the impact of global warming on rice production due increased heat stress, coupled with decreased relative humidity (RH). It is unknown how rice yield and quality are affected by heat stress and decreased RH during the grain filling stage. We conducted experiments in controlled growth chambers on six rice cultivars, varying in heat tolerance using 12 combinative treatments of three factors: two RH levels (75% and 85%), three temperature levels (the daily maximum temperature at 33 °C, 35 °C, and 37 °C), and two durations (8 d and 15 d after anthesis). Results showed that RH75% with temperature treatments significantly reduced grain weight, which was higher than RH85%. The same trend was also observed for both head rice rate and chalkiness. R168 was the most heat-tolerant cultivar, but it still had some differences in grain weight, head rice rate, and chalkiness between the two RH regimes. The lower RH was most detrimental at 35 °C, and to a lesser extent at 33 °C, but had a negligible effect at 37 °C. Our results provide a better understanding of temperature and RH’s interaction effects on rice quality during the grain filling stage, suggesting that RH should be considered in heat tolerance screening and identification to facilitate rice breeding and genetic improvement.
Collapse
Affiliation(s)
- Haoliang Yan
- Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou Hubei, China
| | - Chunhu Wang
- Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou Hubei, China
| | - Ke Liu
- Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou Hubei, China
| | - Xiaohai Tian
- Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou Hubei, China
| |
Collapse
|
10
|
Qin-Di D, Gui-Hua J, Xiu-Neng W, Zun-Guang M, Qing-Yong P, Shiyun C, Yu-Jian M, Shuang-Xi Z, Yong-Xiang H, Yu L. High temperature-mediated disturbance of carbohydrate metabolism and gene expressional regulation in rice: a review. PLANT SIGNALING & BEHAVIOR 2021; 16:1862564. [PMID: 33470154 PMCID: PMC7889029 DOI: 10.1080/15592324.2020.1862564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Global warming has induced higher frequencies of excessively high-temperature weather episodes, which pose damage risk to rice growth and production. Past studies seldom specified how high temperature-induced carbohydrate metabolism disturbances from both source and sink affect rice fertilization and production. Here we discuss the mechanism of heat-triggered damage to rice quality and production through disturbance of carbohydrate generation and consumption under high temperatures. Furthermore, we provide strong evidence from past studies that rice varieties that maintain high photosynthesis and carbohydrate usage efficiencies under high temperatures will suffer less heat-induced damage during reproductive developmental stages. We also discuss the complexity of expressional regulation of rice genes in response to high temperatures, while highlighting the important roles of heat-inducible post-transcriptional regulations of gene expression. Lastly, we predict future directions in heat-tolerant rice breeding and also propose challenges that need to be conquered in the future.
Collapse
Affiliation(s)
- Deng Qin-Di
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang,China
| | - Jian Gui-Hua
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang,China
| | - Wang Xiu-Neng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang,China
| | - Mo Zun-Guang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang,China
| | - Peng Qing-Yong
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang,China
| | - Chen Shiyun
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang,China
| | - Mo Yu-Jian
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang,China
| | - Zhou Shuang-Xi
- New Zealand Institute for Plant and Food Research Limited, Hawke’s Bay,New Zealand
| | - Huang Yong-Xiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang,China
| | - Ling Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang,China
| |
Collapse
|
11
|
Ouaja M, Bahri BA, Aouini L, Ferjaoui S, Medini M, Marcel TC, Hamza S. Morphological characterization and genetic diversity analysis of Tunisian durum wheat (Triticum turgidum var. durum) accessions. BMC Genom Data 2021; 22:3. [PMID: 33568058 PMCID: PMC7860204 DOI: 10.1186/s12863-021-00958-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tunisia is considered a secondary center of diversification of durum wheat and has a large number of abandoned old local landraces. An accurate investigation and characterization of the morphological and genetic features of these landraces would allow their rehabilitation and utilization in wheat breeding programs. Here, we investigated a diverse collection of 304 local accessions of durum wheat collected from five regions and three climate stages of central and southern Tunisia. RESULTS Durum wheat accessions were morphologically characterized using 12 spike- and grain-related traits. A mean Shannon-Weaver index (H') of 0.80 was obtained, indicating high level of polymorphism among accessions. Based on these traits, 11 local landraces including Mahmoudi, Azizi, Jneh Khotifa, Mekki, Biskri, Taganrog, Biada, Badri, Richi, Roussia and Souri were identified. Spike length (H' = 0.98), spike shape (H' = 0.86), grain size (H' = 0.94), grain shape (H' = 0.87) and grain color (H' = 0.86) were the most polymorphic morphological traits. The genetic diversity of these accessions was assessed using 10 simple sequence repeat (SSR) markers, with a polymorphic information content (PIC) of 0.69. Levels of genetic diversity were generally high (I = 0.62; He = 0.35). In addition, population structure analysis revealed 11 genetic groups, which were significantly correlated with the morphological characterization. Analysis of molecular variance (AMOVA) showed high genetic variation within regions (81%) and within genetic groups (41%), reflecting a considerable amount of admixture between landraces. The moderate (19%) and high (59%) levels of genetic variation detected among regions and among genetic groups, respectively, highlighted the selection practices of farmers. Furthermore, Mahmoudi accessions showed significant variation in spike density between central Tunisia (compact spikes) and southern Tunisia (loose spikes with open glume), may indicate an adaptation to high temperature in the south. CONCLUSION Overall, this study demonstrates the genetic richness of local durum wheat germplasm for better in situ and ex situ conservation and for the subsequent use of these accessions in wheat breeding programs.
Collapse
Affiliation(s)
- Maroua Ouaja
- Institut National Agronomique de Tunis, Université de Carthage, 43 Avenue Charles-Nicolle, Tunis, 1082, Tunisie
| | - Bochra A Bahri
- Institut National Agronomique de Tunis, Université de Carthage, 43 Avenue Charles-Nicolle, Tunis, 1082, Tunisie.,Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Griffin, GA, 30223, USA
| | - Lamia Aouini
- Institut National Agronomique de Tunis, Université de Carthage, 43 Avenue Charles-Nicolle, Tunis, 1082, Tunisie
| | - Sahbi Ferjaoui
- Centre Régional de Recherches en Grandes Cultures (CRRGC), Route de Tunis, BP, 350, Beja, Tunisie
| | - Maher Medini
- Banque Nationale des gènes, Boulevard du Leader Yasser Arafat Z. I Charguia 1, Tunis, 1080, Tunisie
| | - Thierry C Marcel
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Sonia Hamza
- Institut National Agronomique de Tunis, Université de Carthage, 43 Avenue Charles-Nicolle, Tunis, 1082, Tunisie.
| |
Collapse
|
12
|
Cai Z, He F, Feng X, Liang T, Wang H, Ding S, Tian X. Transcriptomic Analysis Reveals Important Roles of Lignin and Flavonoid Biosynthetic Pathways in Rice Thermotolerance During Reproductive Stage. Front Genet 2020; 11:562937. [PMID: 33110421 PMCID: PMC7522568 DOI: 10.3389/fgene.2020.562937] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/27/2020] [Indexed: 01/25/2023] Open
Abstract
Rice is one of the major staple cereals in the world, but heat stress is increasingly threatening its yield. Analyzing the thermotolerance mechanism from new thermotolerant germplasms is very important for rice improvement. Here, physiological and transcriptome analyses were used to characterize the difference between two germplasms, heat-sensitive MH101 and heat-tolerant SDWG005. Two genotypes exhibited diverse heat responses in pollen viability, pollination characteristics, and antioxidant enzymatic activity in leaves and spikelets. Through cluster analysis, the global transcriptomic changes indicated that the ability of SDWG005 to maintain a steady-state balance of metabolic processes played an important role in thermotolerance. After analyses of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, we found that the thermotolerance mechanism in SDWG00 was associated with reprogramming the cellular activities, such as response to abiotic stress and metabolic reorganization. In contrast, the down-regulated genes in MH101 that appeared to be involved in DNA replication and DNA repair proofreading, could cause serious injury to reproductive development when exposed to high temperature during meiosis. Furthermore, we identified 77 and 11 differentially expressed genes (DEGs) involved in lignin and flavonoids biosynthetic pathways, respectively. Moreover, we found that more lignin deposition and flavonoids accumulation happened in SDWG005 than in MH101 under heat stress. The results indicated that lignin and flavonoid biosynthetic pathways might play important roles in rice heat resistance during meiosis.
Collapse
Affiliation(s)
- Zhenzhen Cai
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Agricultural College, Yangtze University, Jingzhou, China
| | - Fengyu He
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Agricultural College, Yangtze University, Jingzhou, China
| | - Xin Feng
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Agricultural College, Yangtze University, Jingzhou, China
| | - Tong Liang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Agricultural College, Yangtze University, Jingzhou, China
| | - Hongwei Wang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Agricultural College, Yangtze University, Jingzhou, China.,Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Agricultural College, Yangtze University, Jingzhou, China.,Hubei Collaborative Innovation Center for Grain Industry, Agricultural College, Yangtze University, Jingzhou, China
| | - Shuangcheng Ding
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Agricultural College, Yangtze University, Jingzhou, China.,Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Agricultural College, Yangtze University, Jingzhou, China.,Hubei Collaborative Innovation Center for Grain Industry, Agricultural College, Yangtze University, Jingzhou, China
| | - Xiaohai Tian
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Agricultural College, Yangtze University, Jingzhou, China.,Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Agricultural College, Yangtze University, Jingzhou, China.,Hubei Collaborative Innovation Center for Grain Industry, Agricultural College, Yangtze University, Jingzhou, China
| |
Collapse
|
13
|
Chen J, Xu Y, Fei K, Wang R, He J, Fu L, Shao S, Li K, Zhu K, Zhang W, Wang Z, Yang J. Physiological mechanism underlying the effect of high temperature during anthesis on spikelet-opening of photo-thermo-sensitive genic male sterile rice lines. Sci Rep 2020; 10:2210. [PMID: 32042005 PMCID: PMC7010791 DOI: 10.1038/s41598-020-59183-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 01/24/2020] [Indexed: 12/03/2022] Open
Abstract
Decrease in the grain yield resulted from a low percentage of opened spikelets under high temperature (HT) during anthesis is a serious problem in the seed production of photo-thermo-sensitive genic male sterile (PTGMS) rice (Oryza sativa L.) lines, and the mechanism is little understood. Elucidating the physiological mechanism underlying the effect of HT during anthesis on spikelet-opening of PTGMS lines would have great significance in exploring the effective way to mitigate the adverse effect of HT. In this study, two PTGMS lines and one restorer line of rice were used and were subjected to normal temperature (NT) and HT treatments. The results showed that, compared with NT, HT significantly decreased the percentage of opened spikelets, fertilization percentage and seed-setting by significantly increasing the percentage of wrapped spikelets and reducing the spikelet-opening angle, length of spikelet-opening time. The HT significantly decreased the contents of soluble sugars, jasmonic acid (JA) and methyl jasmonate (MeJA) in the lodicules before and at glume-opening, which were significantly correlated with and accounts for the low percentage of opened spikelets under HT for rice, especially for the PTGMS lines.
Collapse
Affiliation(s)
- Jing Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yangdong Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Keqi Fei
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rui Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiang He
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lidong Fu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shimei Shao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ke Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kuanyu Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Weiyang Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianchang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
14
|
Tang C, Zhang H, Zhang P, Ma Y, Cao M, Hu H, Shah FA, Zhao W, Li M, Wu L. iTRAQ-based quantitative proteome analysis reveals metabolic changes between a cleistogamous wheat mutant and its wild-type wheat counterpart. PeerJ 2019; 7:e7104. [PMID: 31245178 PMCID: PMC6585907 DOI: 10.7717/peerj.7104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 05/08/2019] [Indexed: 11/20/2022] Open
Abstract
Background Wheat is one of the most important staple crops worldwide. Fusarium head blight (FHB) severely affects wheat yield and quality. A novel bread wheat mutant, ZK001, characterized as cleistogamic was isolated from a non-cleistogamous variety Yumai 18 (YM18) through static magnetic field mutagenesis. Cleistogamy is a promising strategy for controlling FHB. However, little is known about the mechanism of cleistogamy in wheat. Methods We performed a FHB resistance test to identify the FHB infection rate of ZK001. We also measured the agronomic traits of ZK001 and the starch and total soluble sugar contents of lodicules in YM18 and ZK001. Finally, we performed comparative studies at the proteome level between YM18 and ZK001 based on the proteomic technique of isobaric tags for relative and absolute quantification. Results The infection rate of ZK001 was lower than that of its wild-type and Aikang 58. The abnormal lodicules of ZK001 lost the ability to push the lemma and palea apart during the flowering stage. Proteome analysis showed that the main differentially abundant proteins (DAPs) were related to carbohydrate metabolism, protein transport, and calcium ion binding. These DAPs may work together to regulate cellular homeostasis, osmotic pressure and the development of lodicules. This hypothesis is supported by the analysis of starch, soluble sugar content in the lodicules as well as the results of Quantitative reverse transcription polymerase chain reaction. Conclusions Proteomic analysis has provided comprehensive information that should be useful for further research on the lodicule development mechanism in wheat. The ZK001 mutant is optimal for studying flower development in wheat and could be very important for FHB resistant projects via conventional crossing.
Collapse
Affiliation(s)
- Caiguo Tang
- Key laboratory of High Magnetic Field and Ion beam physical biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Huilan Zhang
- Key laboratory of High Magnetic Field and Ion beam physical biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Pingping Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Yuhan Ma
- Key laboratory of High Magnetic Field and Ion beam physical biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Minghui Cao
- Key laboratory of High Magnetic Field and Ion beam physical biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Hao Hu
- Key laboratory of High Magnetic Field and Ion beam physical biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Faheem Afzal Shah
- Key laboratory of High Magnetic Field and Ion beam physical biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Weiwei Zhao
- Key laboratory of High Magnetic Field and Ion beam physical biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Minghao Li
- Key laboratory of High Magnetic Field and Ion beam physical biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Lifang Wu
- Key laboratory of High Magnetic Field and Ion beam physical biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| |
Collapse
|
15
|
Liu K, Deng J, Lu J, Wang X, Lu B, Tian X, Zhang Y. High Nitrogen Levels Alleviate Yield Loss of Super Hybrid Rice Caused by High Temperatures During the Flowering Stage. FRONTIERS IN PLANT SCIENCE 2019; 10:357. [PMID: 30972091 PMCID: PMC6443885 DOI: 10.3389/fpls.2019.00357] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/07/2019] [Indexed: 05/22/2023]
Abstract
The effect of high temperatures on rice production has attracted considerable research attention. It is not clear, however, whether nitrogen (N) management can be used to alleviate the damaging effects of high temperatures on flowering in rice. In this study, we compared the yields of five elite super hybrid rice varieties and examined their heat tolerance under four N treatments in two seasons with contrasting temperatures at flowering: 2015 (normal temperature) and 2016 (high temperature). The average daily temperature during the flowering stage in 2016 was 31.1°C, which was 4.5°C higher than that in 2015. There was a significant positive correlation between grain yield and N level (R 2 = 0.42, P < 0.01). However, mean grain yield of the five rice varieties in 2015 was 10.5% higher than that in 2016. High N levels reduced yield losses in plants exposed to high temperature in 2016. The mean seed-set percentage in 2016 was 13.0% lower than that in 2015 at higher N levels, but spikelets per panicle increased by 7.6% at higher N levels compared with lower N levels. Higher N levels reduced the number of degenerated spikelets under high temperatures. Spikelets per panicle and N treatment level were positively correlated at high temperatures (R 2 = 0.32, P < 0.05). These results confirmed that increasing N application could alleviate yield losses caused by high temperatures in super hybrid rice during the flowering stage.
Collapse
Affiliation(s)
- Ke Liu
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Jun Deng
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
| | - Jian Lu
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
| | - Xiaoyan Wang
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Bilin Lu
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Xiaohai Tian
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Yunbo Zhang
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
- College of Agriculture, Yangtze University, Jingzhou, China
- *Correspondence: Yunbo Zhang,
| |
Collapse
|
16
|
iTRAQ-Based Quantitative Proteomics Analysis on Rice Anther Responding to High Temperature. Int J Mol Sci 2017; 18:ijms18091811. [PMID: 28832496 PMCID: PMC5618475 DOI: 10.3390/ijms18091811] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 02/08/2023] Open
Abstract
As one of the most important crops, rice provides the major food for more than half of the world population. However, its production is limited by many environmental factors, among which high temperature stress (HS) frequently occurs during anthesis and reduces its spikelet fertility. To explore the mechanism of HS tolerance in rice, we conducted a comparative proteomics analysis on the anthers between HS resistant and sensitive cultivars under different levels of high temperature. Under the same HS treatment, the resistant cultivar showed much higher spikelet fertility than the sensitive cultivar. Proteomic data showed that HS lead to the degradation of ribosomal proteins in the sensitive cultivar but not in the resistant one, which might result in the injury of protein biosynthetic machinery. In contrast, HS induced the increase of sHSP, β-expansins and lipid transfer proteins in the resistant cultivar, which might contribute to its ability to tolerate HS. The results provide some new insights into the mechanism of rice HS response.
Collapse
|