1
|
Fraga OT, Silva LAC, Silva JCF, Bevitori R, Silva FDA, Pereira WA, Reis PAB, Fontes EPB. Expansion and diversification of the Glycine max (Gm) ERD15-like subfamily of the PAM2-like superfamily. PLANTA 2024; 260:108. [PMID: 39333439 DOI: 10.1007/s00425-024-04538-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
MAIN CONCLUSION Despite modulating senescence and drought responses, the GmERD15-like subfamily members are differentially induced by multiple stresses and diverge partially in stress signaling functions. The PAM2 motif represents a binding site for poly (A)-binding proteins (PABPs), often associated with RNA metabolism regulation. The PAM2-containing protein ERD15 stands out as a critical regulator of diverse stress responses in plants. Despite the relevance of the PAM2 motif, a comprehensive analysis of the PAM2 superfamily and ERD15-like subfamily in the plant kingdom is lacking. Here, we provide an extensive in silico analysis of the PAM2 superfamily and the ERD15-like subfamily in soybean, using Arabidopsis and rice sequences as prototypes. The Glycine max ERD15-like subfamily members were clustered in pairs, likely originating from DNA-based gene duplication, as the paralogs display high sequence conservation, similar exon/intron genome organization, and are undergoing purifying selection. Complementation analyses of an aterd15 mutant demonstrated that the plant ERD15-like subfamily members are functionally redundant in response to drought, osmotic stress, and dark-induced senescence. Nevertheless, the soybean members displayed differential expression profiles, biochemical activity, and subcellular localization, consistent with functional diversification. The expression profiles of Glyma04G138600 under salicylic acid (SA) and abscisic acid (ABA) treatments differed oppositely from those of the other GmERD15-like genes. Abiotic stress-induced coexpression analysis with soybean PABPs showed that Glyma04G138600 was clustered separately from other GmERD15s. In contrast to the AtERD15 stress-induced nuclear redistribution, Glyma04G138600 and Glyma02G260800 localized to the cytoplasm, while Glyma03G131900 fractionated between the cytoplasm and nucleus under normal and stress conditions. These data collectively indicate that despite modulating senescence and drought responses, the GmERD15-like subfamily members are differentially induced by multiple stresses and may diverge partially in stress signaling functions.
Collapse
Affiliation(s)
- Otto T Fraga
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, 36571.000, Brazil
| | - Lucas A C Silva
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, 36571.000, Brazil
| | - José Cleydson F Silva
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, 36571.000, Brazil
| | - Rosângela Bevitori
- Biotechnology Laboratory, Embrapa Rice and Beans, Rodovia GO-462, Km 12, Santo Antônio de Goiás, GO, 75375-000, Brazil
| | - Fredy D A Silva
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, 36571.000, Brazil
| | - Welison A Pereira
- Department of Biology, Universidade Federal de Lavras, Lavras, 37200-900, Brazil
| | - Pedro A B Reis
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, 36571.000, Brazil.
| | - Elizabeth P B Fontes
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, 36571.000, Brazil.
| |
Collapse
|
2
|
Shamloo-Dashtpagerdi R, Tanin MJ, Aliakbari M, Saini DK. Unveiling the role of the ERD15 gene in wheat's tolerance to combined drought and salinity stress: a meta-analysis of QTL and RNA-Seq data. PHYSIOLOGIA PLANTARUM 2024; 176:e14570. [PMID: 39382027 DOI: 10.1111/ppl.14570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
The coexistence of drought and salinity stresses in field conditions significantly hinders wheat (Triticum aestivum L.) productivity. Understanding the molecular mechanisms governing response and tolerance to these stresses is crucial for developing resilient wheat varieties. Our research, employing a combination of meta-QTL and meta-RNA-Seq transcriptome analyses, has uncovered the genome functional landscape of wheat in response to drought and salinity. We identified 118 meta-QTLs (MQTLs) distributed across all 21 wheat chromosomes, with ten designated as the most promising. Additionally, we found 690 meta-differentially expressed genes (mDEGs) shared between drought and salinity stress. Notably, our findings highlight the Early Responsive to Dehydration 15 (ERD15) gene, located in one of the most promising MQTLs, as a key gene in the shared gene network of drought and salinity stress. ERD15, differentially expressed between contrasting wheat genotypes under combined stress conditions, significantly regulates water relations, photosynthetic activity, antioxidant activity, and ion homeostasis. These findings not only provide valuable insights into the molecular genetic mechanisms underlying combined stress tolerance in wheat but also hold the potential to contribute significantly to the development of stress-resilient wheat varieties.
Collapse
Affiliation(s)
| | - Mohammad Jafar Tanin
- Division of Plant Science and Technology, College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO, USA
- Department of Plant Breeding and Genetics, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Massume Aliakbari
- Department of Crop Production and Plant Breeding, Shiraz University, Shiraz, Iran
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab, India
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
3
|
Xie Y, Miao T, Lyu S, Huang Y, Shu M, Li S, Xiong T. Arabidopsis ERD15 regulated by BBX24 plays a positive role in UV-B signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112077. [PMID: 38552846 DOI: 10.1016/j.plantsci.2024.112077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/01/2024]
Abstract
Ultraviolet-B (UV-B, 280-315 nm) is a minor component of solar radiation, but it has a major regulatory impact on plant growth and development. Solar UV-B regulates numerous aspects of plant metabolism, morphology and physiology through altering the expression of hundreds of genes. EARLY RESPONSIVE TO DEHYDRATION 15 (ERD15) is a drought-induced rapid response gene, formerly known as a negative regulator of the abscisic acid (ABA) signaling pathway. It is unclear whether ERD15 is involved in UV-B-induced photomorphogenesis. Previously, we reported that the BBX24 transcriptional factor negatively regulated UV-B signaling. In the present study, we identified that ERD15 is involved in UV-B photomorphogenesis as a positive regulator at phenotypic, physiological and molecular levels. Our results indicated that ERD15 expression is suppressed by UV-B, inhibited the elongation of Arabidopsis hypocotyls in a UV-B-dependent manner, promoted the expression of related UV-B signaling genes and increased the total antioxidant capacity of Arabidopsis under UV-B. Genetic hybridization results show that ERD15 acts downstream of BBX24, and BBX24 protein mediated the expression of ERD15 by binding to its promoter. Thus, ERD15 is a novel positive regulator of the UV-B signaling pathway, which is downstream of BBX24 and regulated by BBX24 protein to participate in UV-B photomorphogenesis.
Collapse
Affiliation(s)
- Yuxin Xie
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Tingting Miao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Suihua Lyu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yuewei Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Man Shu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Shaoshan Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Tiantian Xiong
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
4
|
Li Z, Lu S, Yi S, Mo S, Yu X, Yin J, Zhang C. Physiological and transcriptomic comparisons shed light on the cold stress response mechanisms of Dendrobium spp. BMC PLANT BIOLOGY 2024; 24:230. [PMID: 38561687 PMCID: PMC10985946 DOI: 10.1186/s12870-024-04903-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Dendrobium spp. comprise a group of tropical orchids with ornamental and medicinal value. Dendrobium spp. are sensitive to low temperature, and the underlying cold response regulatory mechanisms in this group are unclear. To understand how these plants respond to cold stress, we compared the transcriptomic responses of the cold-tolerant cultivar 'Hongxing' (HX) and the cold-sensitive cultivar 'Sonia Hiasakul' (SH) to cold stress. RESULTS Chemometric results showed that the physiological response of SH in the later stages of cold stress is similar to that of HX throughout the cold treatment. Orthogonal partial least squares discriminant analysis (OPLS-DA) revealed that soluble protein content and peroxidase activity are key physiological parameters for assessing the cold tolerance of these two Dendrobium spp. cultivars. Additionally, weighted gene co-expression network analysis (WGCNA) results showed that many cold response genes and metabolic pathways significantly associated with the physiological indices were enriched in the 12 detected modules. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analyses of the 105 hub genes showed that Dendrobium spp. adapt to cold stress by regulating signal transduction, phytohormones, transcription factors, protein translation and modification, functional proteins, biosynthesis and metabolism, cell structure, light, and the circadian clock. Hub genes of the cold stress response network included the remorin gene pp34, the abscisic acid signaling pathway-related genes PROTEIN PHOSPATASE 2 C (PP2C), SNF1-RELATED PROTEIN KINASE 2 (SnRK2), ABRE-BINDING FACTOR 1 (ABF1) and SKI-INTERACTING PROTEIN 17 (SKIP17), the Ca2+ signaling-related GTP diphosphokinase gene CRSH1, the carbohydrate-related gene STARCH SYNTHASE 2 (SS2), the cell wall biosynthesis gene CINNAMYL ALCOHOL DEHYDROGENASE (CAD7), and the endocytosis-related gene VACUOLAR PROTEIN SORTING-ASSOCIATED PROTEIN 52 A (VPS52A). CONCLUSIONS The cold-responsive genes and metabolic pathways of Dendrobium spp. revealed in this study provide important insight to enable the genetic enhancement of cold tolerance in Dendrobium spp., and to facilitate cold tolerance breeding in related plants.
Collapse
Affiliation(s)
- Zhiyuan Li
- Sanya Institute of China Agricultural University, Sanya, Hainan, 572025, China
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, 100193, Beijing, China
| | - Shunjiao Lu
- Tropical Crops Genetic Resources Institute, Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Chines Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, China
- Hainan Engineering Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, 571737, Danzhou, Hainan, China
| | - Shuangshuang Yi
- Tropical Crops Genetic Resources Institute, Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Chines Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, China
- Hainan Engineering Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, 571737, Danzhou, Hainan, China
| | - Shunjin Mo
- Tropical Crops Genetic Resources Institute, Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Chines Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, China
- Hainan Engineering Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, 571737, Danzhou, Hainan, China
| | - Xiaoyun Yu
- Tropical Crops Genetic Resources Institute, Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Chines Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, China
- Hainan Engineering Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, 571737, Danzhou, Hainan, China
| | - Junmei Yin
- Tropical Crops Genetic Resources Institute, Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Chines Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, China.
- Hainan Engineering Center of Tropical Ornamental Plant Germplasm Innovation and Utilization, 571737, Danzhou, Hainan, China.
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571101, Sanya, China.
| | - Changqing Zhang
- Sanya Institute of China Agricultural University, Sanya, Hainan, 572025, China.
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
5
|
Wu G, Tian N, She F, Cao A, Wu W, Zheng S, Yang N. Characteristics analysis of Early Responsive to Dehydration genes in Arabidopsis thaliana ( AtERD). PLANT SIGNALING & BEHAVIOR 2023; 18:2105021. [PMID: 35916255 PMCID: PMC10730211 DOI: 10.1080/15592324.2022.2105021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Early Responsive to Dehydration (ERD) genes are rapidly induced in response to various biotic and abiotic stresses, such as bacteria, drought, light, temperature and high salt in Arabidopsis thaliana. Sixteen ERD of Arabidopsis thaliana (AtERD) genes have been previously identified. The lengths of the coding region of the genes are 504-2838 bp. They encode 137-745 amino acids. In this study, the AtERD genes structure and promoter are analyzed through bioinformatics, and a overall function is summarized and a systematic signal pathway involving AtERD genes is mapped. AtERD9, AtERD11 and AtERD13 have the GST domain. AtERD10 and AtERD14 have the Dehyd domain. The promoters regions contain 32 light responsive elements, 23 ABA responsive elements, 5 drought responsive elements, 5 meristem expression related elements and 132 core promoter elements. The study provides a theoretical guidance for subsequent studies of AtERD genes.
Collapse
Affiliation(s)
- Guofan Wu
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Nongfu Tian
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Fawen She
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Aohua Cao
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Wangze Wu
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Sheng Zheng
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Ning Yang
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou, China
| |
Collapse
|
6
|
Hou L, Wu Q, Zhu X, Li X, Fan X, Hui M, Ye Q, Liu G, Liu X. Transcription Factor VvDREB2A from Vitis vinifera Improves Cold Tolerance. Int J Mol Sci 2023; 24:ijms24119381. [PMID: 37298332 DOI: 10.3390/ijms24119381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Low temperatures restrict the growth of the grapevine industry. The DREB transcription factors are involved in the abiotic stress response. Here, we isolated the VvDREB2A gene from Vitis vinifera cultivar 'Zuoyouhong' tissue culture seedlings. The full-length VvDREB2A cDNA was 1068 bp, encoding 355 amino acids, which contained an AP2 conserved domain belonging to the AP2 family. Using transient expression in leaves of tobacco, VvDREB2A was localized to the nucleus, and it potentiated transcriptional activity in yeasts. Expression analysis revealed that VvDREB2A was expressed in various grapevine tissues, with the highest expression in leaves. VvDREB2A was induced by cold and the stress-signaling molecules H2S, nitric oxide, and abscisic acid. Furthermore, VvDREB2A-overexpressing Arabidopsis was generated to analyze its function. Under cold stress, the Arabidopsis overexpressing lines exhibited better growth and higher survival rates than the wild type. The content of oxygen free radicals, hydrogen peroxide, and malondialdehyde decreased, and antioxidant enzyme activities were enhanced. The content of raffinose family oligosaccharides (RFO) also increased in the VvDREB2A-overexpressing lines. Moreover, the expression of cold stress-related genes (COR15A, COR27, COR6.6, and RD29A) was also enhanced. Taken together, as a transcription factor, VvDREB2A improves plants resistance to cold stress by scavenging reactive oxygen species, increasing the RFO amount, and inducing cold stress-related gene expression levels.
Collapse
Affiliation(s)
- Lixia Hou
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Qiqi Wu
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaomin Zhu
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiangyu Li
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Xinxin Fan
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Mengling Hui
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Qing Ye
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Guangchao Liu
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Xin Liu
- Key Lab of Plant Biotechnology in University of Shandong Province, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
7
|
Ren C, Fan P, Li S, Liang Z. Advances in understanding cold tolerance in grapevine. PLANT PHYSIOLOGY 2023:kiad092. [PMID: 36789447 DOI: 10.1093/plphys/kiad092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/06/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Grapevine (Vitis ssp.) is a deciduous perennial fruit crop, and the canes and buds of grapevine should withstand low temperatures annually during winter. However, the widely cultivated Vitis vinifera is cold-sensitive and cannot survive the severe winter in regions with extremely low temperatures, such as viticulture regions in northern China. By contrast, a few wild Vitis species like V. amurensis and V. riparia exhibit excellent freezing tolerance. However, the mechanisms underlying grapevine cold tolerance remain largely unknown. In recent years, much progress has been made in elucidating the mechanisms, owing to the advances in sequencing and molecular biotechnology. Assembly of grapevine genomes together with resequencing and transcriptome data enable researchers to conduct genomic and transcriptomic analyses in various grapevine genotypes and populations to explore genetic variations involved in cold tolerance. In addition, a number of pivotal genes have been identified and functionally characterized. In this review, we summarize recent major advances in physiological and molecular analyses of cold tolerance in grapevine and put forward questions in this field. We also discuss the strategies for improving the tolerance of grapevine to cold stress. Understanding grapevine cold tolerance will facilitate the development of grapevines for adaption to global climate change.
Collapse
Affiliation(s)
- Chong Ren
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| | - Peige Fan
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| |
Collapse
|
8
|
Zhang Y, Wang J, Li Y, Zhang Z, Yang L, Wang M, Zhang Y, Zhang J, Li C, Li L, Reynolds MP, Jing R, Wang C, Mao X. Wheat TaSnRK2.10 phosphorylates TaERD15 and TaENO1 and confers drought tolerance when overexpressed in rice. PLANT PHYSIOLOGY 2023; 191:1344-1364. [PMID: 36417260 PMCID: PMC9922405 DOI: 10.1093/plphys/kiac523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Wheat (Triticum aestivum) is particularly susceptible to water deficit at the jointing stage of its development. Sucrose non-fermenting 1-related protein kinase 2 (SnRK2) acts as a signaling hub in the response to drought stress, but whether SnRK2 helps plants cope with water deficit via other mechanisms is largely unknown. Here, we cloned and characterized TaSnRK2.10, which was induced by multiple abiotic stresses and phytohormones. Ectopic expression of TaSnRK2.10 in rice (Oryza sativa) conferred drought tolerance, manifested by multiple improved physiological indices, including increased water content, cell membrane stability, and survival rates, as well as decreased water loss and accumulation of H2O2 and malonaldehyde. TaSnRK2.10 interacted with and phosphorylated early responsive to dehydration 15 (TaERD15) and enolase 1 (TaENO1) in vivo and in vitro. TaERD15 phosphorylated by TaSnRK2.10 was prone to degradation by the 26S proteasome, thereby mitigating its negative effects on drought tolerance. Phosphorylation of TaENO1 by TaSnRK2.10 may account for the substantially increased levels of phosphoenolpyruvate (PEP), a key metabolite of primary and secondary metabolism, in TaSnRK2.10-overexpressing rice, thereby enhancing its viability under drought stress. Our results demonstrate that TaSnRK2.10 not only regulated stomatal aperture and the expression of drought-responsive genes, but also enhanced PEP supply and promoted the degradation of TaERD15, all of which enhanced drought tolerance.
Collapse
Affiliation(s)
- Yanfei Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450000, China
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuying Li
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450000, China
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zihui Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Gansu Agricultural University, Gansu 730070, China
| | - Lili Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yining Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Gansu Agricultural University, Gansu 730070, China
| | - Jie Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chenyang Wang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450000, China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Gansu Agricultural University, Gansu 730070, China
| |
Collapse
|
9
|
Duan H, Fu Q, Lv H, Gao A, Chen X, Yang Q, Wang Y, Li W, Fu F, Yu H. Genome-Wide Characterization and Function Analysis of ZmERD15 Genes' Response to Saline Stress in Zea mays L. Int J Mol Sci 2022; 23:ijms232415721. [PMID: 36555363 PMCID: PMC9779859 DOI: 10.3390/ijms232415721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Early responsive dehydration (ERD) genes can be rapidly induced by dehydration. ERD15 genes have been confirmed to regulate various stress responses in plants. However, the maize ERD15 members have not been characterized. In the present study, a total of five ZmERD15 genes were identified from the maize genome and named ZmERD15a, ZmERD15b, ZmERD15c, ZmERD15d, and ZmERD15e. Subsequently, their protein properties, gene structure and duplication, chromosomal location, cis-acting elements, subcellular localization, expression pattern, and over-expression in yeast were analyzed. The results showed that the ZmERD15 proteins were characterized by a similar size (113-159 aa) and contained a common domain structure, with PAM2 and adjacent PAE1 motifs followed by an acidic region. The ZmERD15 proteins exhibited a close phylogenetic relationship with OsERD15s from rice. Five ZmERD15 genes were distributed on maize chromosomes 2, 6, 7, and 9 and showed a different exon-intron organization and were expanded by duplication. Besides, the promoter region of the ZmERD15s contained abundant cis-acting elements that are known to be responsive to stress and hormones. Subcellular localization showed that ZmERD15b and ZmERD15c were localized in the nucleus. ZmERD15a and ZmERD15e were localized in the nucleus and cytoplasm. ZmERD15d was localized in the nucleus and cell membrane. The results of the quantitative real-time PCR (qRT-PCR) showed that the expression of the ZmERD15 genes was regulated by PEG, salinity, and ABA. The heterologous expression of ZmERD15a, ZmERD15b, ZmERD15c, and ZmERD15d significantly enhanced salt tolerance in yeast. In summary, a comprehensive analysis of ZmERD15s was conducted in the study. The results will provide insights into further dissecting the biological function and molecular mechanism of ZmERD15s regulating of the stress response in maize.
Collapse
|
10
|
Ma X, Zhao F, Su K, Lin H, Guo Y. Discovery of cold-resistance genes in Vitis amurensis using bud-based quantitative trait locus mapping and RNA-seq. BMC Genomics 2022; 23:551. [PMID: 35918639 PMCID: PMC9347155 DOI: 10.1186/s12864-022-08788-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
Background In cold regions, low temperature is the main limiting factor affecting grape production. As an important breeding resource, V. amurensis Rupr. has played a crucial role in the discovery of genes which confer cold resistance in grapes. Thus far, many cold-resistance genes have been reported based on the study of V. amurensis. In order to identify more candidate genes related to cold resistance in V. amurensis, QTL mapping and RNA-seq was conducted based on the hybrid population and different cold-resistance cultivars in this study. Results In this study, highly cold-resistant grape cultivar ‘Shuangyou’ (SY) which belongs to V. amurensis, and cold-sensitive cultivar ‘Red Globe’ (RG) which belongs to Vitis vinifera L. were used to identify cold resistance genes. Cold-resistance quantitative trait locus (QTL) mapping was performed based on genetic population construction through interspecific crossing of ‘Shuangyou’ and ‘Red Globe’. Additionally, transcriptome analysis was conducted for the dormant buds of these two cultivars at different periods. Based on transcriptome analysis and QTL mapping, many new structural genes and transcription factors which relate to V. amurensis cold resistance were discovered, including CORs (VaCOR413IM), GSTs (VaGST-APIC, VaGST-PARB, VaGSTF9 and VaGSTF13), ARFs (VaIAA27 and VaSAUR71), ERFs (VaAIL1), MYBs (VaMYBR2, VaMYBLL and VaMYB3R-1) and bHLHs (VaICE1 and VabHLH30). Conclusions This discovery of candidate cold-resistance genes will provide an important theoretical reference for grape cold-resistance mechanisms, research, and cold-resistant grape cultivar breeding in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08788-y.
Collapse
Affiliation(s)
- Xiaolele Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.,National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, 110866, People's Republic of China
| | - Fangyuan Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.,National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, 110866, People's Republic of China
| | - Kai Su
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China. .,College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, People's Republic of China. .,Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, 066004, People's Republic of China.
| | - Hong Lin
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.,National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, 110866, People's Republic of China
| | - Yinshan Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China. .,National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, 110866, People's Republic of China.
| |
Collapse
|
11
|
Zhang H, Hu Y, Gu B, Cui X, Zhang J. VaMYB44 transcription factor from Chinese wild Vitis amurensis negatively regulates cold tolerance in transgenic Arabidopsis thaliana and V. vinifera. PLANT CELL REPORTS 2022; 41:1673-1691. [PMID: 35666271 DOI: 10.1007/s00299-022-02883-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Heterologous expression of VaMYB44 gene in Arabidopsis and V. vinifera cv. 'Thompson Seedless' increases cold sensitivity, which is mediated by the interaction of VaMYC2 and VaTIFY5A with VaMYB44 MYB transcription factors play critical roles in plant stress response. However, the function of MYB44 under low temperature stress is largely unknown in grapes. Here, we isolated a VaMYB44 gene from Chinese wild Vitis amurensis acc. 'Shuangyou' (cold-resistant). The VaMYB44 is expressed in various organs and has lower expression levels in stems and young leaves. Exposure of the cold-sensitive V. vinifera cv. 'Thompson Seedless' and cold-resistant 'Shuangyou' grapevines to cold stress (-1 °C) resulted in differential expression of MYB44 in leaves with the former reaching 14 folds of the latter after 3 h of cold stress. Moreover, the expression of VaMYB44 was induced by exogenous ethylene, abscisic acid, and methyl jasmonate in the leaves of 'Shuangyou'. Notably, the subcellular localization assay identified VaMYB44 in the nucleus. Interestingly, heterologous expression of VaMYB44 in Arabidopsis and 'Thompson Seedless' grape increased freezing-induced damage compared to their wild-type counterparts. Accordingly, the transgenic lines had higher malondialdehyde content and electrolyte permeability, and lower activities of superoxide dismutase, peroxidase, and catalase. Moreover, the expression levels of some cold resistance-related genes decreased in transgenic lines. Protein interaction assays identified VaMYC2 and VaTIFY5A as VaMYB44 interacting proteins, and VaMYC2 could bind to the VaMYB44 promoter and promote its transcription. In conclusion, the study reveals VaMYB44 as the negative regulator of cold tolerance in transgenic Arabidopsis and transgenic grapes, and VaMYC2 and VaTIFY5A are involved in the cold sensitivity of plants by interacting with VaMYB44.
Collapse
Affiliation(s)
- Hongjuan Zhang
- College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Yafan Hu
- College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Bao Gu
- College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Xiaoyue Cui
- College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Jianxia Zhang
- College of Horticulture, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Xianyang, 712100, Shaanxi, China.
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
| |
Collapse
|
12
|
Prasad G, Mittal S, Kumar A, Chauhan D, Sahu TK, Kumar S, Singh R, Yadav MC, Singh AK. Transcriptome Analysis of Bread Wheat Genotype KRL3-4 Provides a New Insight Into Regulatory Mechanisms Associated With Sodicity (High pH) Tolerance. Front Genet 2022; 12:782366. [PMID: 35222517 PMCID: PMC8864244 DOI: 10.3389/fgene.2021.782366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022] Open
Abstract
Globally, sodicity is one of the major abiotic stresses limiting the wheat productivity in arid and semi-arid regions. With due consideration, an investigation of the complex gene network associated with sodicity stress tolerance is required to identify transcriptional changes in plants during abiotic stress conditions. For this purpose, we sequenced the flag leaf transcriptome of a highly tolerant bread wheat germplasm (KRL 3-4) in order to extend our knowledge and better understanding of the molecular basis of sodicity tolerance. A total of 1,980 genes were differentially expressed in the flag leaf due to sodicity stress. Among these genes, 872 DEGs were upregulated and 1,108 were downregulated. Furthermore, annotation of DEGs revealed that a total of 1,384 genes were assigned to 2,267 GO terms corresponding to 502 (biological process), 638 (cellular component), and 1,127 (molecular function). GO annotation also revealed the involvement of genes related to several transcription factors; the important ones are expansins, peroxidase, glutathione-S-transferase, and metal ion transporters in response to sodicity. Additionally, from 127 KEGG pathways, only 40 were confidently enriched at a p-value <0.05 covering the five main KEGG categories of metabolism, i.e., environmental information processing, genetic information processing, organismal systems, and cellular processes. Most enriched pathways were prioritized using MapMan software and revealed that lipid metabolism, nutrient uptake, and protein homeostasis were paramount. We have also found 39 SNPs that mapped to the important sodicity stress-responsive genes associated with various pathways such as ROS scavenging, serine/threonine protein kinase, calcium signaling, and metal ion transporters. In a nutshell, only 19 important candidate genes contributing to sodicity tolerance in bread wheat were identified, and these genes might be helpful for better understanding and further improvement of sodicity tolerance in bread wheat.
Collapse
Affiliation(s)
- Geeta Prasad
- Division of Genomic Resources, ICAR-NBPGR, New Delhi, India
| | - Shikha Mittal
- Division of Genomic Resources, ICAR-NBPGR, New Delhi, India
| | - Arvind Kumar
- ICAR-Central Soil Salinity Research Institute, Karnal, India
| | - Divya Chauhan
- Division of Genomic Resources, ICAR-NBPGR, New Delhi, India
| | | | - Sundeep Kumar
- Division of Genomic Resources, ICAR-NBPGR, New Delhi, India
| | - Rakesh Singh
- Division of Genomic Resources, ICAR-NBPGR, New Delhi, India
| | | | | |
Collapse
|
13
|
Yu Y, Yang S, Bian L, Yu K, Meng X, Zhang G, Xu W, Yao W, Guo D. Identification of C3H2C3-type RING E3 ubiquitin ligase in grapevine and characterization of drought resistance function of VyRCHC114. BMC PLANT BIOLOGY 2021; 21:422. [PMID: 34535070 PMCID: PMC8447581 DOI: 10.1186/s12870-021-03162-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND RING is one of the largest E3 ubiquitin ligase families and C3H2C3 type is the largest subfamily of RING, which plays an important role in plant growth and development, and growth and responses to biotic and abiotic stresses. RESULTS A total of 143 RING C3H2C3-type genes (RCHCs) were discovered from the grapevine genome and separated into groups (I-XI) according to their phylogenetic analysis, and these genes named according to their positions on chromosomes. Gene replication analysis showed that tandem duplications play a predominant role in the expansion of VvRCHCs family together. Structural analysis showed that most VvRCHCs (67.13 %) had no more than 2 introns, while genes clustered together based on phylogenetic trees had similar motifs and evolutionarily conserved structures. Cis-acting element analysis showed the diversity of VvRCHCs regulation. The expression profiles of eight DEGs in RNA-Seq after drought stress were like the results of qRT-PCR analysis. In vitro ubiquitin experiment showed that VyRCHC114 had E3 ubiquitin ligase activity, overexpression of VyRCHC114 in Arabidopsis improved drought tolerance. Moreover, the transgenic plant survival rate increased by 30 %, accompanied by electrolyte leakage, chlorophyll content and the activities of SOD, POD, APX and CAT were changed. The quantitative expression of AtCOR15a, AtRD29A, AtERD15 and AtP5CS1 showed that they participated in the response to drought stress may be regulated by the expression of VyRCHC114. CONCLUSIONS This study provides valuable new information for the evolution of grapevine RCHCs and its relevance for studying the functional characteristics of grapevine VyRCHC114 genes under drought stress.
Collapse
Affiliation(s)
- Yihe Yu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023 Henan Province China
| | - Shengdi Yang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023 Henan Province China
| | - Lu Bian
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023 Henan Province China
| | - Keke Yu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023 Henan Province China
| | - Xiangxuan Meng
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023 Henan Province China
| | - Guohai Zhang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023 Henan Province China
| | - Weirong Xu
- School of Wine, Ningxia University, Yinchuan, 750021 Ningxia Province China
| | - Wenkong Yao
- School of Wine, Ningxia University, Yinchuan, 750021 Ningxia Province China
| | - Dalong Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023 Henan Province China
| |
Collapse
|
14
|
Quantitative Proteomic Analyses Identify STO/BBX24 -Related Proteins Induced by UV-B. Int J Mol Sci 2020; 21:ijms21072496. [PMID: 32260266 PMCID: PMC7178263 DOI: 10.3390/ijms21072496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022] Open
Abstract
Plants use solar radiation for photosynthesis and are inevitably exposed to UV-B. To adapt to UV-B radiation, plants have evolved a sophisticated strategy, but the mechanism is not well understood. We have previously reported that STO (salt tolerance)/BBX24 is a negative regulator of UV-B-induced photomorphogenesis. However, there is limited knowledge of the regulatory network of STO in UV-B signaling. Here, we report the identification of proteins differentially expressed in the wild type (WT) and sto mutant after UV-B radiation by iTRAQ (isobaric tags for relative and absolute quantitation)-based proteomic analysis to explore differential proteins that depend on STO and UV-B signaling. A total of 8212 proteins were successfully identified, 221 of them were STO-dependent proteins in UV-B irradiated plants. The abundances of STO-dependent PSB and LHC (light-harvesting complex) proteins in sto mutants decreased under UV-B radiation, suggesting that STO is necessary to maintain the normal accumulation of photosynthetic system complex under UV-B radiation to facilitate photosynthesis photon capture. The abundance of phenylalanine lyase-1 (PAL1), chalcone synthetase (CHS), and flavonoid synthetase (FLS) increased significantly after UV-B irradiation, suggesting that the accumulation of flavonoids do not require STO, but UV-B is needed. Under UV-B radiation, STO stabilizes the structure of antenna protein complex by maintaining the accumulation of PSBs and LHCs, thereby enhancing the non-photochemical quenching (NPQ) ability, releasing extra energy, protecting photosynthesis, and ultimately promoting the elongation of hypocotyl. The accumulation of flavonoid synthesis key proteins is independent of STO under UV-B radiation. Overall, our results provide a comprehensive regulatory network of STO in UV-B signaling.
Collapse
|
15
|
Genome-wide identification, expression, and association analysis of the monosaccharide transporter (MST) gene family in peanut ( Arachis hypogaea L.). 3 Biotech 2020; 10:130. [PMID: 32154043 DOI: 10.1007/s13205-020-2123-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/05/2020] [Indexed: 10/25/2022] Open
Abstract
In this study, we reported the genome-wide analysis of the whole sugar transporter gene family of a legume species, peanut (Arachis hypogaea L.), including the chromosome locations, gene structures, phylogeny, expression patterns, as well as comparative genomic analysis with Arabidopsis, rice, grape, and soybean. A total of 76 AhMST genes (AhMST1-76) were identified from the peanut genome and located unevenly in 20 chromosomes. Phylogeny analysis indicated that the AhMSTs can be divided into eight groups including two undefined peanut-specific groups. Transcriptional profiles revealed that many AhMST genes showed tissue-specific expression, the majority of the AhMST genes mainly expressed in sink organs and floral organ of peanut. Chromosome distribution pattern and synteny analysis strongly indicated that genome-wide segmental and tandem duplication contributed to the expansion of peanut MST genes. Four common orthologs (AhMST9, AhMST13, AhMST40, and AhMST43) between peanut and the other four species were identified by comparative genomic analysis, which might play important roles in maintaining the growth and development of plant. Furthermore, four polymorphic sites in AhMST11, AhMST13, and AhMST60 were significantly correlated with hundred pod weight (HPW) and hundred seed weight (HSW) by association analysis. In a word, these results will provide new insights for understanding the functions of AhMST family members to sugar transporting and the potential for yield improvement in peanut.
Collapse
|
16
|
Chen S, Huang HA, Chen JH, Fu CC, Zhan PL, Ke SW, Zhang XQ, Zhong TX, Xie XM. SgRVE6, a LHY-CCA1-Like Transcription Factor From Fine-Stem Stylo, Upregulates NB-LRR Gene Expression and Enhances Cold Tolerance in Tobacco. FRONTIERS IN PLANT SCIENCE 2020; 11:1276. [PMID: 32973836 PMCID: PMC7466579 DOI: 10.3389/fpls.2020.01276] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/05/2020] [Indexed: 05/07/2023]
Abstract
Stylosanthes species are economically important tropical and subtropical forage legumes which are generally vulnerable to chilling and frost. Fine-stem stylo (S. guianensis var. intermedia) has the most superior cold tolerance among all stylo species. A REVEILLE (RVE) gene, SgRVE6, was cloned from fine-stem stylo. Bioinformatic analysis suggests that SgRVE6 encodes a transcription factor of 292 amino acid residues, which belongs to the LATE ELONGATED HYPOCOTYL/CIRCADIAN CLOCK ASSOCIATED 1-LIKE (LCL) subgroup of RVE family and contains a SHAQKYF-class MYB domain and a LCL domain. SgRVE6 is universally expressed in root, stem and leaf tissues of fine-stem stylo and is rapidly up-regulated in all tested tissues under cold stress. Over-expressing SgRVE6 affects expression of 21 circadian clock genes, up-regulates expression of 6 nucleotide binding domain leucine-rich repeats (NB-LRR) encoding genes associated with tobacco cold tolerance, improves physiological responses to low temperature, and endows the transgenic tobaccos with higher tolerance to cold stress. This is the first time a study investigates the biological function of RVE6 in cold responses of plant species.
Collapse
Affiliation(s)
- Shu Chen
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
- *Correspondence: Shu Chen, ; Xin-Ming Xie,
| | - Huai-An Huang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Jian-Hui Chen
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Cheng-Cheng Fu
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Peng-Lin Zhan
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Shan-Wen Ke
- Gansu Engineering Laboratory of Applied Mycology, Hexi University, Zhangye, China
| | - Xiang-Qian Zhang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Tian-Xiu Zhong
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Xin-Ming Xie
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
- *Correspondence: Shu Chen, ; Xin-Ming Xie,
| |
Collapse
|
17
|
Li Y, Fan Y, Jiao Y, Wu J, Zhang Z, Yu X, Ma Y. Transcriptome profiling of yellow leafy head development during the heading stage in Chinese cabbage (Brassica rapa subsp. pekinensis). PHYSIOLOGIA PLANTARUM 2019; 165:800-813. [PMID: 29900559 DOI: 10.1111/ppl.12784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/31/2018] [Accepted: 06/10/2018] [Indexed: 05/16/2023]
Abstract
The yellow leafy head of Brassica rapa is known to be tasty and nutritional. Therefore, the heading stage of leaf development is critical to realize high yield and economic benefits. A widely planted commercial cultivar of B. rapa ('Qiubao', deep yellow leafy head) was used to conduct transcriptome analysis. The results showed that the yellowing of the inner leaf was likely induced by the predominant β-carotene biosynthesis pathway due to the upregulated gene geranylgeranyl diphosphate and phytoene synthase, and the downregulated gene CrtL-e, NCED4 and DWARF-27. Some genes related to chlorophyll synthesis were also found to be downregulated, such as nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase and protochlorophyllide reductase A. Transcript profiling also revealed strong changes in expression levels of hormonal genes related to auxin, cytokinin, ethylene, abscisic acid, gibberellin and brassinosteroids, suggesting the crucial role that hormones play in heading stage. Examination of carbohydrate and sucrose metabolism pathways revealed that sucrose biosynthesis is probably regulated by 6-phosphofructokinase and sucrose synthase 1 (SUS1/SuSy1) branch, instead of the sucrose-phosphate synthase branch. Several cold-response genes were induced in the late-heading stage, but the results suggest that the common C-repeat binding factor responsive pathway may not be involved in cold adaption. We also identified a series of upregulated transcription factors-AP2/ERF, MYB, bHLH, NAC and WRKY were found to be predominant. The transcripts analysis provides a preliminary genetic resource to unravel key genes and molecular mechanisms responsible for leafy head development in B. rapa, therefore, improving leafy head quality and yield through genetic means in future.
Collapse
Affiliation(s)
- Yuefei Li
- Liaoning Engineering Research Center of Meat Processing and Quality Safety Control, Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou 121000, China
| | - Yong Fan
- Liaoning Research Institute of Cash Crops, Liaoyang 111000, China
| | - Yang Jiao
- Liaoning Engineering Research Center of Meat Processing and Quality Safety Control, Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou 121000, China
| | - Jie Wu
- Liaoning Engineering Research Center of Meat Processing and Quality Safety Control, Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou 121000, China
| | - Zhen Zhang
- Liaoning Engineering Research Center of Meat Processing and Quality Safety Control, Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou 121000, China
| | - Xiaolei Yu
- Liaoning Engineering Research Center of Meat Processing and Quality Safety Control, Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou 121000, China
| | - Ying Ma
- Liaoning Engineering Research Center of Meat Processing and Quality Safety Control, Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou 121000, China
| |
Collapse
|
18
|
Wang X, Li M, Liu X, Zhang L, Duan Q, Zhang J. Quantitative Proteomic Analysis of Castor ( Ricinus communis L.) Seeds During Early Imbibition Provided Novel Insights into Cold Stress Response. Int J Mol Sci 2019; 20:E355. [PMID: 30654474 PMCID: PMC6359183 DOI: 10.3390/ijms20020355] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 12/23/2022] Open
Abstract
Early planting is one of the strategies used to increase grain yield in temperate regions. However, poor cold tolerance in castor inhibits seed germination, resulting in lower seedling emergence and biomass. Here, the elite castor variety Tongbi 5 was used to identify the differential abundance protein species (DAPS) between cold stress (4 °C) and control conditions (30 °C) imbibed seeds. As a result, 127 DAPS were identified according to isobaric tag for relative and absolute quantification (iTRAQ) strategy. These DAPS were mainly involved in carbohydrate and energy metabolism, translation and posttranslational modification, stress response, lipid transport and metabolism, and signal transduction. Enzyme-linked immunosorbent assays (ELISA) demonstrated that the quantitative proteomics data collected here were reliable. This study provided some invaluable insights into the cold stress responses of early imbibed castor seeds: (1) up-accumulation of all DAPS involved in translation might confer cold tolerance by promoting protein synthesis; (2) stress-related proteins probably protect the cell against damage caused by cold stress; (3) up-accumulation of key DAPS associated with fatty acid biosynthesis might facilitate resistance or adaptation of imbibed castor seeds to cold stress by the increased content of unsaturated fatty acid (UFA). The data has been deposited to the ProteomeXchange with identifier PXD010043.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao 028000, China.
- Inner Mongolia Key Laboratory for Castor, Tongliao 028000, China.
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao 028000, China.
- Inner Mongolia Collaborate Innovation Cultivate Center for Castor, Tongliao 028000, China.
- Horqin Plant Stress Biology Research Institute of Inner Mongolia University for Nationalities, Tongliao 028000, China.
| | - Min Li
- College of Agriculture, Inner Mongolia University for Nationalities, Tongliao 028000, China.
| | - Xuming Liu
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao 028000, China.
- Inner Mongolia Key Laboratory for Castor, Tongliao 028000, China.
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao 028000, China.
- Inner Mongolia Collaborate Innovation Cultivate Center for Castor, Tongliao 028000, China.
- Horqin Plant Stress Biology Research Institute of Inner Mongolia University for Nationalities, Tongliao 028000, China.
| | - Lixue Zhang
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao 028000, China.
- Inner Mongolia Key Laboratory for Castor, Tongliao 028000, China.
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao 028000, China.
- Inner Mongolia Collaborate Innovation Cultivate Center for Castor, Tongliao 028000, China.
- Horqin Plant Stress Biology Research Institute of Inner Mongolia University for Nationalities, Tongliao 028000, China.
| | - Qiong Duan
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao 028000, China.
- Inner Mongolia Key Laboratory for Castor, Tongliao 028000, China.
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao 028000, China.
- Inner Mongolia Collaborate Innovation Cultivate Center for Castor, Tongliao 028000, China.
- Horqin Plant Stress Biology Research Institute of Inner Mongolia University for Nationalities, Tongliao 028000, China.
| | - Jixing Zhang
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao 028000, China.
- Inner Mongolia Key Laboratory for Castor, Tongliao 028000, China.
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao 028000, China.
- Inner Mongolia Collaborate Innovation Cultivate Center for Castor, Tongliao 028000, China.
- Horqin Plant Stress Biology Research Institute of Inner Mongolia University for Nationalities, Tongliao 028000, China.
| |
Collapse
|
19
|
Lou X, Wang H, Ni X, Gao Z, Iqbal S. Integrating proteomic and transcriptomic analyses of loquat (Eriobotrya japonica Lindl.) in response to cold stress. Gene 2018; 677:57-65. [PMID: 30017739 DOI: 10.1016/j.gene.2018.07.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 10/28/2022]
Abstract
The expression levels of many genes and the related proteins change and regulate physiological and metabolic processes that help the plant survive harsh environmental conditions under cold stress. Damage due to cold and freezing conditions often causes dynamic loss of loquat fruits in cultivated parts of northern China. To illustrate the mechanism of cold tolerance in the loquat, we combined the transcriptomic analysis with isobaric tags for relative and absolute quantification (iTRAQ) and RNA sequencing (RNA-Seq) data from loquat leaves under 4 °C treatment. The results showed 122,081 genes and 1210 differentially expressed genes (DEGs), while only 4582 proteins and 300 differential proteins (DEPs) were identified. Functional annotation and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis indicated that metabolic pathways and biosynthesis of secondary metabolites were the two most common pathways in transcriptional and translational processes in this study. Comparison analysis of the transcriptomic and proteomic profiles, only 27 of 3620 genes were found to be shared both in DEGs and DEPs. Further validation with Real-Time Quantitative RT-PCR analysis showed that the genes expression of NADP-dependent D-sorbitol-6-phosphate dehydrogenase, anthocyanin synthase and phenylalanine ammonia-lyase were consistent with the pattern of transcriptome profile, which suggested that these three genes might play vital roles in cold tolerance in loquat.
Collapse
Affiliation(s)
- Xiaoming Lou
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, PR China; Suzhou Polytechnic Institute of Agriculture, No.279 Xiyuan Road, Suzhou 215008, PR China
| | - Huakun Wang
- Extension Center for Evergreen Fruit Tree of Jiangsu Taihu, No.4 Xijing Road, Suzhou 215107, PR China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, Jiangsu, PR China
| | - Xiaopeng Ni
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, PR China
| | - Zhihong Gao
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, PR China.
| | - Shahid Iqbal
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, PR China
| |
Collapse
|
20
|
Hou L, Zhang G, Zhao F, Zhu D, Fan X, Zhang Z, Liu X. VvBAP1 Is Involved in Cold Tolerance in Vitis vinifera L. FRONTIERS IN PLANT SCIENCE 2018; 9:726. [PMID: 29967626 PMCID: PMC6016009 DOI: 10.3389/fpls.2018.00726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/14/2018] [Indexed: 05/11/2023]
Abstract
The majority of commercial grape cultivars originate from the European grape. While these cultivars have excellent organoleptic qualities, they suffer from a relatively poor tolerance to the cold experienced during winter, resulting in significant damage to grapevines. Thus, low temperature is one of the bottlenecks that restrict the further growth of the grape industry. Research on the mechanism of cold tolerance in grapes is therefore very important. BON association protein 1 (BAP1) is a recently discovered phospholipid-binding protein. In Arabidopsis, the expression of AtBAP1 can be regulated via low temperature; however, the function of BAP1 in the grapevine has not been reported. The VvBAP1 gene was cloned in our previous studies in grapes, and bioinformatics analysis showed that it harbors the conservative calcium-dependent C2 protein domain. However, little is known about its function and underlying mechanism. In this study, cold treatment was applied to the cold-resistant grape varieties 'F-242' and 'Zuoyouhong' as well as to the cold-sensitive grape varieties 'Cabernet Sauvignon' and 'Chardonnay.' The expression level of VvBAP1 in the cold-resistant varieties was significantly higher than in the cold-sensitive varieties, indicating that VvBAP1 could be associated with the cold response processes in the grapevine. Using the cold-resistant grape variety 'F-242' as material, with the 4°C and CaCl2 treatment, the relative expression of VvBAP1 was determined via qRT-PCR. Both low temperature and low-temperature signal Ca2+ induced VvBAP1 expression. In addition, the VvBAP1 gene was cloned and transferred into Arabidopsis to generate VvBAP1 overexpressing plants. Biochemical assays and gene expression analyses were conducted on plants subjected to low temperature treatments (4 and -8°C). The obtained results showed that the activities of superoxide dismutase and peroxidase in these transgenic plants were higher than those in wild type (WT) plants, and that cell membrane permeability and malondialdehyde content were both lower compared to WT plants. Furthermore, the content of soluble sugars and the expression levels of sugar-metabolizing related genes, such as BAM4-7, SS4, and G6PD5, were significantly higher than those of WT plants. Furthermore, the expression of low temperature response signal genes, including CBF1, CBF3, COR15a, COR6.6, COR27, and KIN1, were also enhanced. In summary, these results showed that VvBAP1 could strengthen the cold resistance in the grapevine through adjusting and controlling the sugar content and activating antioxidant enzyme activity.
Collapse
|