1
|
Nevosád L, Klodová B, Rudolf J, Raček T, Přerovská T, Kusová A, Svobodová R, Honys D, Procházková Schrumpfová P. GOLEM: A tool for visualizing the distribution of Gene regulatOry eLEMents within the plant promoters with a focus on male gametophyte. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70037. [PMID: 40025784 PMCID: PMC11873679 DOI: 10.1111/tpj.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/19/2024] [Accepted: 01/27/2025] [Indexed: 03/04/2025]
Abstract
Gene expression regulation during tissue development is extremely complex. A key mechanism of gene regulation is the recognition of regulatory motifs, also known as cis-regulatory elements (CREs), by various proteins in gene promoter regions. Localization of these motifs near the transcription start site (TSS) or translation start site (ATG) is crucial for transcription initiation and rate. Transcription levels of individual genes, regulated by these motifs, can vary significantly across tissues and developmental stages, especially in processes like sexual reproduction. However, the precise localization and visualization of these motifs in relation to gene expression in specific tissues can be challenging. Here, we introduce a freely available tool called GOLEM (Gene regulatOry eLEMents; https://golem.ncbr.muni.cz), which enables users to precisely locate any motif of interest with respect to TSS or ATG within the relevant plant genomes across the plant Tree of Life (Chara, Marchantia, Physcomitrium, Azolla, Ceratopteris, Amborella, Oryza, Zea, Solanum and Arabidopsis). The visualization of the motifs is performed with respect to the transcript levels of particular genes in leaves and male reproductive tissues and can be compared with genome-wide distribution regardless of the transcription level. Additionally, genes with specific CREs at defined positions and high expression in selected tissues can be exported for further analysis. GOLEM's functionality is illustrated by its application to conserved motifs (e.g. TATA-box, ABRE, I-box, and TC-element), hormone-responsive elements (GCC-box, ARR10_binding motif), as well as to male gametophyte-related motifs (e.g., LAT52, MEF2, and DOF_core).
Collapse
Affiliation(s)
- Lukáš Nevosád
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityKotlářská 2611 37BrnoCzech Republic
| | - Božena Klodová
- Laboratory of Pollen BiologyInstitute of Experimental Botany of the Czech Academy of SciencesRozvojová 263165 02PragueCzech Republic
| | - Jiří Rudolf
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityKotlářská 2611 37BrnoCzech Republic
- Central European Institute of TechnologyMasaryk UniversityKamenice 5625 00BrnoCzech Republic
| | - Tomáš Raček
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityKotlářská 2611 37BrnoCzech Republic
- Central European Institute of TechnologyMasaryk UniversityKamenice 5625 00BrnoCzech Republic
| | - Tereza Přerovská
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityKotlářská 2611 37BrnoCzech Republic
- Central European Institute of TechnologyMasaryk UniversityKamenice 5625 00BrnoCzech Republic
| | - Alžbeta Kusová
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityKotlářská 2611 37BrnoCzech Republic
- Central European Institute of TechnologyMasaryk UniversityKamenice 5625 00BrnoCzech Republic
| | - Radka Svobodová
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityKotlářská 2611 37BrnoCzech Republic
- Central European Institute of TechnologyMasaryk UniversityKamenice 5625 00BrnoCzech Republic
| | - David Honys
- Laboratory of Pollen BiologyInstitute of Experimental Botany of the Czech Academy of SciencesRozvojová 263165 02PragueCzech Republic
| | - Petra Procházková Schrumpfová
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityKotlářská 2611 37BrnoCzech Republic
- Central European Institute of TechnologyMasaryk UniversityKamenice 5625 00BrnoCzech Republic
| |
Collapse
|
2
|
Nguyen TH, Kim MJ, Kim J. Transcription factors WRKY2 and WRKY34 control LATERAL ORGAN BOUNDARIES DOMAIN10 expression in pollen vegetative cell nuclei. PLANT PHYSIOLOGY 2024; 196:2463-2475. [PMID: 39240364 DOI: 10.1093/plphys/kiae448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/21/2024] [Indexed: 09/07/2024]
Abstract
The intricate regulation of gene expression determining cell fate during male gametogenesis involves a complex interplay of multiple transcriptional regulators. In Arabidopsis (Arabidopsis thaliana), the LATERAL ORGAN BOUNDARIES DOMAIN 10 (LBD10) transcription factor is prominent in early microspores and both the germ and vegetative cells of bicellular pollen, playing an important role in pollen development. However, in mature pollen, LBD10 exclusively localizes in the vegetative cell nucleus (VCN). Here, we identify cis-acting elements and trans-acting factors responsible for the specific expression of LBD10 in the VCN during pollen maturation. Using a series of LBD10 promoter deletion constructs fused with GUS or GFP reporters, we pinpoint two crucial core promoter sequences. These sequences are situated within two 200 bp regions upstream of the start codon and independently govern LBD10 expression in the VCN. We demonstrate that a W-box motif (AGTCAC) at -770 bp is essential for activating the expression of LBD10 in vegetative cells during pollen maturation. Our transient gene expression assays using Arabidopsis protoplasts and chromatin immunoprecipitation assays show that the transcription factors WRKY2 and WRKY34 recognize the LBD10 promoter region containing W-box motifs. Collectively, our findings suggest that WRKY2 and WRKY34 binding to the W-box motifs plays a role in the VCN-specific expression of LBD10 in pollen. This interaction may contribute to male gametophyte development, shedding light on the intricate regulatory network governing this critical biological process.
Collapse
Affiliation(s)
- Thu-Hien Nguyen
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, South Korea
| | - Min Jung Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, South Korea
| | - Jungmook Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, South Korea
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, South Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
3
|
Zhao Y, Sun Y, Huang S, Liu Z, Feng H. Identification of an anther-specific promoter from a male sterile AB line in Chinese cabbage ( Brassica rapa L. ssp. pekinensis). 3 Biotech 2022; 12:104. [PMID: 35463043 PMCID: PMC8971320 DOI: 10.1007/s13205-022-03160-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/05/2022] [Indexed: 11/30/2022] Open
Abstract
The promoter of the male sterile gene is important for studying male sterility. In this study, BraA08g014780.3C which differentially expressed between male sterile and fertile plants was identified from a genetic male sterile AB line of Chinese cabbage by RNA-seq. qRT-PCR revealed that BraA08g014780.3C was mainly expressed in the early stage of floral bud development in fertile plants, and preferentially expressed in their anthers. The promoter of BraA08g014780.3C was cloned and analyzed. Cis acting element analysis showed that the promoter of BraA08g014780.3C contains POLLEN1LELAT52 and GTGANTG10, which are both pollen-specific expression elements. The BraA08g014780.3Cp::GUS vector was constructed, then transformed to Arabidopsis thaliana Col-0. PCR analysis and sequencing of the transgenic Arabidopsis revealed that the GUS gene driven by the BraA08g014780.3C promoter was successfully transformed to the Arabidopsis. GUS staining indicated that the promoter of BraA08g014780.3C was an anther-specific promoter. Identifying the anther-specific promoter laid a foundation for revealing BraA08g014780.3C function in male sterility of Chinese cabbage. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03160-z.
Collapse
Affiliation(s)
- Ying Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Ying Sun
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Shengnan Huang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhiyong Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Hui Feng
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
4
|
Li H, Xu X, Han K, Wang Z, Ma W, Lin Y, Hua H. Isolation and functional analysis of OsAOS1 promoter for resistance to Nilaparvata lugens Stål infestation in rice. J Cell Physiol 2022; 237:1833-1844. [PMID: 34908164 DOI: 10.1002/jcp.30653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/30/2021] [Accepted: 11/18/2021] [Indexed: 11/07/2022]
Abstract
Insect pests have a great impact on the yield and quality of crops. Insecticide applications are an effective method of pest control, however, they also have adverse effects on the environment. Using insect-inducible promoters to drive insect-resistant genes in transgenic crops is a potential sustainable pest management strategy, but insect-inducible promoters have been rarely reported. In this study, we found rice allene oxide synthase gene (AOS, LOC_Os03g12500) can be highly upregulated following brown planthopper (Nilaparvata lugens Stål, BPH) infestation. Then, we amplified the promoter of OsAOS1 and the β- glucuronidase reporter gene was used to analyze the expression pattern of the promoter. Through a series of 5' truncated assays, three positive regulatory regions in response to BPH infestation in the promoter were identified. The transgenic plants, P1R123-min 35S and P1TR1-min 35S promoter-driven snowdrop lectin (Galanthus nivalis agglutinin, GNA) gene, demonstrated the highest expression levels of GNA and lowest BPH survival. Our work identified a BPH-inducible promoter and three positive regions within it. Transgenic rice with GNA driven by OsAOS1 promoter and positive regions exhibited an expected lethal effect on BPH. This study proved the application potential of BPH-inducible promoter and provided a novel path for the selection of insect-resistant tools in the future.
Collapse
Affiliation(s)
- Hanpeng Li
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xueliang Xu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Kehong Han
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhengjie Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hongxia Hua
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Wang L, Dai W, Shi Y, Wang Y, Zhang C. Cloning and activity analysis of the highly expressed gene VviABCG20 promoter in seed and its activity is negatively regulated by the transcription factor VviDof14. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111152. [PMID: 35067313 DOI: 10.1016/j.plantsci.2021.111152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Half-size ATP binding cassette G (ABCG) transporters participate in the growth and development of plants by transporting substrates. The VviABCG20 gene is highly expressed in seed and plays an important role in seed development/abortion. However, little is known about the function of the VviABCG20 promoter (pVviABCG20) and its regulatory factors. In our study, we obtained pVviABCG20s from 15 seeded and seedless grape varieties and there were two types of 'a' and 'b' with 41 bp non-deletion or deletion, respectively. The pVviABCG20 activity was higher in seeds, siliques, flowers and roots of pVviABCG20-GUS Arabidopsis. The GUS activity analysis revealed that the activities of P4 (-586 bp) to P7 (-155 bp) were becoming increasingly weaker, and the P7 activity almost disappears compared with the pVviABCG20 (P0, -1604). Yeast one-hybrid and GUS activity analysis indicated that VviDof14 binds to the AAAG element in the P7' (-586 bp) fragment of the pVviABCG20 and regulated the activity negatively. The quantitative real-time PCR analysis suggested that the expression of VviDof14 in Thompson seedless seeds was higher than that in Pinot noir. Our study laid the foundation for further analysis of the functions of the pVviABCG20 and its regulator VviDof14 in grape seed development/abortion.
Collapse
Affiliation(s)
- Ling Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi, China
| | - Weina Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi, China
| | - Yuanyuan Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi, China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi, China
| | - Chaohong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi, China.
| |
Collapse
|
6
|
A Rapid Pipeline for Pollen- and Anther-Specific Gene Discovery Based on Transcriptome Profiling Analysis of Maize Tissues. Int J Mol Sci 2021; 22:ijms22136877. [PMID: 34206810 PMCID: PMC8267723 DOI: 10.3390/ijms22136877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, crop breeders have widely adopted a new biotechnology-based process, termed Seed Production Technology (SPT), to produce hybrid varieties. The SPT does not produce nuclear male-sterile lines, and instead utilizes transgenic SPT maintainer lines to pollinate male-sterile plants for propagation of nuclear-recessive male-sterile lines. A late-stage pollen-specific promoter is an essential component of the pollen-inactivating cassette used by the SPT maintainers. While a number of plant pollen-specific promoters have been reported so far, their usefulness in SPT has remained limited. To increase the repertoire of pollen-specific promoters for the maize community, we conducted a comprehensive comparative analysis of transcriptome profiles of mature pollen and mature anthers against other tissue types. We found that maize pollen has much less expressed genes (>1 FPKM) than other tissue types, but the pollen grain has a large set of distinct genes, called pollen-specific genes, which are exclusively or much higher (100 folds) expressed in pollen than other tissue types. Utilizing transcript abundance and correlation coefficient analysis, 1215 mature pollen-specific (MPS) genes and 1009 mature anther-specific (MAS) genes were identified in B73 transcriptome. These two gene sets had similar GO term and KEGG pathway enrichment patterns, indicating that their members share similar functions in the maize reproductive process. Of the genes, 623 were shared between the two sets, called mature anther- and pollen-specific (MAPS) genes, which represent the late-stage pollen-specific genes of the maize genome. Functional annotation analysis of MAPS showed that 447 MAPS genes (71.7% of MAPS) belonged to genes encoding pollen allergen protein. Their 2-kb promoters were analyzed for cis-element enrichment and six well-known pollen-specific cis-elements (AGAAA, TCCACCA, TGTGGTT, [TA]AAAG, AAATGA, and TTTCT) were found highly enriched in the promoters of MAPS. Interestingly, JA-responsive cis-element GCC box (GCCGCC) and ABA-responsive cis-element-coupling element1 (ABRE-CE1, CCACC) were also found enriched in the MAPS promoters, indicating that JA and ABA signaling likely regulate pollen-specific MAPS expression. This study describes a robust and straightforward pipeline to discover pollen-specific promotes from publicly available data while providing maize breeders and the maize industry a number of late-stage (mature) pollen-specific promoters for use in SPT for hybrid breeding and seed production.
Collapse
|
7
|
Nilsen KT, Walkowiak S, Xiang D, Gao P, Quilichini TD, Willick IR, Byrns B, N'Diaye A, Ens J, Wiebe K, Ruan Y, Cuthbert RD, Craze M, Wallington EJ, Simmonds J, Uauy C, Datla R, Pozniak CJ. Copy number variation of TdDof controls solid-stemmed architecture in wheat. Proc Natl Acad Sci U S A 2020; 117:28708-28718. [PMID: 33127757 PMCID: PMC7682410 DOI: 10.1073/pnas.2009418117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stem solidness is an important agronomic trait of durum (Triticum turgidum L. var. durum) and bread (Triticum aestivum L.) wheat that provides resistance to the wheat stem sawfly. This dominant trait is conferred by the SSt1 locus on chromosome 3B. However, the molecular identity and mechanisms underpinning stem solidness have not been identified. Here, we demonstrate that copy number variation of TdDof, a gene encoding a putative DNA binding with one finger protein, controls the stem solidness trait in wheat. Using map-based cloning, we localized TdDof to within a physical interval of 2.1 Mb inside the SSt1 locus. Molecular analysis revealed that hollow-stemmed wheat cultivars such as Kronos carry a single copy of TdDof, whereas solid-stemmed cultivars such as CDC Fortitude carry multiple identical copies of the gene. Deletion of all TdDof copies from CDC Fortitude resulted in the loss of stem solidness, whereas the transgenic overexpression of TdDof restored stem solidness in the TdDof deletion mutant pithless1 and conferred stem solidness in Kronos. In solid-stemmed cultivars, increased TdDof expression was correlated with the down-regulation of genes whose orthologs have been implicated in programmed cell death (PCD) in other species. Anatomical and histochemical analyses revealed that hollow-stemmed lines had stronger PCD-associated signals in the pith cells compared to solid-stemmed lines, which suggests copy number-dependent expression of TdDof could be directly or indirectly involved in the negative regulation of PCD. These findings provide opportunities to manipulate stem development in wheat and other monocots for agricultural or industrial purposes.
Collapse
Affiliation(s)
- Kirby T Nilsen
- Crop Development Centre and Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB R7A 5Y3, Canada
| | - Sean Walkowiak
- Crop Development Centre and Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
- Grain Research Laboratory, Canadian Grain Commission, Winnipeg, MB R3C 3G8, Canada
| | - Daoquan Xiang
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Saskatoon, SK S7N 0W9, Canada
| | - Peng Gao
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8, Canada
| | - Teagen D Quilichini
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Saskatoon, SK S7N 0W9, Canada
| | - Ian R Willick
- Crop Development Centre and Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Brook Byrns
- Crop Development Centre and Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Amidou N'Diaye
- Crop Development Centre and Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Jennifer Ens
- Crop Development Centre and Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Krystalee Wiebe
- Crop Development Centre and Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Yuefeng Ruan
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2, Canada
| | - Richard D Cuthbert
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2, Canada
| | | | | | | | | | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8, Canada
| | - Curtis J Pozniak
- Crop Development Centre and Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada;
| |
Collapse
|
8
|
Li H, Wang Z, Han K, Guo M, Zou Y, Zhang W, Ma W, Hua H. Cloning and functional identification of a Chilo suppressalis-inducible promoter of rice gene, OsHPL2. PEST MANAGEMENT SCIENCE 2020; 76:3177-3187. [PMID: 32336018 DOI: 10.1002/ps.5872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/11/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Promoters play a key role in driving insect-resistant genes during breeding of transgenic plants. In current transgenic procedures for breeding rice resistance to striped stem borer (Chilo suppressalis Walker, SSB), the constitutive promoter is used to drive the insect-resistant gene. To reduce the burden of constitutive promoters on plant growth, isolation and identification of insect-inducible promoters are particularly important. However, few promoters are induced specifically by insect feeding. RESULTS We found rice hydroperoxide lyase gene (OsHPL2) (LOC_Os02g12680) was upregulated after feeding by SSB. We subsequently cloned the promoter of OsHPL2 and analysed its expression pattern using the β-glucuronidase (GUS) reporter gene. Histochemical assays and quantitative analyses of GUS activity confirmed that P HPL2 :GUS was activated by SSB, but did not respond to brown planthopper (Nilaparvata lugens Stål, BPH) infestation, mechanical wounding or phytohormone treatments. A series of 5' truncated assays were conducted and three positive regulatory regions (-1452 to -1213, -903 to -624, and -376 to -176) induced by SSB infestation were identified. P2R123-min 35S and P2TR2-min 35S promoters linked with cry1C of transgenic plants showed the highest levels of Cry1C protein expression and SSB larval mortality. CONCLUSION We identified an SSB-inducible promoter and three positive internal regions. Transgenic rice plants with the OsHPL2 promoter and its positive regions driving cry1C exhibited the expected larvicidal effect on SSB. Our study is the first report of an SSB-inducible promoter that could be used as a potential resource for breeding insect-resistant transgenic crops. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hanpeng Li
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhengjie Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kehong Han
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mengjian Guo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yulan Zou
- College of Life Science, Huazhong Agricultural University, Wuhan, China
| | - Wei Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongxia Hua
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Identification and characterization of Dof in Tef [Eragrostis tef (Zucc.) Trotter] using in silico approaches. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Smirnova OG, Kochetov AV. Choice of the Promoter for Tissue and Developmental Stage-Specific Gene Expression. Methods Mol Biol 2020; 2124:69-106. [PMID: 32277449 DOI: 10.1007/978-1-0716-0356-7_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transgenic technologies belong to important tools of reverse genetics and biotechnology in plants. Targeted genetic modifications can reveal functions of genes of interest, change metabolic and regulatory pathways, or result in accumulation of valuable proteins or metabolites. However, to be efficient in targeted genetic modification, the chimeric gene construct should be designed properly. In particular, the promoters used to control transgene expression need to be carefully chosen. Most promoters in widely used vectors belong to strong and constitutively expressed variants. However, in many cases transgene expression has to be restricted to certain tissue, stage of development, or response to some internal or external stimuli. In turn, a large variety of tissue-specific promoters have been studied and information on their characteristics may be recovered from the literature. An appropriate promoter may be selected and used in genetic construct to optimize the transgene transcription pattern. We have previously designed the TGP database (TransGene Promoters, http://wwwmgs.bionet.nsc.ru/mgs/dbases/tgp/home.html ) collecting information from the publications in this field. Here we review the wide range of noncanonical tissue-specific and developmentally regulated promoters that might be used for transgene expression control.
Collapse
Affiliation(s)
- Olga G Smirnova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.
| | - Alex V Kochetov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
11
|
Rojas-Gracia P, Roque E, Medina M, López-Martín MJ, Cañas LA, Beltrán JP, Gómez-Mena C. The DOF Transcription Factor SlDOF10 Regulates Vascular Tissue Formation During Ovary Development in Tomato. FRONTIERS IN PLANT SCIENCE 2019; 10:216. [PMID: 30863420 PMCID: PMC6399211 DOI: 10.3389/fpls.2019.00216] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 02/08/2019] [Indexed: 05/03/2023]
Abstract
The formation of fruits is an important step in the life cycle of flowering plants. The process of fruit development is highly regulated and involves the interaction of a complex regulatory network of genes in both space and time. To identify regulatory genes involved in fruit initiation in tomato we analyzed the transcriptomic profile of ovaries from the parthenocarpic PsEND1:barnase transgenic line. This line was generated using the cytotoxic gene barnase targeted to the anthers with the PsEND1 anther-specific promoter from pea. Among the differentially expressed genes we identified SlDOF10, a gene coding a DNA-binding with one finger (DOF) transcription factor which is activated in unpollinated ovaries of the parthenocarpic plants. SlDOF10 is preferentially expressed in the vasculature of the cotyledons and young leaves and in the root tip. During floral development, expression is visible in the vascular tissue of the sepals, the flower pedicel and in the ovary connecting the placenta with the developing ovules. The induction of the gene was observed in response to exogenous gibberellins and auxins treatments. To evaluate the gene function during reproductive development, we have generated SlDOF10 overexpressing and silencing stable transgenic lines. In particular, down-regulation of SlDOF10 activity led to a decrease in the area occupied by individual vascular bundles in the flower pedicel. Associated with this phenotype we observed induction of parthenocarpic fruit set. In summary, expression and functional analyses revealed a role for SlDOF10 gene in the development of the vascular tissue specifically during reproductive development highlighting the importance of this tissue in the process of fruit set.
Collapse
|
12
|
Wang X, Li X, Li M, Wen J, Yi B, Shen J, Ma C, Fu T, Tu J. BnaA.bZIP1 Negatively Regulates a Novel Small Peptide Gene, BnaC.SP6, Involved in Pollen Activity. FRONTIERS IN PLANT SCIENCE 2017; 8:2117. [PMID: 29312383 PMCID: PMC5732959 DOI: 10.3389/fpls.2017.02117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Small peptides secreted to the extracellular matrix control many aspects of the plant's physiological activities which were identified in Arabidopsis thaliana, called ATSPs. Here, we isolated and characterized the small peptide gene Bna.SP6 from Brassica napus. The BnaC.SP6 promoter was cloned and identified. Promoter deletion analysis suggested that the -447 to -375 and -210 to -135 regions are crucial for the silique septum and pollen expression of BnaC.SP6, respectively. Furthermore, the minimal promoter region of p158 (-210 to -52) was sufficient for driving gene expression specifically in pollen and highly conserved in Brassica species. In addition, BnaA.bZIP1 was predominantly expressed in anthers where BnaC.SP6 was also expressed, and was localized to the nuclei. BnaA.bZIP1 possessed transcriptional activation activity in yeast and protoplast system. It could specifically bind to the C-box in p158 in vitro, and negatively regulate p158 activity in vivo. BnaA.bZIP1 functions as a transcriptional repressor of BnaC.SP6 in pollen activity. These results provide novel insight into the transcriptional regulation of BnaC.SP6 in pollen activity and the pollen/anther-specific promoter regions of BnaC.SP6 may have their potential agricultural application for new male sterility line generation.
Collapse
|