1
|
Lin G, Li P, Li L, Wang R, Zhao W, Tian M, Wu J, Xu S, Chen Y, Feng X. Discovery of ElABCG39: a key player in ingenol transmembrane efflux identified through genome-wide analysis of ABC transporters in Euphorbia lathyris L. PLANT CELL REPORTS 2024; 43:274. [PMID: 39470817 DOI: 10.1007/s00299-024-03361-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/16/2024] [Indexed: 11/01/2024]
Abstract
KEY MESSAGE Based on transport inhibition and genome-wide analysis, 123 ABC transporters of Euphorbia lathyris were identified, and it was found that the PDR family members ElABCG39 mediated ingenol efflux. Identification of ingenol biosynthetic enzymes and transporters in plant is fundamental to realize its biosynthesis in chassis cells. At present, several key enzymes of the ingenol biosynthesis pathway have been identified, while the mechanisms governing the accumulation or transport of ingenol to distinct plant tissue compartments remain elusive. In this study, transport inhibition analyses were performed, along with genome-wide identification of 123 genes encoding ABC proteins in Euphorbia lathyris L., eventually discovering that a PDR transporter ElABCG39 mediates ingenol transmembrane transport and is localized on the plasma membrane. Expression of this protein in yeast AD1-8 promoted the transmembrane efflux of ingenol with strong substrate specificity. Furthermore, in ElABCG39 RNAi transgenic hairy roots, ingenol transmembrane efflux was significantly reduced and hairy root growth was inhibited. The discovery of the first Euphorbia macrocyclic diterpene transporter ElABCG39 has not only further improved the ingenane diterpenoid biosynthesis regulatory network, but also provided a new key element for ingenol production in chassis cells.
Collapse
Affiliation(s)
- Guyin Lin
- Nanjing University of Chinese Medicine, Nanjing, 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Pirui Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Linwei Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Ruyuan Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Wanli Zhao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Mei Tian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Junzhi Wu
- Nanjing University of Chinese Medicine, Nanjing, 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Shu Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Yu Chen
- Nanjing University of Chinese Medicine, Nanjing, 210014, China.
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| | - Xu Feng
- Nanjing University of Chinese Medicine, Nanjing, 210014, China.
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| |
Collapse
|
2
|
Xiao C, Du S, Zhou S, Cheng H, Rao S, Wang Y, Cheng S, Lei M, Li L. Identification and functional characterization of ABC transporters for selenium accumulation and tolerance in soybean. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108676. [PMID: 38714125 DOI: 10.1016/j.plaphy.2024.108676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/16/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024]
Abstract
ATP-binding cassette (ABC) transporters were crucial for various physiological processes like nutrition, development, and environmental interactions. Selenium (Se) is an essential micronutrient for humans, and its role in plants depends on applied dosage. ABC transporters are considered to participate in Se translocation in plants, but detailed studies in soybean are still lacking. We identified 196 ABC genes in soybean transcriptome under Se exposure using next-generation sequencing and single-molecule real-time sequencing technology. These proteins fell into eight subfamilies: 8 GmABCA, 51 GmABCB, 39 GmABCC, 5 GmABCD, 1 GmABCE, 10 GmABCF, 74 GmABCG, and 8 GmABCI, with amino acid length 121-3022 aa, molecular weight 13.50-341.04 kDa, and isoelectric point 4.06-9.82. We predicted a total of 15 motifs, some of which were specific to certain subfamilies (especially GmABCB, GmABCC, and GmABCG). We also found predicted alternative splicing in GmABCs: 60 events in selenium nanoparticles (SeNPs)-treated, 37 in sodium selenite (Na2SeO3)-treated samples. The GmABC genes showed differential expression in leaves and roots under different application of Se species and Se levels, most of which are belonged to GmABCB, GmABCC, and GmABCG subfamilies with functions in auxin transport, barrier formation, and detoxification. Protein-protein interaction and weighted gene co-expression network analysis suggested functional gene networks with hub ABC genes, contributing to our understanding of their biological functions. Our results illuminate the contributions of GmABC genes to Se accumulation and tolerance in soybean and provide insight for a better understanding of their roles in soybean as well as in other plants.
Collapse
Affiliation(s)
- Chunmei Xiao
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Sainan Du
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shengli Zhou
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hua Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shen Rao
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yuan Wang
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shuiyuan Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Ming Lei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Li Li
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
3
|
Devi R, Goyal P, Verma B, Hussain S, Chowdhary F, Arora P, Gupta S. A transcriptome-wide identification of ATP-binding cassette (ABC) transporters revealed participation of ABCB subfamily in abiotic stress management of Glycyrrhiza glabra L. BMC Genomics 2024; 25:315. [PMID: 38532362 DOI: 10.1186/s12864-024-10227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Transcriptome-wide survey divulged a total of 181 ABC transporters in G. glabra which were phylogenetically classified into six subfamilies. Protein-Protein interactions revealed nine putative GgABCBs (-B6, -B14, -B15, -B25, -B26, -B31, -B40, -B42 &-B44) corresponding to five AtABCs orthologs (-B1, -B4, -B11, -B19, &-B21). Significant transcript accumulation of ABCB6 (31.8 folds), -B14 (147.5 folds), -B15 (17 folds), -B25 (19.7 folds), -B26 (18.31 folds), -B31 (61.89 folds), -B40 (1273 folds) and -B42 (51 folds) was observed under the influence of auxin. Auxin transport-specific inhibitor, N-1-naphthylphthalamic acid, showed its effectiveness only at higher (10 µM) concentration where it down regulated the expression of ABCBs, PINs (PIN FORMED) and TWD1 (TWISTED DWARF 1) genes in shoot tissues, while their expression was seen to enhance in the root tissues. Further, qRT-PCR analysis under various growth conditions (in-vitro, field and growth chamber), and subjected to abiotic stresses revealed differential expression implicating role of ABCBs in stress management. Seven of the nine genes were shown to be involved in the stress physiology of the plant. GgABCB6, 15, 25 and ABCB31 were induced in multiple stresses, while GgABCB26, 40 & 42 were exclusively triggered under drought stress. No study pertaining to the ABC transporters from G. glabra is available till date. The present investigation will give an insight to auxin transportation which has been found to be associated with plant growth architecture; the knowledge will help to understand the association between auxin transportation and plant responses under the influence of various conditions.
Collapse
Affiliation(s)
- Ritu Devi
- Plant Biotechnology Division, Jammu, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pooja Goyal
- Plant Biotechnology Division, Jammu, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Registered from Guru Nanak Dev University, Amritsar, India
| | - Bhawna Verma
- Plant Biotechnology Division, Jammu, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shahnawaz Hussain
- Plant Biotechnology Division, Jammu, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Fariha Chowdhary
- Plant Biotechnology Division, Jammu, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Palak Arora
- Plant Biotechnology Division, Jammu, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Suphla Gupta
- Plant Biotechnology Division, Jammu, India.
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Zhu Y, Wang Y, Liu H, Wang H, Xie M, Fang Z, Du S. ABA-metabolizing bacteria and rhamnolipids as valuable allies for enhancing phytoremediation efficiency in heavy metal-contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167398. [PMID: 37758153 DOI: 10.1016/j.scitotenv.2023.167398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/19/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
Microbial-assisted phytoremediation has great potential to improve the efficiency of phytoremediation in heavy metal (HM)-contaminated soils. In this study, the synergistic effects of rhamnolipids and the abscisic acid (ABA)-metabolizing bacterium Rhodococcus qingshengii on the phytoremediation efficiency of Indian mustard (Brassica juncea) in HM-contaminated soils were investigated. The Cd, Zn, and Pb contents in plants treated with a combination of rhamnolipids and R. qingshengii were 48.4-77.1 %, 14.6-40.4 %, and 16.1-20.0 % higher, respectively, than in those treated with R. qingshengii alone, and 42.8-59.2 %, 13.1-48.2 %, and 7.3-67.5 % higher, respectively, than in those treated with rhamnolipids alone. In addition, the bioconcentration factors of each metal were improved, and the biomass further increased by 36.6-65.7 % compared to that of single treatments. Pearson's correlation analysis showed that rhamnolipids and R. qingshengii enhanced the accumulation of HMs in B. juncea by activating the available forms of HMs in the soil and regulating the ABA and indole-3-acetic acid in plants, respectively. The structural equation model indicated that R. qingshengii had a larger path coefficient than rhamnolipids in terms of HM content and plant biomass, suggesting that R. qingshengii may have a greater contribution to promoting the extraction of HMs from the soil under synergistic conditions. In conclusion, the combination of rhamnolipids and R. qingshengii has great potential to enhance the phytoremediation efficiency of hyperaccumulating plants in HM-contaminated soils.
Collapse
Affiliation(s)
- Yaxin Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Yu Wang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huijun Liu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hua Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Minghui Xie
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Zhiguo Fang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
5
|
Mall MS, Shah S, Singh S, Singh N, Singh N, Vaish S, Gupta D. Genome-wide identification and characterization of ABC transporter superfamily in the legume Cajanus cajan. J Appl Genet 2023; 64:615-644. [PMID: 37624461 DOI: 10.1007/s13353-023-00774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/17/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Plant ATP-binding cassette (ABC) protein family is the largest multifunctional highly conserved protein superfamily that transports diverse substrates across biological membranes by the hydrolysis of ATP and is also the part of the several other biological processes like cellular detoxification, growth and development, stress biology, and signaling processes. In the agriculturally important legume crop Cajanus cajan, a genome-wide identification and characterization of the ABC gene family was carried out. A total of 159 ABC genes were identified that belong to eight canonical classes CcABCA to CcABCG and CcABCI based on the phylogenetic analysis. The number of genes was highest in CcABCG followed by CcABCC and CcABCB class. A total of 85 CcABC genes were found on 11 chromosomes and 74 were found on scaffold. Tandem duplication was the major driver of CcABC gene family expansion. The dN/dS ratio revealed the purifying selection. The phylogenetic analysis revealed class-specific eight superclades which reflect their functional importance. The largest clade was found to be CcABCG which reflects their functional significance. CcABC proteins were mainly basic in nature and found to be localized in the plasma membrane. The secondary structure prediction revealed the dominance of α-helix. The canonical transmembrane and nucleotide binding domain, signature motif LSSGQ, Walker A, Walker B region, and Q loop were also identified. A class-specific exon-intron pattern was also observed. In addition to core elements, different cis-acting regulatory elements like stress, hormone, and cellular responsive were also identified. Expression profiling of CcABC genes at various developmental stages of different anatomical tissues was performed and it was noticed that CcABCF3, CcABCF4, CcABCF5, CcABCG66, and CcABCI3 had the highest expression. The results of the current study endow us with the further functional analysis of Cajanus ABC in the future.
Collapse
Affiliation(s)
- Mridula Sanjana Mall
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, -Deva Road, Barabanki, Lucknow, Uttar Pradesh, 225003, India
| | - Shreya Shah
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, -Deva Road, Barabanki, Lucknow, Uttar Pradesh, 225003, India
| | - Shivani Singh
- Experiome Biotech Private Limited, B1-517, Vijaypur Colony, DLF MyPAD, Vibhutikhand, Gomtinagar, Lucknow, Uttar Pradesh, 226010, India
| | - Namita Singh
- Experiome Biotech Private Limited, B1-517, Vijaypur Colony, DLF MyPAD, Vibhutikhand, Gomtinagar, Lucknow, Uttar Pradesh, 226010, India
| | - Nootan Singh
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, -Deva Road, Barabanki, Lucknow, Uttar Pradesh, 225003, India
| | - Swati Vaish
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, -Deva Road, Barabanki, Lucknow, Uttar Pradesh, 225003, India
| | - Divya Gupta
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, -Deva Road, Barabanki, Lucknow, Uttar Pradesh, 225003, India.
| |
Collapse
|
6
|
Shen C, Li X. Genome-wide identification and expression pattern profiling of the ATP-binding cassette gene family in tea plant (Camelliasinensis). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107930. [PMID: 37552927 DOI: 10.1016/j.plaphy.2023.107930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
The ATP-binding cassette (ABC) gene family is one of the largest and oldest protein families, consisting of ATP-driven transporters facilitating substrate transportation across cell membranes. However, little is known about the evolution and biological function of the ABC gene family in tea plants. In this study, we performed a genome-wide identification and expression analysis of genes encoding ABC transporter proteins in Camellia sinensis. Our analysis of 170 ABC genes revealed that CsABCs were unevenly distributed across 15 chromosomes, with an amino acid length ranging from 188 to 2489 aa, molecular weight ranging from 20.29 to 277.34 kDa, and an isoelectric point ranging from 4.89 to 10.63. Phylogenetic analysis showed that CsABCs were divided into eight subfamilies, among which the ABCG subfamily was the most abundant. Furthermore, the subcellular localization of CsABCs indicated that they were present in various organelles. Collinearity analysis between the tea plant and Arabidopsis thaliana genomes revealed that the CsABC genes were homologous to the AtABC genes. Large gene fragment duplication analysis identified ten gene pairs as tandem repeats, and interaction network analysis demonstrated that CsABCs interacted with various types of target genes, with protein interactions also occurring within the family. Tissue expression analysis indicated that CsABCs were highly expressed in roots, stems, and leaves and were easily induced by drought and cold stress. Moreover, qRT-PCR analysis of the relative expression level of the gene under drought and cold stress correlated with the sequencing results. Identifying ABC genes in tea plants lays a foundation for the classification and functional analysis of ABC family genes, which can facilitate molecular breeding and the development of new tea varieties.
Collapse
Affiliation(s)
- Chuan Shen
- Shaannan Eco-economy Research Center, Ankang University, 725000, Ankang, China.
| | - Xia Li
- Department of Electronic and Information Engineering, Ankang University, 725000, Ankang, China
| |
Collapse
|
7
|
Rani R, Raza G, Ashfaq H, Rizwan M, Razzaq MK, Waheed MQ, Shimelis H, Babar AD, Arif M. Genome-wide association study of soybean ( Glycine max [L.] Merr.) germplasm for dissecting the quantitative trait nucleotides and candidate genes underlying yield-related traits. FRONTIERS IN PLANT SCIENCE 2023; 14:1229495. [PMID: 37636105 PMCID: PMC10450938 DOI: 10.3389/fpls.2023.1229495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
Soybean (Glycine max [L.] Merr.) is one of the most significant crops in the world in terms of oil and protein. Owing to the rising demand for soybean products, there is an increasing need for improved varieties for more productive farming. However, complex correlation patterns among quantitative traits along with genetic interactions pose a challenge for soybean breeding. Association studies play an important role in the identification of accession with useful alleles by locating genomic sites associated with the phenotype in germplasm collections. In the present study, a genome-wide association study was carried out for seven agronomic and yield-related traits. A field experiment was conducted in 2015/2016 at two locations that include 155 diverse soybean germplasm. These germplasms were genotyped using SoySNP50K Illumina Infinium Bead-Chip. A total of 51 markers were identified for node number, plant height, pods per plant, seeds per plant, seed weight per plant, hundred-grain weight, and total yield using a multi-locus linear mixed model (MLMM) in FarmCPU. Among these significant SNPs, 18 were putative novel QTNs, while 33 co-localized with previously reported QTLs. A total of 2,356 genes were found in 250 kb upstream and downstream of significant SNPs, of which 17 genes were functional and the rest were hypothetical proteins. These 17 candidate genes were located in the region of 14 QTNs, of which ss715580365, ss715608427, ss715632502, and ss715620131 are novel QTNs for PH, PPP, SDPP, and TY respectively. Four candidate genes, Glyma.01g199200, Glyma.10g065700, Glyma.18g297900, and Glyma.14g009900, were identified in the vicinity of these novel QTNs, which encode lsd one like 1, Ergosterol biosynthesis ERG4/ERG24 family, HEAT repeat-containing protein, and RbcX2, respectively. Although further experimental validation of these candidate genes is required, several appear to be involved in growth and developmental processes related to the respective agronomic traits when compared with their homologs in Arabidopsis thaliana. This study supports the usefulness of association studies and provides valuable data for functional markers and investigating candidate genes within a diverse germplasm collection in future breeding programs.
Collapse
Affiliation(s)
- Reena Rani
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Ghulam Raza
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Hamza Ashfaq
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Muhammad Rizwan
- Plant Breeding and Genetics Division, Nuclear Institute of Agriculture (NIA), Tando Jam, Pakistan
| | - Muhammad Khuram Razzaq
- Soybean Research Institute, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Qandeel Waheed
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Hussein Shimelis
- School of Agricultural, Earth and Environmental Sciences, African Centre for Crop Improvement, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Allah Ditta Babar
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Muhammad Arif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| |
Collapse
|
8
|
Naaz S, Ahmad N, Jameel MR, Al-Huqail AA, Khan F, Qureshi MI. Impact of Some Toxic Metals on Important ABC Transporters in Soybean ( Glycine max L.). ACS OMEGA 2023; 8:27597-27611. [PMID: 37546587 PMCID: PMC10399161 DOI: 10.1021/acsomega.3c03325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
In plants, ATP-binding cassette (ABC) transporters facilitate the movement of substrates across membranes using ATP for growth, development, and defense. Soils contaminated with toxic metals such as cadmium (Cd) and mercury (Hg) might adversely affect the metabolism of plants and humans. In this study, a phylogenetic relationship among soybeans' (Glycine max) ATP binding cassette (GmABCs) and other plant ABCs was analyzed using sequence information, gene structure, chromosomal distribution, and conserved motif-domain. The ontology of GmABCs indicated their active involvement in trans-membrane transport and ATPase activity. Thirty-day-old soybean plants were exposed to 100 μM CdCl2 and 100 μM HgCl2 for 10 days. Physiological and biochemical traits were altered under stress conditions. Compared to Control, GmABC transporter genes were differentially expressed in response to Cd and Hg. The qRT-PCR data showed upregulation of seven ABC transporter genes in response to Cd stress and three were downregulated. On the other hand, Hg stress upregulated four GmABC genes and downregulated six. It could be concluded that most of the ABCB and ABCG subfamily members were actively involved in heavy metal responses. Real-time expression studies suggest the function of specific ABC transporters in Cd and Hg stress response and are helpful in future research to develop stress-tolerant varieties of soybean.
Collapse
Affiliation(s)
- Sheeba Naaz
- Department
of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
- Department
of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Nadeem Ahmad
- Department
of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - M. Rizwan Jameel
- Centre
for Interdisciplinary Research in Basic Sciences, Faculty of Natural
Sciences, Jamia Millia Islamia (A Central
University), New Delhi 110025, India
| | - Asma A. Al-Huqail
- Chair
of Climate Change, Environmental Development and Vegetation Cover,
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faheema Khan
- Chair
of Climate Change, Environmental Development and Vegetation Cover,
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - M. Irfan Qureshi
- Department
of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| |
Collapse
|
9
|
Sylvia C, Sun J, Zhang Y, Ntini C, Ogutu C, Zhao Y, Han Y. Genome-Wide Analysis of ATP Binding Cassette (ABC) Transporters in Peach ( Prunus persica) and Identification of a Gene PpABCC1 Involved in Anthocyanin Accumulation. Int J Mol Sci 2023; 24:ijms24031931. [PMID: 36768256 PMCID: PMC9916050 DOI: 10.3390/ijms24031931] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The ATP-binding cassette (ABC) transporter family is a large and diverse protein superfamily that plays various roles in plant growth and development. Although the ABC transporters are known to aid in the transport of a wide range of substrates across biological membranes, their role in anthocyanin transport remains elusive. In this study, we identified a total of 132 putative ABC genes in the peach genome, and they were phylogenetically classified into eight subfamilies. Variations in spatial and temporal gene expression levels resulted in differential expression patterns of PpABC family members in various tissues of peach. PpABCC1 was identified as the most likely candidate gene essential for anthocyanin accumulation in peach. Transient overexpression of PpABCC1 caused a significant increase in anthocyanin accumulation in tobacco leaves and peach fruit, whereas virus-induced gene silencing of PpABCC1 in the blood-fleshed peach resulted in a significant decrease in anthocyanin accumulation. The PpABCC1 promoter contained an MYB binding cis-element, and it could be activated by anthocyanin-activator PpMYB10.1 based on yeast one-hybrid and dual luciferase assays. Thus, it seems that PpABCC1 plays a crucial role in anthocyanin accumulation in peach. Our results provide a new insight into the vacuolar transport of anthocyanins in peach.
Collapse
Affiliation(s)
- Cherono Sylvia
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juanli Sun
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanqiang Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Charmaine Ntini
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Collins Ogutu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yun Zhao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Correspondence: (Y.Z.); (Y.H.)
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Correspondence: (Y.Z.); (Y.H.)
| |
Collapse
|
10
|
Ou K, He X, Cai K, Zhao W, Jiang X, Ai W, Ding Y, Cao Y. Phosphate-Solubilizing Pseudomonas sp. Strain WS32 Rhizosphere Colonization-Induced Expression Changes in Wheat Roots. Front Microbiol 2022; 13:927889. [PMID: 35847091 PMCID: PMC9279123 DOI: 10.3389/fmicb.2022.927889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Rhizosphere colonization is a pre-requisite for the favorable application of plant growth-promoting rhizobacteria (PGPR). Exchange and mutual recognition of signaling molecules occur frequently between plants and microbes. Here, the luciferase luxAB gene was electrotransformed into the phosphate-solubilizing strain Pseudomonas sp. WS32, a type of plant growth-promoting rhizobacterium with specific affinity for wheat. A labeled WS32 strain (WS32-L) was applied to determine the temporal and spatial traits of colonization within the wheat rhizosphere using rhizoboxes experimentation under natural condition. The effects of colonization on wheat root development and seedling growth were evaluated, and RNA sequencing (RNA-seq) was performed to explore the transcriptional changes that occur in wheat roots under WS32 colonization. The results showed that WS32-L could survive in the wheat rhizosphere for long periods and could expand into new zones following wheat root extension. Significant increases in seedling fresh and dry weight, root fresh and dry weight, root surface area, number of root tips, and phosphorus accumulation in the wheat leaves occurred in response to WS32 rhizosphere colonization. RNA-seq analysis showed that a total of 1485 genes in wheat roots were differentially expressed between the inoculated conditions and the uninoculated conditions. Most of the transcriptional changes occurred for genes annotated to the following functional categories: "phosphorus and other nutrient transport," "hormone metabolism and organic acid secretion," "flavonoid signal recognition," "membrane transport," and "transcription factor regulation." These results are therefore valuable to future studies focused on the molecular mechanisms underlying the growth-promoting activities of PGPR on their host plants.
Collapse
Affiliation(s)
- Kangmiao Ou
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xiangyi He
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Ke Cai
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Weirong Zhao
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xiaoxun Jiang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Wenfeng Ai
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yue Ding
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yuanyuan Cao
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, Anhui Agricultural University, Hefei, China
| |
Collapse
|
11
|
Shin S, Chairattanawat C, Yamaoka Y, Yang Q, Lee Y, Hwang JU. Early seed development requires the A-type ATP-binding cassette protein ABCA10. PLANT PHYSIOLOGY 2022; 189:360-374. [PMID: 35166840 PMCID: PMC9070825 DOI: 10.1093/plphys/kiac062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/06/2022] [Indexed: 05/11/2023]
Abstract
A-type ATP-binding cassette (ABCA) proteins transport lipids and lipid-based molecules in humans, and their malfunction is associated with various inherited diseases. Although plant genomes encode many ABCA transporters, their molecular and physiological functions remain largely unknown. Seeds are rapidly developing organs that rely on the biosynthesis and transport of large quantities of lipids to generate new membranes and storage lipids. In this study, we characterized the Arabidopsis (Arabidopsis thaliana) ABCA10 transporter, which is selectively expressed in female gametophytes and early developing seeds. By 3 d after flowering (DAF), seeds from the abca10 loss-of-function mutant exhibited a smaller chalazal endosperm than those of the wild-type. By 4 DAF, their endosperm nuclei occupied a smaller area than those of the wild-type. The endosperm nuclei of the mutants also failed to distribute evenly inside the seed coat and stayed aggregated instead, possibly due to inadequate expansion of abca10 endosperm. This endosperm defect might have retarded abca10 embryo development. At 7 DAF, a substantial portion of abca10 embryos remained at the globular or earlier developmental stages, whereas wild-type embryos were at the torpedo or later stages. ABCA10 is likely involved in lipid metabolism, as ABCA10 overexpression induced the overaccumulation of triacylglycerol but did not change the carbohydrate or protein contents in seeds. In agreement, ABCA10 localized to the endoplasmic reticulum (ER), the major site of lipid biosynthesis. Our results reveal that ABCA10 plays an essential role in early seed development, possibly by transporting substrates for lipid metabolism to the ER.
Collapse
Affiliation(s)
- Seungjun Shin
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | | | - Yasuyo Yamaoka
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Qianying Yang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Youngsook Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | | |
Collapse
|
12
|
Banasiak J, Jasiński M. ATP-binding cassette transporters in nonmodel plants. THE NEW PHYTOLOGIST 2022; 233:1597-1612. [PMID: 34614235 DOI: 10.1111/nph.17779] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Knowledge about plant ATP-binding cassette (ABC) proteins is of great value for sustainable agriculture, economic yield, and the generation of high-quality products, especially under unfavorable growth conditions. We have learned much about ABC proteins in model organisms, notably Arabidopsis thaliana; however, the importance of research dedicated to these transporters extends far beyond Arabidopsis biology. Recent progress in genomic and transcriptomic approaches for nonmodel and noncanonical model plants allows us to look at ABC transporters from a wider perspective and consider chemodiversity and functionally driven adaptation as distinctive mechanisms during their evolution. Here, by considering several representatives from agriculturally important families and recent progress in functional characterization of nonArabidopsis ABC proteins, we aim to bring attention to understanding the evolutionary background, distribution among lineages and possible mechanisms underlying the adaptation of this versatile transport system for plant needs. Increasing the knowledge of ABC proteins in nonmodel plants will facilitate breeding and development of new varieties based on, for example, genetic variations of endogenous genes and/or genome editing, representing an alternative to transgenic approaches.
Collapse
Affiliation(s)
- Joanna Banasiak
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Michał Jasiński
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, Poland
| |
Collapse
|
13
|
Do THT, Martinoia E, Lee Y, Hwang JU. 2021 update on ATP-binding cassette (ABC) transporters: how they meet the needs of plants. PLANT PHYSIOLOGY 2021; 187:1876-1892. [PMID: 35235666 PMCID: PMC8890498 DOI: 10.1093/plphys/kiab193] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/10/2021] [Indexed: 05/02/2023]
Abstract
Recent developments in the field of ABC proteins including newly identified functions and regulatory mechanisms expand the understanding of how they function in the development and physiology of plants.
Collapse
Affiliation(s)
- Thanh Ha Thi Do
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, South Korea
| | - Enrico Martinoia
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, South Korea
- Department of Plant and Microbial Biology, University Zurich, Zurich 8008, Switzerland
| | - Youngsook Lee
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, South Korea
- Department of Life Sciences, POSTECH, Pohang 37673, South Korea
| | - Jae-Ung Hwang
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, South Korea
- Author for communication:
| |
Collapse
|
14
|
Nogia P, Pati PK. Plant Secondary Metabolite Transporters: Diversity, Functionality, and Their Modulation. FRONTIERS IN PLANT SCIENCE 2021; 12:758202. [PMID: 34777438 PMCID: PMC8580416 DOI: 10.3389/fpls.2021.758202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/01/2021] [Indexed: 05/04/2023]
Abstract
Secondary metabolites (SMs) play crucial roles in the vital functioning of plants such as growth, development, defense, and survival via their transportation and accumulation at the required site. However, unlike primary metabolites, the transport mechanisms of SMs are not yet well explored. There exists a huge gap between the abundant presence of SM transporters, their identification, and functional characterization. A better understanding of plant SM transporters will surely be a step forward to fulfill the steeply increasing demand for bioactive compounds for the formulation of herbal medicines. Thus, the engineering of transporters by modulating their expression is emerging as the most viable option to achieve the long-term goal of systemic metabolic engineering for enhanced metabolite production at minimum cost. In this review article, we are updating the understanding of recent advancements in the field of plant SM transporters, particularly those discovered in the past two decades. Herein, we provide notable insights about various types of fully or partially characterized transporters from the ABC, MATE, PUP, and NPF families including their diverse functionalities, structural information, potential approaches for their identification and characterization, several regulatory parameters, and their modulation. A novel perspective to the concept of "Transporter Engineering" has also been unveiled by highlighting its potential applications particularly in plant stress (biotic and abiotic) tolerance, SM accumulation, and removal of anti-nutritional compounds, which will be of great value for the crop improvement program. The present study creates a roadmap for easy identification and a better understanding of various transporters, which can be utilized as suitable targets for transporter engineering in future research.
Collapse
Affiliation(s)
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
15
|
Yang YH, Wang CJ, Li RF, Yi YJ, Zeng L, Yang H, Zhang CF, Song KY, Guo SJ. Transcriptome-based identification and expression characterization of RgABCC transporters in Rehmannia glutinosa. PLoS One 2021; 16:e0253188. [PMID: 34170906 PMCID: PMC8232422 DOI: 10.1371/journal.pone.0253188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/31/2021] [Indexed: 11/18/2022] Open
Abstract
ABCC multidrug resistance-associated proteins (ABCCs/MRPs), a subfamily of ABC transporters, are involved in multiple physiological processes. Although these proteins have been characterized in some plants, limited efforts have been made to address their possible roles in Rehmannia glutinosa, a medicinal plant. Here, we scanned R. glutinosa transcriptome sequences and identified 18 RgABCC genes by in silico analysis. Sequence alignment revealed that the RgABCCs were closely phylogenetically related and highly conserved with other plant ABCCs/MRPs. Subcellular localization revealed that most of the RgABCCs were deposited in vacuoles and a few in plasma membranes. Tissue-specific expression of the RgABCCs indicated significant specific accumulation patterns, implicating their roles in the respective tissues. Differential temporal expression patterns of the RgABCCs exhibited their potential roles during root development. Various abiotic stress and hormone treatment experiments indicated that some RgABCCs could be transcriptionally regulated in roots. Furthermore, the transcription of several RgABCCs in roots was strongly activated by cadmium (Cd), suggesting possible roles under heavy metal stresses. Functional analysis of RgABCC1 heterologous expression revealed that it may increase the tolerance to Cd in yeast, implying its Cd transport activity. Our study provides a detailed inventory and molecular characterization of the RgABCCs and valuable information for exploring their functions in R. glutinosa.
Collapse
Affiliation(s)
- Yan Hui Yang
- College of Bioengineering, Henan University of Technology, Zhengzhou High-technology Zero, Henan Province, 450001, China
- * E-mail:
| | - Chao Jie Wang
- College of Bioengineering, Henan University of Technology, Zhengzhou High-technology Zero, Henan Province, 450001, China
| | - Rui Fang Li
- College of Bioengineering, Henan University of Technology, Zhengzhou High-technology Zero, Henan Province, 450001, China
| | - Yan Jie Yi
- College of Bioengineering, Henan University of Technology, Zhengzhou High-technology Zero, Henan Province, 450001, China
| | - Lei Zeng
- College of Bioengineering, Henan University of Technology, Zhengzhou High-technology Zero, Henan Province, 450001, China
| | - Heng Yang
- College of Bioengineering, Henan University of Technology, Zhengzhou High-technology Zero, Henan Province, 450001, China
| | - Chang Fu Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou High-technology Zero, Henan Province, 450001, China
| | - Kai Yi Song
- College of Bioengineering, Henan University of Technology, Zhengzhou High-technology Zero, Henan Province, 450001, China
| | - Si Jiao Guo
- College of Bioengineering, Henan University of Technology, Zhengzhou High-technology Zero, Henan Province, 450001, China
| |
Collapse
|
16
|
Huang J, Li X, Chen X, Guo Y, Liang W, Wang H. Genome-Wide Identification of Soybean ABC Transporters Relate to Aluminum Toxicity. Int J Mol Sci 2021; 22:6556. [PMID: 34207256 PMCID: PMC8234336 DOI: 10.3390/ijms22126556] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
ATP-binding cassette (ABC) transporter proteins are a gene super-family in plants and play vital roles in growth, development, and response to abiotic and biotic stresses. The ABC transporters have been identified in crop plants such as rice and buckwheat, but little is known about them in soybean. Soybean is an important oil crop and is one of the five major crops in the world. In this study, 255 ABC genes that putatively encode ABC transporters were identified from soybean through bioinformatics and then categorized into eight subfamilies, including 7 ABCAs, 52 ABCBs, 48 ABCCs, 5 ABCDs, 1 ABCEs, 10 ABCFs, 111 ABCGs, and 21 ABCIs. Their phylogenetic relationships, gene structure, and gene expression profiles were characterized. Segmental duplication was the main reason for the expansion of the GmABC genes. Ka/Ks analysis suggested that intense purifying selection was accompanied by the evolution of GmABC genes. The genome-wide collinearity of soybean with other species showed that GmABCs were relatively conserved and that collinear ABCs between species may have originated from the same ancestor. Gene expression analysis of GmABCs revealed the distinct expression pattern in different tissues and diverse developmental stages. The candidate genes GmABCB23, GmABCB25, GmABCB48, GmABCB52, GmABCI1, GmABCI5, and GmABCI13 were responsive to Al toxicity. This work on the GmABC gene family provides useful information for future studies on ABC transporters in soybean and potential targets for the cultivation of new germplasm resources of aluminum-tolerant soybean.
Collapse
Affiliation(s)
| | | | | | | | | | - Huahua Wang
- College of Life Science, Henan Normal University, Xinxiang 453007, China; (J.H.); (X.L.); (X.C.); (Y.G.); (W.L.)
| |
Collapse
|
17
|
Yan L, Zhang J, Chen H, Luo H. Genome-wide analysis of ATP-binding cassette transporter provides insight to genes related to bioactive metabolite transportation in Salvia miltiorrhiza. BMC Genomics 2021; 22:315. [PMID: 33933003 PMCID: PMC8088630 DOI: 10.1186/s12864-021-07623-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND ATP-binding cassette (ABC) transporters have been found to play important roles in metabolic transport in plant cells, influencing subcellular compartmentalisation and tissue distribution of these metabolic compounds. Salvia miltiorrhiza Bunge, known as Danshen in traditional Chinese medicine, is a highly valued medicinal plant used to treat cardiovascular and cerebrovascular diseases. The dry roots and rhizomes of S. miltiorrhiza contain biologically active secondary metabolites of tanshinone and salvianolic acid. Given an assembled and annotated genome and a set of transcriptome data of S. miltiorrhiza, we analysed and identified the candidate genes that likely involved in the bioactive metabolite transportation of this medicinal plant, starting with the members of the ABC transporter family. RESULTS A total of 114 genes encoding ABC transporters were identified in the genome of S. miltiorrhiza. All of these ABC genes were divided into eight subfamilies: 3ABCA, 31ABCB, 14ABCC, 2ABCD, 1ABCE, 7ABCF, 46ABCG, and 10 ABCI. Gene expression analysis revealed tissue-specific expression profiles of these ABC transporters. In particular, we found 18 highly expressed transporters in the roots of S. miltiorrhiza, which might be involved in transporting the bioactive compounds of this medicinal plant. We further investigated the co-expression profiling of these 18 genes with key enzyme genes involved in tanshinone and salvianolic acid biosynthetic pathways using quantitative reverse transcription polymerase chain reaction (RT-qPCR). From this RT-qPCR validation, we found that three ABC genes (SmABCG46, SmABCG40, and SmABCG4) and another gene (SmABCC1) co-expressed with the key biosynthetic enzymes of these two compounds, respectively, and thus might be involved in tanshinone and salvianolic acid transport in root cells. In addition, we predicted the biological functions of S. miltiorrhiza ABC transporters using phylogenetic relationships and analysis of the transcriptome to find biological functions. CONCLUSIONS Here, we present the first systematic analysis of ABC transporters in S. miltiorrhiza and predict candidate transporters involved in bioactive compound transportation in this important medicinal plant. Using genome-wide identification, transcriptome profile analysis, and phylogenetic relationships, this research provides a new perspective on the critical functions of ABC transporters in S. miltiorrhiza.
Collapse
Affiliation(s)
- Li Yan
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianhong Zhang
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongyu Chen
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongmei Luo
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
18
|
Yan L, Zhang J, Chen H, Luo H. Genome-wide analysis of ATP-binding cassette transporter provides insight to genes related to bioactive metabolite transportation in Salvia miltiorrhiza. BMC Genomics 2021; 22:315. [PMID: 33933003 DOI: 10.21203/rs.3.rs-99773/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/16/2021] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND ATP-binding cassette (ABC) transporters have been found to play important roles in metabolic transport in plant cells, influencing subcellular compartmentalisation and tissue distribution of these metabolic compounds. Salvia miltiorrhiza Bunge, known as Danshen in traditional Chinese medicine, is a highly valued medicinal plant used to treat cardiovascular and cerebrovascular diseases. The dry roots and rhizomes of S. miltiorrhiza contain biologically active secondary metabolites of tanshinone and salvianolic acid. Given an assembled and annotated genome and a set of transcriptome data of S. miltiorrhiza, we analysed and identified the candidate genes that likely involved in the bioactive metabolite transportation of this medicinal plant, starting with the members of the ABC transporter family. RESULTS A total of 114 genes encoding ABC transporters were identified in the genome of S. miltiorrhiza. All of these ABC genes were divided into eight subfamilies: 3ABCA, 31ABCB, 14ABCC, 2ABCD, 1ABCE, 7ABCF, 46ABCG, and 10 ABCI. Gene expression analysis revealed tissue-specific expression profiles of these ABC transporters. In particular, we found 18 highly expressed transporters in the roots of S. miltiorrhiza, which might be involved in transporting the bioactive compounds of this medicinal plant. We further investigated the co-expression profiling of these 18 genes with key enzyme genes involved in tanshinone and salvianolic acid biosynthetic pathways using quantitative reverse transcription polymerase chain reaction (RT-qPCR). From this RT-qPCR validation, we found that three ABC genes (SmABCG46, SmABCG40, and SmABCG4) and another gene (SmABCC1) co-expressed with the key biosynthetic enzymes of these two compounds, respectively, and thus might be involved in tanshinone and salvianolic acid transport in root cells. In addition, we predicted the biological functions of S. miltiorrhiza ABC transporters using phylogenetic relationships and analysis of the transcriptome to find biological functions. CONCLUSIONS Here, we present the first systematic analysis of ABC transporters in S. miltiorrhiza and predict candidate transporters involved in bioactive compound transportation in this important medicinal plant. Using genome-wide identification, transcriptome profile analysis, and phylogenetic relationships, this research provides a new perspective on the critical functions of ABC transporters in S. miltiorrhiza.
Collapse
Affiliation(s)
- Li Yan
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianhong Zhang
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongyu Chen
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongmei Luo
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
19
|
Khan N, You FM, Datla R, Ravichandran S, Jia B, Cloutier S. Genome-wide identification of ATP binding cassette (ABC) transporter and heavy metal associated (HMA) gene families in flax (Linum usitatissimum L.). BMC Genomics 2020; 21:722. [PMID: 33076828 PMCID: PMC7574471 DOI: 10.1186/s12864-020-07121-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Background The recent release of the reference genome sequence assembly of flax, a self-pollinated crop with 15 chromosome pairs, into chromosome-scale pseudomolecules enables the characterization of gene families. The ABC transporter and HMA gene families are important in the control of cadmium (Cd) accumulation in crops. To date, the genome-wide analysis of these two gene families has been successfully conducted in some plant species, but no systematic evolutionary analysis is available for the flax genome. Results Here we describe the ABC transporter and HMA gene families in flax to provide a comprehensive overview of its evolution and some support towards the functional annotation of its members. The 198 ABC transporter and 12 HMA genes identified in the flax genome were classified into eight ABC transporter and four HMA subfamilies based on their phylogenetic analysis and domains’ composition. Nine of these genes, i.e., LuABCC9, LuABCC10, LuABCG58, LuABCG59, LuABCG71, LuABCG72, LuABCG73, LuHMA3, and LuHMA4, were orthologous with the Cd associated genes in Arabidopsis, rice and maize. Ten motifs were identified from all ABC transporter and HMA genes. Also, several motifs were conserved among genes of similar length, but each subfamily each had their own motif structures. Both the ABC transporter and HMA gene families were highly conserved among subfamilies of flax and with those of Arabidopsis. While four types of gene duplication were observed at different frequencies, whole-genome or segmental duplications were the most frequent with 162 genes, followed by 29 dispersed, 14 tandem and 4 proximal duplications, suggesting that segmental duplications contributed the most to the expansion of both gene families in flax. The rates of non-synonymous to synonymous (Ka/Ks) mutations of paired duplicated genes were for the most part lower than one, indicative of a predominant purifying selection. Only five pairs of genes clearly exhibited positive selection with a Ka/Ks ratio greater than one. Gene ontology analyses suggested that most flax ABC transporter and HMA genes had a role in ATP binding, transport, catalytic activity, ATPase activity, and metal ion binding. The RNA-Seq analysis of eight different organs demonstrated diversified expression profiling patterns of the genes and revealed their functional or sub-functional conservation and neo-functionalization. Conclusion Characterization of the ABC transporter and HMA gene families will help in the functional analysis of candidate genes in flax and other crop species.
Collapse
Affiliation(s)
- Nadeem Khan
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada.,Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Frank M You
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada.
| | - Raju Datla
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Sridhar Ravichandran
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Bosen Jia
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada.,Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Sylvie Cloutier
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada. .,Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
20
|
Nawaz I, Tariq R, Nazir T, Khan I, Basit A, Gul H, Anwar T, Awan SA, Bacha SAS, Zhang L, Zhang C, Cong P. RNA-Seq profiling reveals the plant hormones and molecular mechanisms stimulating the early ripening in apple. Genomics 2020; 113:493-502. [PMID: 32966860 DOI: 10.1016/j.ygeno.2020.09.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/23/2020] [Accepted: 09/19/2020] [Indexed: 10/23/2022]
Abstract
Fruit development and ripening are essential components of human and animal diets. Fruit ripening is also a vital plant trait for plant shelf life at the commercial level. In the present study, two apple cultivars, Hanfu wild (HC) and Hanfu mutant (HM), were employed for RNA-Sequencing (RNA-Seq) to explore the genes involved in fruit ripening. We retrieved 2642 genes, differentially expressed in HC and HM apple cultivars. Gene ontology (GO) analysis revealed the 569 categories, significantly enriched in biological process, cellular component, and molecular function. KEGG analysis exhibited the plant hormone transduction and flavonoid-anthocyanin biosynthesis pathways, might be involved in the fruit ripening and anthocyanin biosynthesis mechanism. A cluster of 13 and 26 DEGs was retrieved, representing the plant hormones and transcription factors, respectively, that may be important for early ripening in HM genotype. This transcriptome study would be useful for researchers to functionally characterize the DEGs responsible for early ripening.
Collapse
Affiliation(s)
- Iqra Nawaz
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Research Insitute of Pomology, Chinese Academy of Agricultural Sciences, 125100 Xingcheng, Liaoning, China
| | - Rezwan Tariq
- Department of Biotechnology, University of Okara, Punjab Zip code: 56300, Pakistan
| | - Talha Nazir
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Imran Khan
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu 611130, China
| | - Abdul Basit
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang 550025, China
| | - Hera Gul
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Research Insitute of Pomology, Chinese Academy of Agricultural Sciences, 125100 Xingcheng, Liaoning, China
| | - Tauqir Anwar
- The Directorate General, Pest Warning & Quality Control of Pesticides, Punjab Agriculture Department, Lahore 54000, Punjab, Pakistan
| | - Samrah Afzal Awan
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu 611130, China
| | - Syed Asim Shah Bacha
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Quality and Safety Risk Assessment for Fruit, Ministry of Agriculture, Xinghai South Street 98, Xingcheng 125100, China
| | - Liyi Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Research Insitute of Pomology, Chinese Academy of Agricultural Sciences, 125100 Xingcheng, Liaoning, China
| | - Caixia Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Research Insitute of Pomology, Chinese Academy of Agricultural Sciences, 125100 Xingcheng, Liaoning, China.
| | - Peihua Cong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Research Insitute of Pomology, Chinese Academy of Agricultural Sciences, 125100 Xingcheng, Liaoning, China.
| |
Collapse
|
21
|
Genome-Wide Identification and Characterization of ABC Transporters in Nine Rosaceae Species Identifying MdABCG28 as a Possible Cytokinin Transporter linked to Dwarfing. Int J Mol Sci 2019; 20:ijms20225783. [PMID: 31744249 PMCID: PMC6887749 DOI: 10.3390/ijms20225783] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 01/04/2023] Open
Abstract
ATP-binding cassette (ABC) transporters constitute a large, diverse, and ubiquitous superfamily that is involved in a broad range of processes. The completion of genome sequencing provides an opportunity to understand the phylogenetic history of the ABC transporter superfamily among Rosaceae species. This study identified a total of 1323 ABC transporter genes from nine Rosaceae genomes: 191 from Malus domestica, 174 from Pyrus communis, 138 from Prunus persica, 118 from Prunus avium, 141 from Prunus dulcis, 122 from Fragaria vesca, 98 from Rubus occidentalis, 162 from Prunus mume, and 179 from Rosa chinensis. Their chemical characterization, phylogenetic analysis, chromosomal localization, gene structure, gene duplication, and tissue-specific expression were studied. Their subcellular localization, transmembrane structures, and protein motifs were predicted. All the ABC transporter genes were grouped into eight subfamilies on the basis of their phylogenetic relationships and structural features. Furthermore, cis-element and expression analysis of 10 potential phytohormone transporters in MdABCG subfamily genes were also performed. Loss of the W-box in the promoter region of MdABCG28 was found to reduce the gene expression level and was linked to the dwarfing phenotype in apple rootstocks. MdABCG28 overexpression promoted shoot growth of atabcg14 mutants in Arabidopsis.
Collapse
|
22
|
Alam I, Liu CC, Ge HL, Batool K, Yang YQ, Lu YH. Genome wide survey, evolution and expression analysis of PHD finger genes reveal their diverse roles during the development and abiotic stress responses in Brassica rapa L. BMC Genomics 2019; 20:773. [PMID: 31651238 PMCID: PMC6814106 DOI: 10.1186/s12864-019-6080-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 09/04/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Plant homeodomain (PHD) finger proteins are widely present in all eukaryotes and play important roles in chromatin remodeling and transcriptional regulation. The PHD finger can specifically bind a number of histone modifications as an "epigenome reader", and mediate the activation or repression of underlying genes. Many PHD finger genes have been characterized in animals, but only few studies were conducted on plant PHD finger genes to this day. Brassica rapa (AA, 2n = 20) is an economically important vegetal, oilseed and fodder crop, and also a good model crop for functional and evolutionary studies of important gene families among Brassica species due to its close relationship to Arabidopsis thaliana. RESULTS We identified a total of 145 putative PHD finger proteins containing 233 PHD domains from the current version of B. rapa genome database. Gene ontology analysis showed that 67.7% of them were predicted to be located in nucleus, and 91.3% were predicted to be involved in protein binding activity. Phylogenetic, gene structure, and additional domain analyses clustered them into different groups and subgroups, reflecting their diverse functional roles during plant growth and development. Chromosomal location analysis showed that they were unevenly distributed on the 10 B. rapa chromosomes. Expression analysis from RNA-Seq data showed that 55.7% of them were constitutively expressed in all the tested tissues or organs with relatively higher expression levels reflecting their important housekeeping roles in plant growth and development, while several other members were identified as preferentially expressed in specific tissues or organs. Expression analysis of a subset of 18 B. rapa PHD finger genes under drought and salt stresses showed that all these tested members were responsive to the two abiotic stress treatments. CONCLUSIONS Our results reveal that the PHD finger genes play diverse roles in plant growth and development, and can serve as a source of candidate genes for genetic engineering and improvement of Brassica crops against abiotic stresses. This study provides valuable information and lays the foundation for further functional determination of PHD finger genes across the Brassica species.
Collapse
Affiliation(s)
- Intikhab Alam
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Cui-Cui Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hong-Liu Ge
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Khadija Batool
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yan-Qing Yang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yun-Hai Lu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
23
|
Lopez-Ortiz C, Dutta SK, Natarajan P, Peña-Garcia Y, Abburi V, Saminathan T, Nimmakayala P, Reddy UK. Genome-wide identification and gene expression pattern of ABC transporter gene family in Capsicum spp. PLoS One 2019; 14:e0215901. [PMID: 31039176 PMCID: PMC6490891 DOI: 10.1371/journal.pone.0215901] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 04/10/2019] [Indexed: 12/21/2022] Open
Abstract
ATP-binding cassette (ABC) transporter genes act as transporters for different molecules across biological membranes and are involved in a diverse range of biological processes. In this study, we performed a genome-wide identification and expression analysis of genes encoding ABC transporter proteins in three Capsicum species, i.e., Capsicum annuum, Capsicum baccatum and Capsicum chinense. Capsicum is a valuable horticultural crop worldwide as an important constituent of many foods while containing several medicinal compounds including capsaicin and dihydrocapsaicin. Our results identified the presence of a total of 200, 185 and 187 ABC transporter genes in C. annuum, C. baccatum and C. chinense genomes, respectively. Capsaicin and dihydrocapsaicin content were determined in green pepper fruits (16 dpa). Additionally, we conducted different bioinformatics analyses including ABC genes classification, gene chromosomal location, Cis elements, conserved motifs identification and gene ontology classification, as well as profile expression of selected genes. Based on phylogenetic analysis and domain organization, the Capsicum ABC gene family was grouped into eight subfamilies. Among them, members within the ABCG, ABCB and ABCC subfamilies were the most abundant, while ABCD and ABCE subfamilies were less abundant throughout all species. ABC members within the same subfamily showed similar motif composition. Furthermore, common cis-elements involved in the transcriptional regulation were also identified in the promoter regions of all Capsicum ABC genes. Gene expression data from RNAseq and reverse transcription-semi-quantitative PCR analysis revealed development-specific stage expression profiles in placenta tissues. It suggests that ABC transporters, specifically the ABCC and ABCG subfamilies, may be playing important roles in the transport of secondary metabolites such as capsaicin and dihydrocapsaicin to the placenta vacuoles, effecting on their content in pepper fruits. Our results provide a more comprehensive understanding of ABC transporter gene family in different Capsicum species while allowing the identification of important candidate genes related to capsaicin content for subsequent functional validation.
Collapse
Affiliation(s)
- Carlos Lopez-Ortiz
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America
| | - Sudip Kumar Dutta
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America
- ICAR RC NEH Region, Mizoram Centre, Kolasib, Mizoram, India
| | - Purushothaman Natarajan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Yadira Peña-Garcia
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America
| | - Venkata Abburi
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America
| | - Thangasamy Saminathan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America
| | - Umesh K. Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America
| |
Collapse
|
24
|
Li M, Wang R, Liu Z, Wu X, Wang J. Genome-wide identification and analysis of the WUSCHEL-related homeobox (WOX) gene family in allotetraploid Brassica napus reveals changes in WOX genes during polyploidization. BMC Genomics 2019; 20:317. [PMID: 31023229 PMCID: PMC6482515 DOI: 10.1186/s12864-019-5684-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/11/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND WUSCHEL-related homeobox (WOX) genes encoding plant-specific homeobox (HB) transcription factors play important roles in the growth and development of plants. To date, WOX genes has been identified and analyzed in many polyploids (such as cotton and tobacco), but the evolutionary analysis of them during polyploidization is rare. With the completion of genome sequencing, allotetraploid Brassica napus and its diploid progenitors (B. rapa and B. oleracea) are a good system for studying this question. RESULTS In this study, 52, 25 and 29 WOX genes were identified in allotetraploid B. napus (2n = 4x = 38, AnCn), the An genome donor B. rapa (2n = 2x = 20, Ar) and the Cn genome donor B. oleracea (2n = 2x = 18, Co), respectively. All identified WOX genes in B. napus and its diploid progenitors were divided into three clades, and these genes were selected to perform gene structure and chromosome location analysis. The results showed that at least 70 and 67% of WOX genes maintained the same gene structure and relative position on chromosomes, respectively, indicating that WOX genes in B. napus were highly conserved at the DNA level during polyploidization. In addition, the analysis of duplicated genes and transposable elements (TEs) near WOX genes showed that whole-genome triplication (WGT) events, segmental duplication and abundant TEs played important roles in the expansion of the WOX gene family in B. napus. Moreover, the analysis of the expression profiles of WOX gene pairs with evolutionary relationships suggested that the WOX gene family may have changed at the transcriptional regulation level during polyploidization. CONCLUSIONS The results of this study increased our understanding of the WOX genes in B. napus and its diploid progenitors, providing a rich resource for further study of WOX genes in these species. In addition, the changes in WOX genes during the process of polyploidization were discussed from the aspects of gene number, gene structure, gene relative location and gene expression, which provides a reference for future polyploidization analysis.
Collapse
Affiliation(s)
- Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Ruihua Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Zhengyi Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of CAAS, Wuhan, 430062 China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| |
Collapse
|
25
|
Mishra AK, Choi J, Rabbee MF, Baek KH. In Silico Genome-Wide Analysis of the ATP-Binding Cassette Transporter Gene Family in Soybean ( Glycine max L.) and Their Expression Profiling. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8150523. [PMID: 30766888 PMCID: PMC6350567 DOI: 10.1155/2019/8150523] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
Abstract
ATP-binding cassette (ABC) transporters constitute one of the largest gene families in all living organisms, most of which mediate transport across biological membranes by hydrolyzing ATP. However, detailed studies of ABC transporter genes in the important oil crop, soybean, are still lacking. In the present study, we carried out genome-wide identification and phylogenetic and transcriptional analyses of the ABC gene family in G. max. A total of 261 G. max ABC (GmABCs) genes were identified and unevenly localized onto 20 chromosomes. Referring to protein-domain orientation and phylogeny, the GmABC family could be classified into eight (ABCA-ABCG and ABCI) subfamilies and ABCG were the most abundantly present. Further, investigation of whole genome duplication (WGD) signifies the role of segmental duplication in the expansion of the ABC transporter gene family in soybean. The Ka/Ks ratio indicates that several duplicated genes are governed by intense purifying selection during evolution. In addition, in silico expression analysis based on RNA-sequence using publicly available database revealed that ABC transporters are differentially expressed in tissues and developmental stages and in dehydration. Overall, we provide an extensive overview of the GmABC transporter gene family and it promises the primary basis for the study in development and response to dehydration tolerance.
Collapse
Affiliation(s)
- Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Jinhee Choi
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Muhammad Fazle Rabbee
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
26
|
Liu T, Yu H, Xiong X, Yu Y, Yue X, Liu J, Cao J. Genome-Wide Identification and Characterization of Pectin Methylesterase Inhibitor Genes in Brassica oleracea. Int J Mol Sci 2018; 19:ijms19113338. [PMID: 30373125 PMCID: PMC6274938 DOI: 10.3390/ijms19113338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/11/2018] [Accepted: 10/23/2018] [Indexed: 11/16/2022] Open
Abstract
The activities of pectin methylesterases (PMEs) are regulated by pectin methylesterase inhibitors (PMEIs), which consequently control the pectin methylesterification status. However, the role of PMEI genes in Brassica oleracea, an economically important vegetable crop, is poorly understood. In this study, 95 B. oleracea PMEI (BoPMEI) genes were identified. A total of 77 syntenic ortholog pairs and 10 tandemly duplicated clusters were detected, suggesting that the expansion of BoPMEI genes was mainly attributed to whole-genome triplication (WGT) and tandem duplication (TD). During diploidization after WGT, BoPMEI genes were preferentially retained in accordance with the gene balance hypothesis. Most homologous gene pairs experienced purifying selection with ω (Ka/Ks) ratios lower than 1 in evolution. Five stamen-specific BoPMEI genes were identified by expression pattern analysis. By combining the analyses of expression and evolution, we speculated that nonfunctionalization, subfunctionalization, neofunctionalization, and functional conservation can occur in the long evolutionary process. This work provides insights into the characterization of PMEI genes in B. oleracea and contributes to the further functional studies of BoPMEI genes.
Collapse
Affiliation(s)
- Tingting Liu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China.
| | - Hui Yu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China.
| | - Xingpeng Xiong
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China.
| | - Youjian Yu
- Department of Horticulture, College of Agriculture and Food Science, Zhejiang A & F University, Lin'an 311300, China.
| | - Xiaoyan Yue
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China.
| | - Jinlong Liu
- Laboratory of Molecular Biology and Gene Engineering, School of Life Sciences, Nanchang University, Nanchang 330031, China.
| | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China.
| |
Collapse
|
27
|
Genome-Wide Identification, Molecular Evolution, and Expression Profiling Analysis of Pectin Methylesterase Inhibitor Genes in Brassica campestris ssp. chinensis. Int J Mol Sci 2018; 19:ijms19051338. [PMID: 29724020 PMCID: PMC5983585 DOI: 10.3390/ijms19051338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 02/08/2023] Open
Abstract
Pectin methylesterase inhibitor genes (PMEIs) are a large multigene family and play crucial roles in cell wall modifications in plant growth and development. Here, a comprehensive analysis of the PMEI gene family in Brassicacampestris, an important leaf vegetable, was performed. We identified 100 BrassicacampestrisPMEI genes (BcPMEIs), among which 96 BcPMEIs were unevenly distributed on 10 chromosomes and nine tandem arrays containing 20 BcPMEIs were found. We also detected 80 pairs of syntenic PMEI orthologs. These findings indicated that whole-genome triplication (WGT) and tandem duplication (TD) were the main mechanisms accounting for the current number of BcPMEIs. In evolution, BcPMEIs were retained preferentially and biasedly, consistent with the gene balance hypothesis and two-step theory, respectively. The molecular evolution analysis of BcPMEIs manifested that they evolved through purifying selection and the divergence time is in accordance with the WGT data of B. campestris. To obtain the functional information of BcPMEIs, the expression patterns in five tissues and the cis-elements distributed in promoter regions were investigated. This work can provide a better understanding of the molecular evolution and biological function of PMEIs in B. campestris.
Collapse
|
28
|
Liao W, Zhao S, Zhang M, Dong K, Chen Y, Fu C, Yu L. Transcriptome Assembly and Systematic Identification of Novel Cytochrome P450s in Taxus chinensis. FRONTIERS IN PLANT SCIENCE 2017; 8:1468. [PMID: 28878800 PMCID: PMC5572210 DOI: 10.3389/fpls.2017.01468] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/07/2017] [Indexed: 05/06/2023]
Abstract
Taxus spp. is a highly valuable medicinal plant with multiple pharmacological effects on various cancers. Cytochrome P450s (CYP450s) play important roles in the biosynthesis of active compounds in Taxus spp., such as the famous diterpenoid, Taxol. However, some specific CYP450 enzymes involved in the biosynthesis of Taxol remain unknown, and the systematic identification of CYP450s in Taxus has not been reported. In this study, 118 full-length and 175 partial CYP450 genes were identified in Taxus chinensis transcriptomes. The 118 full-length genes were divided into 8 clans and 29 families. The CYP71 clan included all A-type genes (52) belonging to 11 families. The other seven clans possessed 18 families containing 66 non-A-type genes. Two new gymnosperm-specific families were discovered, and were named CYP864 and CYP947 respectively. Protein sequence alignments revealed that all of the T. chinensis CYP450s hold distinct conserved domains. The expression patterns of all 118 CYP450 genes during the long-time subculture and MeJA elicitation were analyzed. Additionally, the expression levels of 15 novel CYP725 genes in different Taxus species were explored. Considering all the evidence, 6 CYP725s were identified to be candidates for Taxol biosynthesis. The cis-regulatory elements involved in the transcriptional regulation were also identified in the promoter regions of CYP725s. This study presents a comprehensive overview of the CYP450 gene family in T. chinensis and can provide important insights into the functional gene studies of Taxol biosynthesis.
Collapse
Affiliation(s)
- Weifang Liao
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Shengying Zhao
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Meng Zhang
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Kaige Dong
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Ying Chen
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Chunhua Fu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- *Correspondence: Chunhua Fu
| | - Longjiang Yu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Longjiang Yu
| |
Collapse
|