1
|
Liu M, Zhou Y, Sun J, Mao F, Yao Q, Li B, Wang Y, Gao Y, Dong X, Liao S, Wang P, Huang S. From the floret to the canopy: High temperature tolerance during flowering. PLANT COMMUNICATIONS 2023; 4:100629. [PMID: 37226443 PMCID: PMC10721465 DOI: 10.1016/j.xplc.2023.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/29/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
Heat waves induced by climate warming have become common in food-producing regions worldwide, frequently coinciding with high temperature (HT)-sensitive stages of many crops and thus threatening global food security. Understanding the HT sensitivity of reproductive organs is currently of great interest for increasing seed set. The responses of seed set to HT involve multiple processes in both male and female reproductive organs, but we currently lack an integrated and systematic summary of these responses for the world's three leading food crops (rice, wheat, and maize). In the present work, we define the critical high temperature thresholds for seed set in rice (37.2°C ± 0.2°C), wheat (27.3°C ± 0.5°C), and maize (37.9°C ± 0.4°C) during flowering. We assess the HT sensitivity of these three cereals from the microspore stage to the lag period, including effects of HT on flowering dynamics, floret growth and development, pollination, and fertilization. Our review synthesizes existing knowledge about the effects of HT stress on spikelet opening, anther dehiscence, pollen shedding number, pollen viability, pistil and stigma function, pollen germination on the stigma, and pollen tube elongation. HT-induced spikelet closure and arrest of pollen tube elongation have a catastrophic effect on pollination and fertilization in maize. Rice benefits from pollination under HT stress owing to bottom anther dehiscence and cleistogamy. Cleistogamy and secondary spikelet opening increase the probability of pollination success in wheat under HT stress. However, cereal crops themselves also have protective measures under HT stress. Lower canopy/tissue temperatures compared with air temperatures indicate that cereal crops, especially rice, can partly protect themselves from heat damage. In maize, husk leaves reduce inner ear temperature by about 5°C compared with outer ear temperature, thereby protecting the later phases of pollen tube growth and fertilization processes. These findings have important implications for accurate modeling, optimized crop management, and breeding of new varieties to cope with HT stress in the most important staple crops.
Collapse
Affiliation(s)
- Mayang Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yuhan Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jiaxin Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Fen Mao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qian Yao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Baole Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yuanyuan Wang
- College of Agronomy, South China Agricultural University, Guangdong, China
| | - Yingbo Gao
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xin Dong
- Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Shuhua Liao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Pu Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shoubing Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Thakur V, Rane J, Pandey GC, Yadav S. Image facilitated assessment of intra-spike variation in grain size in wheat under high temperature and drought stress. Sci Rep 2023; 13:19850. [PMID: 37963937 PMCID: PMC10645968 DOI: 10.1038/s41598-023-44503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
In wheat (Triticum aestivum L.), the grain size varies according to position within the spike. Exposure to drought and high temperature stress during grain development in wheat reduces grain size, and this reduction also varies across the length of the spike. We developed the phenomics approach involving image-based tools to assess the intra-spike variation in grain size. The grains were arranged corresponding to the spikelet position and the camera of smart phone was used to acquire 333 images. The open-source software ImageJ was used to analyze features of each grain and the image-derived parameters were used to calculate intra-spike variation as standard deviation (ISVAD). The effect of genotype and environment were highly significant on the ISVAD of grain area. Sunstar and Raj 4079 contrasted in the ISVAD of grain area under late sown environment, and RNA sequencing of the spike was done at 25 days after anthesis. The genes for carbohydrate transport and stress response were upregulated in Sunstar as compared to Raj 4079, suggesting that these play a role in intra-spike assimilate distribution. The phenomics method developed may be useful for grain phenotyping and identifying germplasm with low intra-spike variation in grain size for their further validation as parental material in breeding.
Collapse
Affiliation(s)
- Vidisha Thakur
- Department of Bioscience & Biotechnology, Banasthali Vidyapith, Banasthali, Rajasthan, 304 022, India
| | - Jagadish Rane
- ICAR-Central Institute for Arid Horticulture, Bikaner, Rajasthan, 334006, India.
| | - Girish Chandra Pandey
- Department of Bioscience & Biotechnology, Banasthali Vidyapith, Banasthali, Rajasthan, 304 022, India
| | - Satish Yadav
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, 410 505, India
| |
Collapse
|
3
|
Slafer GA, Foulkes MJ, Reynolds MP, Murchie EH, Carmo-Silva E, Flavell R, Gwyn J, Sawkins M, Griffiths S. A 'wiring diagram' for sink strength traits impacting wheat yield potential. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:40-71. [PMID: 36334052 PMCID: PMC9786893 DOI: 10.1093/jxb/erac410] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/04/2022] [Indexed: 05/17/2023]
Abstract
Identifying traits for improving sink strength is a bottleneck to increasing wheat yield. The interacting processes determining sink strength and yield potential are reviewed and visualized in a set of 'wiring diagrams', covering critical phases of development (and summarizing known underlying genetics). Using this framework, we reviewed and assembled the main traits determining sink strength and identified research gaps and potential hypotheses to be tested for achieving gains in sink strength. In pre-anthesis, grain number could be increased through: (i) enhanced spike growth associated with optimized floret development and/or a reduction in specific stem-internode lengths and (ii) improved fruiting efficiency through an accelerated rate of floret development, improved partitioning between spikes, or optimized spike cytokinin levels. In post-anthesis, grain, sink strength could be augmented through manipulation of grain size potential via ovary size and/or endosperm cell division and expansion. Prospects for improving spike vascular architecture to support all rapidly growing florets, enabling the improved flow of assimilate, are also discussed. Finally, we considered the prospects for enhancing grain weight realization in relation to genetic variation in stay-green traits as well as stem carbohydrate remobilization. The wiring diagrams provide a potential workspace for breeders and crop scientists to achieve yield gains in wheat and other field crops.
Collapse
Affiliation(s)
- Gustavo A Slafer
- Department of Crop and Forest Sciences, University of Lleida–AGROTECNIO-CERCA Center, Av. R. Roure 191, 25198 Lleida, Spain
- ICREA (Catalonian Institution for Research and Advanced Studies), Barcelona, Spain
| | - M John Foulkes
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK
| | - Matthew P Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mexico, El Batan, Texcoco, Mexico
| | - Erik H Murchie
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK
| | | | - Richard Flavell
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| | - Jeff Gwyn
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| | - Mark Sawkins
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| | - Simon Griffiths
- John Innes Centre, Norwich Research Park, Colney Ln, Norwich NR4 7UH, UK
| |
Collapse
|
4
|
Devi P, Jha UC, Prakash V, Kumar S, Parida SK, Paul PJ, Prasad PVV, Sharma KD, Siddique KHM, Nayyar H. Response of Physiological, Reproductive Function and Yield Traits in Cultivated Chickpea ( Cicer arietinum L.) Under Heat Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:880519. [PMID: 35720547 PMCID: PMC9202580 DOI: 10.3389/fpls.2022.880519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Under global climate change, high-temperature stress is becoming a major threat to crop yields, adversely affecting plant growth, and ultimately resulting in significant yield losses in various crops, including chickpea. Thus, identifying crop genotypes with increased heat stress (HS) tolerance is becoming a priority for chickpea research. Here, we assessed the response of seven physiological traits and four yield and yield-related traits in 39 chickpea genotypes grown in normal-sown and late-sown environments [to expose plants to HS (>32/20°C) at the reproductive stage] for two consecutive years (2017-2018 and 2018-2019). Significant genetic variability for the tested traits occurred under normal and HS conditions in both years. Based on the tested physiological parameters and yield-related traits, GNG2171, GNG1969, GNG1488, PantG186, CSJ515, RSG888, RSG945, RVG202, and GNG469 were identified as promising genotypes under HS. Further, ten heat-tolerant and ten heat-sensitive lines from the set of 39 genotypes were validated for their heat tolerance (32/20°C from flowering to maturity) in a controlled environment of a growth chamber. Of the ten heat-tolerant genotypes, GNG1969, GNG1488, PantG186, RSG888, CSJ315, and GNG1499 exhibited high heat tolerance evidenced by small reductions in pollen viability, pollen germination, and pod set %, high seed yield plant-1 and less damage to membranes, photosynthetic ability, leaf water status, and oxidative processes. In growth chamber, chlorophyll, photosynthetic efficiency, pollen germination, and pollen viability correlated strongly with yield traits. Thus, GNG1969, GNG1488, PantG186, RSG888, CSJ315, and GNG1499 genotypes could be used as candidate donors for transferring heat tolerance traits to high-yielding heat-sensitive varieties to develop heat-resilient chickpea cultivars.
Collapse
Affiliation(s)
- Poonam Devi
- Department of Botany, Panjab University, Chandigarh, India
| | | | - Vijay Prakash
- Agricultural Research Station (S.K.R.A.U, Bikaner), Sri Ganganagar, India
| | - Sanjeev Kumar
- Department of Plant Sciences, Central University of Punjab, Bhatinda, India
| | | | - Pronob J. Paul
- International Rice Research Institute South-Asia Hub, Hyderabad, India
| | - P. V. Vara Prasad
- Sustainable Intensification Innovation Lab, Kansas State University, Manhattan, KS, United States
| | - Kamal Dev Sharma
- Department of Agricultural Biotechnology, CSK Himachal Pradesh Agricultural University, Palampur, India
| | | | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| |
Collapse
|
5
|
Touzy G, Lafarge S, Redondo E, Lievin V, Decoopman X, Le Gouis J, Praud S. Identification of QTLs affecting post-anthesis heat stress responses in European bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:947-964. [PMID: 34984510 PMCID: PMC8942932 DOI: 10.1007/s00122-021-04008-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/23/2021] [Indexed: 05/27/2023]
Abstract
The response of a large panel of European elite wheat varieties to post-anthesis heat stress is influenced by 17 QTL linked to grain weight or the stay-green phenotype. Heat stress is a critical abiotic stress for winter bread wheat (Triticum aestivum L.) especially at the flowering and grain filling stages, limiting its growth and productivity in Europe and elsewhere. The breeding of new high-yield and stress-tolerant wheat varieties requires improved understanding of the physiological and genetic bases of heat tolerance. To identify genomic areas associated with plant and grain characteristics under heat stress, a panel of elite European wheat varieties (N = 199) was evaluated under controlled conditions in 2016 and 2017. A split-plot design was used to test the effects of high temperature for ten days after flowering. Flowering time, leaf chlorophyll content, the number of productive spikes, grain number, grain weight and grain size were measured, and the senescence process was modeled. Using genotyping data from a 280 K SNP chip, a genome-wide association study was carried out to test the main effect of each SNP and the effect of SNP × treatment interaction. Genotype × treatment interactions were mainly observed for grain traits measured on the main shoots and tillers. We identified 10 QTLs associated with the main effect of at least one trait and seven QTLs associated with the response to post-anthesis heat stress. Of these, two main QTLs associated with the heat tolerance of thousand-kernel weight were identified on chromosomes 4B and 6B. These QTLs will be useful for breeders to improve grain yield in environments where terminal heat stress is likely to occur.
Collapse
Affiliation(s)
- Gaëtan Touzy
- Arvalis-Institut du Végétal, Biopole Clermont Limagne, 63360, Saint-Beauzire, France
- Centre de Recherche de Chappes, Route d'Ennezat CS90216, 63720, Chappes, France
| | - Stéphane Lafarge
- Centre de Recherche de Chappes, Route d'Ennezat CS90216, 63720, Chappes, France
| | - Elise Redondo
- Centre de Recherche de Chappes, Route d'Ennezat CS90216, 63720, Chappes, France
| | - Vincent Lievin
- Centre de Recherche de Chappes, Route d'Ennezat CS90216, 63720, Chappes, France
| | - Xavier Decoopman
- Centre de Recherche de Chappes, Route d'Ennezat CS90216, 63720, Chappes, France
| | - Jacques Le Gouis
- UMR 1095 GDEC, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France.
| | - Sébastien Praud
- Centre de Recherche de Chappes, Route d'Ennezat CS90216, 63720, Chappes, France
| |
Collapse
|
6
|
Schindfessel C, Drozdowska Z, De Mooij L, Geelen D. Loss of obligate crossovers, defective cytokinesis and male sterility in barley caused by short-term heat stress. PLANT REPRODUCTION 2021; 34:243-253. [PMID: 34021795 DOI: 10.1007/s00497-021-00415-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/14/2021] [Indexed: 05/16/2023]
Abstract
Short-term heat stress during male meiosis causes defects in crossover formation, meiotic progression and cell wall formation in the monocot barley, ultimately leading to pollen abortion. High temperature conditions cause a reduction of fertility due to alterations in meiotic processes and gametogenesis. The male gametophyte development has been shown to be particularly sensitive to heat stress, and even short-term and modest temperature shifts cause alterations in crossover formation. In line with previous reports, we observed that male meiosis in the monocot barley exposed for 24-45 h to heat stress (32-42 °C) partially or completely eliminates obligate crossover formation and causes unbalanced chromosome segregation and meiotic abortion. Depending on the severity of heat stress, the structure and organization of the chromosomes were altered. In addition to alterations in chromosome structure and dynamics, heat treatment abolished or reduced the formation of a callose wall surrounding the meiocytes and interrupted the cell cycle progression leading to cytokinesis defects and microspore cell death.
Collapse
Affiliation(s)
- Cédric Schindfessel
- Department of Plants and Crops, Unit HortiCell, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Zofia Drozdowska
- Department of Plants and Crops, Unit HortiCell, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Len De Mooij
- Department of Plants and Crops, Unit HortiCell, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Danny Geelen
- Department of Plants and Crops, Unit HortiCell, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
7
|
de Lima VJ, Gracia-Romero A, Rezzouk FZ, Diez-Fraile MC, Araus-Gonzalez I, Kamphorst SH, do Amaral Júnior AT, Kefauver SC, Aparicio N, Araus JL. Comparative Performance of High-Yielding European Wheat Cultivars Under Contrasting Mediterranean Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:687622. [PMID: 34267771 PMCID: PMC8276830 DOI: 10.3389/fpls.2021.687622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
Understanding the interaction between genotype performance and the target environment is the key to improving genetic gain, particularly in the context of climate change. Wheat production is seriously compromised in agricultural regions affected by water and heat stress, such as the Mediterranean basin. Moreover, wheat production may be also limited by the nitrogen availability in the soil. We have sought to dissect the agronomic and physiological traits related to the performance of 12 high-yield European bread wheat varieties under Mediterranean rainfed conditions and different levels of N fertilization during two contrasting crop seasons. Grain yield was more than two times higher in the first season than the second season and was associated with much greater rainfall and lower temperatures. However, the nitrogen effect was rather minor. Genotypic effects existed for the two seasons. While several of the varieties from central/northern Europe yielded more than those from southern Europe during the optimal season, the opposite trend occurred in the dry season. The varieties from central/northern Europe were associated with delayed phenology and a longer crop cycle, while the varieties from southern Europe were characterized by a shorter crop cycle but comparatively higher duration of the reproductive period, associated with an earlier beginning of stem elongation and a greater number of ears per area. However, some of the cultivars from northern Europe maintained a relatively high yield capacity in both seasons. Thus, KWS Siskin from the UK exhibited intermediate phenology, resulting in a relatively long reproductive period, together with a high green area throughout the crop cycle.
Collapse
Affiliation(s)
- Valter Jário de Lima
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro – UENF, Campos dos Goytacazes, Brazil
| | - Adrian Gracia-Romero
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, Barcelona, Spain
- AGROTECNIO (Center for Research in Agrotechnology), Lleida, Spain
| | - Fatima Zahra Rezzouk
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, Barcelona, Spain
- AGROTECNIO (Center for Research in Agrotechnology), Lleida, Spain
| | | | | | - Samuel Henrique Kamphorst
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro – UENF, Campos dos Goytacazes, Brazil
| | - Antonio Teixeira do Amaral Júnior
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro – UENF, Campos dos Goytacazes, Brazil
| | - Shawn C. Kefauver
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, Barcelona, Spain
- AGROTECNIO (Center for Research in Agrotechnology), Lleida, Spain
| | - Nieves Aparicio
- Agro-Technological Institute of Castilla and Leon (ITACyL), Valladolid, Spain
| | - Jose Luis Araus
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, Barcelona, Spain
- AGROTECNIO (Center for Research in Agrotechnology), Lleida, Spain
| |
Collapse
|
8
|
Matsunaga S, Yamasaki Y, Toda Y, Mega R, Akashi K, Tsujimoto H. Stage-Specific Characterization of Physiological Response to Heat Stress in the Wheat Cultivar Norin 61. Int J Mol Sci 2021; 22:6942. [PMID: 34203321 PMCID: PMC8269178 DOI: 10.3390/ijms22136942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
Bread wheat (Triticum aestivum) is less adaptable to high temperatures than other major cereals. Previous studies of the effects of high temperature on wheat focused on the reproductive stage. There are few reports on yield after high temperatures at other growth stages. Understanding growth-stage-specific responses to heat stress will contribute to the development of tolerant lines suited to high temperatures at various stages. We exposed wheat cultivar "Norin 61" to high temperature at three growth stages: seedling-tillering (GS1), tillering-flowering (GS2), and flowering-maturity (GS3). We compared each condition based on agronomical traits, seed maturity, and photosynthesis results. Heat at GS2 reduced plant height and number of grains, and heat at GS3 reduced the grain formation period and grain weight. However, heat at GS1 reduced senescence and prolonged grain formation, increasing grain weight without reducing yield. These data provide fundamental insights into the biochemical and molecular adaptations of bread wheat to high-temperature stresses and have implications for the development of wheat lines that can respond to high temperatures at various times of the year.
Collapse
Affiliation(s)
- Sachiko Matsunaga
- United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan; (S.M.); (K.A.)
| | - Yuji Yamasaki
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan;
| | - Yusuke Toda
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan;
| | - Ryosuke Mega
- Graduate School of Science & Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan;
| | - Kinya Akashi
- United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan; (S.M.); (K.A.)
| | - Hisashi Tsujimoto
- United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8553, Japan; (S.M.); (K.A.)
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan;
| |
Collapse
|
9
|
Single versus repeated heat stress in wheat: What are the consequences in different developmental phases? PLoS One 2021; 16:e0252070. [PMID: 34033647 PMCID: PMC8148339 DOI: 10.1371/journal.pone.0252070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/09/2021] [Indexed: 11/19/2022] Open
Abstract
With a possible reference to heat priming and to characterize the extent and variation in the heat stress responses in wheat, the effects of single vs. repeated heat stresses were examined by measuring the changes in morphological and grain yield-related traits and photosynthetic parameters. To achieve these objectives, 51 winter wheat cultivars of various geographic origins were included in two independent experiments covering different phenological stages. In Experiment I, a single heat stress event was applied at stem elongation (SE) and booting (B), and the repeated heat stress was applied at both of these stages (SE+B). In Experiment II, the single heat stress was applied at stem elongation (SE) and full heading (CH), while the repeated heat stress was applied at both stages (SE+CH). While genotype was a more important factor for determining the morphological and yield-related traits, it was the treatment effect that mostly influenced the photosynthetic parameters, with the exception of the chlorophyll content. The heading stage was more sensitive to heat stress than the booting stage, which was primarily due to the larger decrease in the average seed number. The importance of biomass in contributing to grain yield intensified with the heat stress treatments. There was a large variation between the wheat cultivars not only in yielding abilities under control conditions but also in sensitivities to the various heat stresses, based on which 7 distinct groups with specific response profiles could be identified at a highly significant level. The 7 wheat groups were also characterized by their reaction patterns of different magnitudes and directions in their responses to single vs. repeated heat stresses, which depended on the phenological phases during the second cycle of heat stress. The possible association between these findings and heat priming is discussed.
Collapse
|
10
|
Erena MF, Lohraseb I, Munoz-Santa I, Taylor JD, Emebiri LC, Collins NC. The WtmsDW Locus on Wheat Chromosome 2B Controls Major Natural Variation for Floret Sterility Responses to Heat Stress at Booting Stage. FRONTIERS IN PLANT SCIENCE 2021; 12:635397. [PMID: 33854519 DOI: 10.3389/fpls.2021.635397/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/17/2021] [Indexed: 05/27/2023]
Abstract
Heat stress at booting stage causes significant losses to floret fertility (grain set) and hence yield in wheat (Triticum aestivum L.); however, there is a lack of well-characterized sources of tolerance to this type of stress. Here, we describe the genetic analysis of booting stage heat tolerance in a cross between the Australian cultivars Drysdale (intolerant) and Waagan (tolerant), leading to the definition of a major-effect tolerance locus on the short arm of chromosome 2B, Wheat thermosensitive male sterile Drysdale/Waagan (WtmsDW). WtmsDW offsets between 44 and 65% of the losses in grain set due to heat, suggesting that it offers significant value for marker-assisted tolerance breeding. In lines lacking the WtmsDW tolerance allele, peaks in sensitivity were defined with reference to auricle distance, for various floret positions along the spike. Other (relatively minor) floret fertility response effects, including at the Rht-D1 dwarfing locus, were considered likely escape artifacts, due to their association with height and flowering time effects that might interfere with correct staging of stems for heat treatment. Heat stress increased grain set at distal floret positions in spikelets located at the top of the spike and increased the size of spikelets at the base of the spike, but these effects were offset by greater reductions in grain set at other floret positions. Potentially orthologous loci on chromosomes 1A and 1B were identified for heat response of flowering time. The potential significance of these findings for tolerance breeding and further tolerance screening is discussed.
Collapse
Affiliation(s)
- Million F Erena
- School of Agriculture Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Iman Lohraseb
- School of Agriculture Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Isabel Munoz-Santa
- School of Agriculture Food and Wine, The University of Adelaide, Adelaide, SA, Australia
- Department of Statistics and Operations Research, University of Valencia, Valencia, Spain
| | - Julian D Taylor
- School of Agriculture Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Livinus C Emebiri
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, Australia
- New South Wales Department of Primary Industries, Wagga Wagga, NSW, Australia
| | - Nicholas C Collins
- School of Agriculture Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
11
|
Erena MF, Lohraseb I, Munoz-Santa I, Taylor JD, Emebiri LC, Collins NC. The WtmsDW Locus on Wheat Chromosome 2B Controls Major Natural Variation for Floret Sterility Responses to Heat Stress at Booting Stage. FRONTIERS IN PLANT SCIENCE 2021; 12:635397. [PMID: 33854519 PMCID: PMC8040955 DOI: 10.3389/fpls.2021.635397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/17/2021] [Indexed: 05/05/2023]
Abstract
Heat stress at booting stage causes significant losses to floret fertility (grain set) and hence yield in wheat (Triticum aestivum L.); however, there is a lack of well-characterized sources of tolerance to this type of stress. Here, we describe the genetic analysis of booting stage heat tolerance in a cross between the Australian cultivars Drysdale (intolerant) and Waagan (tolerant), leading to the definition of a major-effect tolerance locus on the short arm of chromosome 2B, Wheat thermosensitive male sterile Drysdale/Waagan (WtmsDW). WtmsDW offsets between 44 and 65% of the losses in grain set due to heat, suggesting that it offers significant value for marker-assisted tolerance breeding. In lines lacking the WtmsDW tolerance allele, peaks in sensitivity were defined with reference to auricle distance, for various floret positions along the spike. Other (relatively minor) floret fertility response effects, including at the Rht-D1 dwarfing locus, were considered likely escape artifacts, due to their association with height and flowering time effects that might interfere with correct staging of stems for heat treatment. Heat stress increased grain set at distal floret positions in spikelets located at the top of the spike and increased the size of spikelets at the base of the spike, but these effects were offset by greater reductions in grain set at other floret positions. Potentially orthologous loci on chromosomes 1A and 1B were identified for heat response of flowering time. The potential significance of these findings for tolerance breeding and further tolerance screening is discussed.
Collapse
Affiliation(s)
- Million F. Erena
- School of Agriculture Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Iman Lohraseb
- School of Agriculture Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Isabel Munoz-Santa
- School of Agriculture Food and Wine, The University of Adelaide, Adelaide, SA, Australia
- Department of Statistics and Operations Research, University of Valencia, Valencia, Spain
| | - Julian D. Taylor
- School of Agriculture Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Livinus C. Emebiri
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, Australia
- New South Wales Department of Primary Industries, Wagga Wagga, NSW, Australia
| | - Nicholas C. Collins
- School of Agriculture Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
12
|
Vafin I, Safin R. The effectiveness of using Metallocene fertilizers for the spray-dressing of winter wheat. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213700184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This article presents the impact assessment results for the spay-dressing of different Metallocene compound fertilizers containing chelated microelements on the yield and quality of winter wheat seeds of the Kazanskaya 560 variety. The research was carried out on the grey forest soils in the Kama region of the Republic of Tatarstan in 2017–2020. The plants were dressed with fertilizers in the autumn and the spring and summer period. In the autumn, we used the fertilizer containing manganese (Metallocene D), and in the spring and summer period (the tillering and earing stages of the winter wheat), we used the Metallocene Universal compound fertilizer with several microelements. During the research, we established that applying the manganese-containing Metallocene D in the autumn has a significant positive effect on the growth and dry biomass accumulation of the winter wheat. The dressing with Metallocene Universal during the tillering and earing stages following the application of Metallocene D in the autumn resulted in an increased/stimulated plant growth and development. The highest yield of winter wheat (3.45 t/ha or 46 % above the reference value) was obtained through the dressing of Metallocene D at a rate of 2 l/ha in the autumn, and the spraying of the plants with Metallocene Universal done twice during the spring and summer period. The autumn application of Metallocene D and the twofold application of Metallocene Universal improve the qualitative parameters of new winter wheat seeds. The use of fertilizers in questions improved the laboratory germination of the seeds and significantly reduced the root rot agent infection rate. The twofold dressing during the spring and summer period following the autumn dressing helped to suppress the most dangerous infections, such as the fusarium blight and the Helmintosporium disease, in the new seeds almost completely. The research conducted showed that Metallocene fertilizers can be successfully used to improve the production of winter wheat and seeds.
Collapse
|
13
|
Ober ES, Howell P, Thomelin P, Kouidri A. The importance of accurate developmental staging. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3375-3379. [PMID: 32569381 PMCID: PMC7307853 DOI: 10.1093/jxb/eraa217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This article comments on: Fernández-Gómez J, Talle B, Tidy A, Wilson ZA. 2020. Accurate staging of reproduction development in Cadenza wheat by non-destructive spike analysis. Journal of Experimental Botany71, 3475–3484.
Collapse
Affiliation(s)
- Eric S Ober
- NIAB, The John Bingham Laboratory, Cambridge, UK
| | - Phil Howell
- NIAB, The John Bingham Laboratory, Cambridge, UK
| | | | | |
Collapse
|
14
|
Balla K, Karsai I, Bónis P, Kiss T, Berki Z, Horváth Á, Mayer M, Bencze S, Veisz O. Heat stress responses in a large set of winter wheat cultivars (Triticum aestivum L.) depend on the timing and duration of stress. PLoS One 2019; 14:e0222639. [PMID: 31539409 PMCID: PMC6754161 DOI: 10.1371/journal.pone.0222639] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/04/2019] [Indexed: 11/18/2022] Open
Abstract
The adverse effects of heat on plant yield strongly depend on its duration and the phenological stage of the crops when the heat occurs. To clarify the effects of these two aspects of heat stress, systematic research was conducted under controlled conditions on 101 wheat cultivars of various geographic origin. Different durations of heat stress (5, 10 and 15 days) were applied starting from three developmental stages (ZD49: booting stage, ZD59: heading, ZD72: 6th day after heading). Various morphological, yield-related traits and physiological parameters were measured to determine the stress response patterns of the wheat genotypes under combinations of the duration and the timing of heat stress. Phenological timing significantly influenced the thousand-kernel weight and reproductive tiller number. The duration of heat stress was the most significant component in determining both seed number and seed weight, as well as the grain yield consequently, explaining 51.6% of its phenotypic variance. Irrespective of the developmental phase, the yield-related traits gradually deteriorated over time, and even a 5-day heat stress was sufficient to cause significant reductions. ZD59 was significantly more sensitive to heat than either ZD49 or ZD72. The photosynthetic activity of the flag leaf was mostly determined by heat stress duration. No significant associations were noted between physiological parameters and heat stress response as measured by grain yield. Significant differences were observed between the wheat genotypes in heat stress responses, which varied greatly with developmental phase. Based on the grain yield across developmental phases and heat stress treatments, eight major response groups of wheat genotypes could be identified, and among them, three clusters were the most heat-tolerant. These cultivars are currently included in crossing schemes, partially for the identification of the genetic determinants of heat stress response and partially for the development of new wheat varieties with better heat tolerance.
Collapse
Affiliation(s)
- Krisztina Balla
- Molecular Breeding Department, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Ildikó Karsai
- Molecular Breeding Department, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Péter Bónis
- Crop Production Department, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Tibor Kiss
- Molecular Breeding Department, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Zita Berki
- Molecular Breeding Department, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Ádám Horváth
- Molecular Breeding Department, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Marianna Mayer
- Cereal Breeding Department, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Szilvia Bencze
- Research Institute of Organic Agriculture, Budapest, Hungary
| | - Ottó Veisz
- Cereal Breeding Department, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| |
Collapse
|
15
|
Bheemanahalli R, Sunoj VSJ, Saripalli G, Prasad PVV, Balyan HS, Gupta PK, Grant N, Gill KS, Jagadish SVK. Quantifying the Impact of Heat Stress on Pollen Germination, Seed Set, and Grain Filling in Spring Wheat. CROP SCIENCE 2019; 59:684-696. [PMID: 0 DOI: 10.2135/cropsci2018.05.0292] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
| | | | - Gautam Saripalli
- Dep. of Agronomy; Kansas State Univ.; Manhattan KS 66506
- Dep. of Genetics and Plant Breeding; Ch. Charan Singh Univ.; Meerut India 250001
| | | | - H. S. Balyan
- Dep. of Genetics and Plant Breeding; Ch. Charan Singh Univ.; Meerut India 250001
| | - P. K. Gupta
- Dep. of Genetics and Plant Breeding; Ch. Charan Singh Univ.; Meerut India 250001
| | | | | | | |
Collapse
|
16
|
Soriano JM, Villegas D, Sorrells ME, Royo C. Durum Wheat Landraces from East and West Regions of the Mediterranean Basin Are Genetically Distinct for Yield Components and Phenology. FRONTIERS IN PLANT SCIENCE 2018; 9:80. [PMID: 29472936 PMCID: PMC5809869 DOI: 10.3389/fpls.2018.00080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/15/2018] [Indexed: 05/03/2023]
Abstract
Genetic diversity of durum wheat landraces is a powerful tool for the introgression of new alleles of commercial interest in breeding programs. In a previous study, our team structured a collection of 172 durum wheat landraces from 21 Mediterranean countries in four genetic populations related to their geographical origin: east Mediterranean (17), east Balkan and Turkey (23), west Balkan and Egypt (25), and West Mediterranean (73), leaving 34 genotypes as admixed, and association mapping was carried out for important agronomic traits. Using a subset of this collection, the current study identified 23 marker alleles with a differential frequency in landraces from east and west regions of the Mediterranean Basin, which affected important agronomic traits. Eastern landraces had higher frequencies than the western ones of alleles increasing the number of spikes (wPt-5385 on chromosome 1B), grains per m2 (wPt-0841 on chromosome 7B), and grain filling duration (7 significant marker trait associations). Eastern landraces had higher frequencies of marker alleles located on chromosomes 4A, 5B, and 6B associated with reduced cycle length, and lighter grains than the western ones. Also for lower kernel weight, four marker alleles were located on chromosome 1A. Breeders may use the molecular markers identified in the current study for improving yield under specific Mediterranean environments.
Collapse
Affiliation(s)
- Jose M. Soriano
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology, Lleida, Spain
| | - Dolors Villegas
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology, Lleida, Spain
| | - Mark E. Sorrells
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, United States
| | - Conxita Royo
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology, Lleida, Spain
- *Correspondence: Conxita Royo
| |
Collapse
|
17
|
Nasehzadeh M, Ellis RH. Wheat seed weight and quality differ temporally in sensitivity to warm or cool conditions during seed development and maturation. ANNALS OF BOTANY 2017. [PMID: 28637252 PMCID: PMC5591415 DOI: 10.1093/aob/mcx074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS Short periods of extreme temperature may affect wheat (Triticum aestivum) seed weight, but also quality. Temporal sensitivity to extreme temperature during seed development and maturation was investigated. METHODS Plants of 'Tybalt' grown at ambient temperature were moved to growth cabinets at 29/20°C or 34/20°C (2010), or 15/10°C or 34/20°C (2011), for successive 7-d periods from 7 DAA (days after anthesis) onwards, and also 7-65 DAA in 2011. Seed samples were harvested serially and moisture content, weight, ability to germinate, subsequent longevity in air-dry storage and bread-making quality were determined. KEY RESULTS High temperature (34/20°C) reduced final seed weight, with greatest temporal sensitivity at 7-14 or 14-21 DAA. Several aspects of bread-making quality were also most sensitive to high temperature then, but whereas protein quality decreased protein and sulphur concentrations improved. Early exposure to high temperature provided earlier development of ability to germinate and tolerate desiccation, but had little effect on maximum germination capacity. All treatments at 15/10°C resulted in ability to germinate declining between 58 and 65 DAA. Early exposure to high temperature hastened improvement in seed storage longevity, but the subsequent decline in late maturation preceded that in the control. Long (7-65 DAA) exposure to 15/10°C disrupted the development of seed longevity, with no improvement after seed filling ended. Longevity improved during maturation drying in other treatments. Early (7-14 DAA) exposure to high temperature reduced and low temperature increased subsequent longevity at harvest maturity, whereas late (35 or 42-49 DAA) exposure to high temperature increased and low temperature reduced it. CONCLUSIONS Temporal sensitivity to extreme temperature was detected. It varied considerably amongst the contrasting seed variables investigated. Subsequent seed longevity at harvest maturity responded negatively to temperature early in development, but positively later in development and throughout maturation.
Collapse
Affiliation(s)
- M Nasehzadeh
- School of Agriculture, Policy and Development, University of Reading, Earley Gate, PO Box 237, Reading RG6 6AR, UK
| | - R H Ellis
- School of Agriculture, Policy and Development, University of Reading, Earley Gate, PO Box 237, Reading RG6 6AR, UK
- For correspondence. E-mail
| |
Collapse
|
18
|
Hughes A, Askew K, Scotson CP, Williams K, Sauze C, Corke F, Doonan JH, Nibau C. Non-destructive, high-content analysis of wheat grain traits using X-ray micro computed tomography. PLANT METHODS 2017; 13:76. [PMID: 29118820 PMCID: PMC5664813 DOI: 10.1186/s13007-017-0229-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/21/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND Wheat is one of the most widely grown crop in temperate climates for food and animal feed. In order to meet the demands of the predicted population increase in an ever-changing climate, wheat production needs to dramatically increase. Spike and grain traits are critical determinants of final yield and grain uniformity a commercially desired trait, but their analysis is laborious and often requires destructive harvest. One of the current challenges is to develop an accurate, non-destructive method for spike and grain trait analysis capable of handling large populations. RESULTS In this study we describe the development of a robust method for the accurate extraction and measurement of spike and grain morphometric parameters from images acquired by X-ray micro-computed tomography (μCT). The image analysis pipeline developed automatically identifies plant material of interest in μCT images, performs image analysis, and extracts morphometric data. As a proof of principle, this integrated methodology was used to analyse the spikes from a population of wheat plants subjected to high temperatures under two different water regimes. Temperature has a negative effect on spike height and grain number with the middle of the spike being the most affected region. The data also confirmed that increased grain volume was correlated with the decrease in grain number under mild stress. CONCLUSIONS Being able to quickly measure plant phenotypes in a non-destructive manner is crucial to advance our understanding of gene function and the effects of the environment. We report on the development of an image analysis pipeline capable of accurately and reliably extracting spike and grain traits from crops without the loss of positional information. This methodology was applied to the analysis of wheat spikes can be readily applied to other economically important crop species.
Collapse
Affiliation(s)
- Aoife Hughes
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, SY23 3EE UK
| | - Karen Askew
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, SY23 3EE UK
| | - Callum P. Scotson
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, SY23 3EE UK
- Present Address: Faculty of Engineering and Environment, University of Southampton, University Road, Southampton, SO17 1BJ UK
| | - Kevin Williams
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, SY23 3EE UK
| | - Colin Sauze
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, SY23 3EE UK
| | - Fiona Corke
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, SY23 3EE UK
| | - John H. Doonan
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, SY23 3EE UK
| | - Candida Nibau
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, SY23 3EE UK
| |
Collapse
|