1
|
Zhou X, Wang F, Xie Y, Ning J, Xiao Y, Jiang C, Ding G, Tang Y. The complete chloroplast genome of Camellia huulungensis Rosmann et Ninh, a golden Camellia species endemic to Vietnam. Mitochondrial DNA B Resour 2024; 9:1365-1369. [PMID: 39381362 PMCID: PMC11459732 DOI: 10.1080/23802359.2024.2412227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024] Open
Abstract
Camellia huulungensis Rosmann & Ninh 1997, belonging to the sect. Chrysantha, holds important ornamental value and medicinal value. In this study, the complete chloroplast genome sequence of C. huulungensis was assembled using high-throughput sequencing technology. The entire length of chloroplast genome is 156,546 bp and contains a small single-copy region (18,257 bp), a large single-copy region (86,219 bp), and a pair of inverted repeat regions (26,035 bp). A total of 133 genes were annotated, including 88 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The overall GC content is 37.33%. The phylogenetic analysis showed that C. huulungensis is sister to C. aurea. The results can provide genetic data for further phylogenetic studies of Camellia.
Collapse
Affiliation(s)
- Xingwen Zhou
- College of Architecture and Planning, Fujian University of Technology, Fuzhou, China
| | - Fangyi Wang
- College of Architecture and Planning, Fujian University of Technology, Fuzhou, China
| | - Yiqing Xie
- Institute of Economic Forestry, Fujian Academy of Forestry, Fuzhou, China
| | - Jing Ning
- College of Architecture and Planning, Fujian University of Technology, Fuzhou, China
| | - Yuanfeng Xiao
- College of Architecture and Planning, Fujian University of Technology, Fuzhou, China
| | - Changjie Jiang
- Golden Camellia Park of Nanning, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Guochang Ding
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yunxia Tang
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
2
|
Chen X, Gao S, Yang H, Fu W, Qian S, Wang X, Yi X. Phylogeography and Population Variation in Prunus discoidea ( Prunus subg. Cerasus) in China. PLANTS (BASEL, SWITZERLAND) 2024; 13:2535. [PMID: 39274020 PMCID: PMC11396878 DOI: 10.3390/plants13172535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
Prunus discoidea is a unique cherry blossom germplasm resource native to China. It is widely distributed across the provinces of Anhui, Zhejiang, Jiangxi, Jiangsu, and Henan, with significant variation. We employed phylogeographic analysis to reveal the evolutionary history of P. discoidea to better understand its genetic diversity and structure. This study provides more accurate molecular insights for the effective conservation and utilization of this germplasm resource. We conducted a phylogeographic analysis of 348 individual plants from 13 natural populations using three fragments (rpoB, rps16, and trnD-E) of chloroplast DNA (cpDNA) and one fragment (ITS) of ribosomal DNA. The results revealed that P. discoidea demonstrates a significant level of genetic diversity (Hd = 0.782; Rd = 0.478). Gene flow among populations was limited, and the variation within populations was the main source of genetic diversity in P. discoidea (among populations: 34.26%, within populations: 65.74%). Regarding genetic differences among populations, Nst (0.401) showed greater differences than Gst (0.308; p < 0.05), demonstrating that there was a significant geographical structure of lineage. One lineage was the central region of Anhui and the western region of Hubei. The other lineage was the Jiangsu region and the Zhejiang region. P. discoidea diverged from Prunus campanulata approximately 1.5 million years ago, during the Pleistocene epoch. This study provides a scientific theoretical basis for the conservation and utilization of germplasm resources of P. discoidea.
Collapse
Affiliation(s)
- Xiangzhen Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
- Cerasus Research Center, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Shucheng Gao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
- Cerasus Research Center, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Hong Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
- Cerasus Research Center, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Wenyi Fu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
- Cerasus Research Center, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Siyu Qian
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
- Cerasus Research Center, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Xianrong Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
- Cerasus Research Center, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Xiangui Yi
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
- Cerasus Research Center, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
3
|
Zhong L, Shi Y, Xu S, Xie S, Huang X, Li Y, Qu C, Liu J, Liao J, Huang Y, Liang Y. Heterologous overexpression of heat shock protein 20 genes of different species of yellow Camellia in Arabidopsis thaliana reveals their roles in high calcium resistance. BMC PLANT BIOLOGY 2024; 24:5. [PMID: 38163899 PMCID: PMC10759694 DOI: 10.1186/s12870-023-04686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Yellow Camellia (Camellia sect. chrysantha) is a rare ornamental plant and an important germplasm resource globally. Camellia nitidissima thrives in normal acidic soils, while Camellia limonia can adapt to the calcareous soils found in karst areas. Our previous study on the karst adaptation of yellow camellias revealed that the expression levels of heat shock protein 20(HSP20) were higher in Camellia limonia than in Camellia nitidissima. However, the functions of the HSP20 gene of Camellia limonia remain unclear to data. In this study, the HSP20 genes of Camellia limonia (ClHSP20-OE lines) and Camellia. nitidissima (CnHSP20-OE lines) were cloned and overexpressed heterologously in Arabidopsis thaliana. Additionally, we overexpressed the HSP20 gene of Arabidopsis (AtHSP20-OE lines) was also overexpressed, and the T-DNA inserted mutants (athspmutant lines) were also used to determine the functions of HSP20 genes. Under high calcium stress, the chlorophyll, nitrogen, water content and humidity of leaves were increased in ClHSP20-OE lines, while those of other lines were declined. The size of the stomatal apertures, stomatal conductance, and the photosynthetic efficiency of ClHSP20-OE lines were higher than those of the other lines. However, the accumulation of H2O2 and O2- in the leaves of ClHSP20-OE lines was the lowest among all the lines. Energy spectrum scanning revealed that the percentage of calcium on the surfaces of the leaves of ClHSP20-OE lines was relatively low, while that of athspmutant lines was the highest. The ClHSP20 gene can also affected soil humidity and the contents of soil nitrogen, phosphorus, and potassium. Transcriptome analysis revealed that the expressions of FBA5 and AT5G10770 in ClHSP20-OE lines was significantly up-regulated compared to that of CnHSP20-OE lines. Compared to that of athspmutant lines, the expressions of DREB1A and AT3G30460 was significantly upregulated in AtHSP20-OE lines, and the expression of POL was down-regulated. Our findings suggest that the HSP20 gene plays a crucial role in maintained photosynthetic rate and normal metabolism by regulating the expression of key genes under high-calcium stress. This study elucidates the mechanisms underlying the karst adaptation in Camellia. limonia and provides novel insights for future research on karst plants.
Collapse
Affiliation(s)
- Lisha Zhong
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, College of Life Science, Guangxi Normal University, Guilin, China
| | - Yuxing Shi
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, College of Life Science, Guangxi Normal University, Guilin, China
| | - Shaolei Xu
- School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin, China
| | - Sisi Xie
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, College of Life Science, Guangxi Normal University, Guilin, China
| | - Xinhui Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, College of Life Science, Guangxi Normal University, Guilin, China
| | - Yujie Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, College of Life Science, Guangxi Normal University, Guilin, China
| | - Chaofan Qu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, College of Life Science, Guangxi Normal University, Guilin, China
| | - Jianxiu Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, College of Life Science, Guangxi Normal University, Guilin, China
| | - Jialin Liao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, College of Life Science, Guangxi Normal University, Guilin, China
| | - Yang Huang
- School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin, China.
| | - Yu Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, College of Life Science, Guangxi Normal University, Guilin, China.
| |
Collapse
|
4
|
Zhu X, Zou R, Qin H, Chai S, Tang J, Li Y, Wei X. Genome-wide diversity evaluation and core germplasm extraction in ex situ conservation: A case of golden Camellia tunghinensis. Evol Appl 2023; 16:1519-1530. [PMID: 37752963 PMCID: PMC10519411 DOI: 10.1111/eva.13584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 09/28/2023] Open
Abstract
Whether ex situ populations constructed in the limited nursery resources of botanical gardens can preserve enough genetic diversity of endangered plants in the wild remains uncertain. Here, a case study was conducted with Camellia tunghinensis, which is one of the species with the lowest natural distribution area in the sect. Chrysantha (golden camellia) of the family Theaceae. We investigated the genetic diversity and population structure of 229 samples from wild and ex situ populations using genotyping by sequencing (GBS). Core germplasm was constructed from these samples. The results showed that wild C. tunghinensis exhibited high genetic diversity, with observed heterozygosity of 0.257-0.293 and expected heterozygosity of 0.247-0.262. Compared with wild populations, the genetic diversity of ex situ populations established by transplanting wild seedlings was close to or even higher. However, the genetic diversity of those established by seed or cuttings of a few superior trees was lower. The Admixture analysis revealed that the structure of the ex situ populations derived from seeds and cuttings was relatively simple compared with the ex situ populations derived from transplanted wild seedlings and wild populations. These results suggested that direct transplanting of wild seedlings was more conducive to preserving the genetic diversity of endangered plants in the wild. In addition, wild populations demonstrated a small differentiation (mean F ST = 0.044) among themselves, possibly due to long-term and frequent gene flow between the wild populations. In contrast, moderate differentiation (mean F ST > 0.05) was detected among ex situ populations and between ex situ and wild populations. This may be the combined result of the absence of gene flow pathways and strong selection pressure in various ex situ environments. Finally, 77 core germplasms were extracted from 229, likely representing the genetic diversity of C. tunghinensis. This study provides future strategies for the ex situ conservation and management of the golden camellia species and other rare and endangered plants.
Collapse
Affiliation(s)
- Xianliang Zhu
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable UtilizationGuangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of SciencesGuilinChina
| | - Rong Zou
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable UtilizationGuangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of SciencesGuilinChina
| | - Huizhen Qin
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable UtilizationGuangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of SciencesGuilinChina
| | - Shengfeng Chai
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable UtilizationGuangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of SciencesGuilinChina
| | - Jianmin Tang
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable UtilizationGuangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of SciencesGuilinChina
| | - Yingying Li
- Institute of Forestry Economic Science, Guangdong Academy of ForestryGuangzhouChina
| | - Xiao Wei
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable UtilizationGuangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of SciencesGuilinChina
| |
Collapse
|
5
|
Wei S, Zhang Q, Tang S, Liao W. Genetic and ecophysiological evidence that hybridization facilitated lineage diversification in yellow Camellia (Theaceae) species: a case study of natural hybridization between C. micrantha and C. flavida. BMC PLANT BIOLOGY 2023; 23:154. [PMID: 36944951 PMCID: PMC10031943 DOI: 10.1186/s12870-023-04164-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Hybridization is generally considered an important creative evolutionary force, yet this evolutionary process is still poorly characterized in karst plants. In this study, we focus on natural hybridization in yellow Camellia species, a group of habitat specialists confined to karst/non-karst habitats in southwestern China. RESULTS Based on population genome data obtain from double digest restriction-site associated DNA (ddRAD) sequencing, we found evidence for natural hybridization and introgression between C. micrantha and C. flavida, and specifically confirmed their hybrid population, C. "ptilosperma". Ecophysiological results suggested that extreme hydraulic traits were fixed in C. "ptilosperma", these being consistent with its distinct ecological niche, which lies outside its parental ranges. CONCLUSION The identified hybridization event is expected to have played a role in generating novel variation during, in which the hybrid population displays different phenological characteristics and novel ecophysiological traits associated with the colonization of a new niche in limestone karst.
Collapse
Affiliation(s)
- Sujuan Wei
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, 541004, China
| | - Qiwei Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, 541004, China
| | - Shaoqing Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, 541004, China.
| | - Wenbo Liao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
6
|
Liu Y, Lin L, Yang D, Zou X, Zhang Z, Liu M, Lin M, Zheng Y. Comparative phylogenetic analysis of oolong tea ( Phoenix Dancong tea) using complete chloroplast genome sequences. Heliyon 2022; 8:e12557. [PMID: 36643327 PMCID: PMC9834756 DOI: 10.1016/j.heliyon.2022.e12557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/09/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Phoenix Dancong tea, a variety of oolong tea, is produced in Chaozhou, Guangdong Province, China, and is characterized by numerous hybridizations and polyploidization. To assess the genetic diversity and phylogenetic relationships among Phoenix Dancong tea and other oolong teas, an integrated circular chloroplast genome was constructed for thirty species of Phoenix Dancong tea from Chaozhou. The genome of Phoenix dancong tea is a circular molecule of 157,041-157,137 bp, with a pair of inverted repeats (26,072-26,610 bp each) separated by a large single copy (86,615-86,658 bp) and small single copy (18,264-18,284 bp). A total of 135 unique genes were encoded, including 90 protein coding genes, 37 tRNAs and 8 rRNAs. A comparative analysis with the other seven species in the oolong tea family that have been sequenced to date revealed similarities in structural organization, gene content and arrangement. Repeated sequence analysis identified 17-23 tandem repeats, 20-24 forward repeats and 25-27 palindromic repeats. Additionally, a total of 65-70 simple sequence repeats were detected, with mononucleotide repeats being the most common. Phylogenetic analyses showed that Phoenix Dancong tea and Fujian oolong tea were clustered with other cultivated Camellia sinensis in the genus Camellia of the family Theaceae, while the two oolong tea species were relatively independently cross-embedded in the genus, Camellia. Close genetic relationships were observed between Phoenix Dancong tea and other oolong teas, and the overall chloroplast genomes of oolong tea showed patterns with low variations and conserved evolution. The availability of Phoenix Dancong tea chloroplast genomes not only elucidated the relationship among oolong teas from different origins in Guangdong and Fujian but also provided valuable genetic resources to assist further molecular studies on the taxonomic and phylogenomic resolution of the genus Camellia.
Collapse
|
7
|
Zhu X, Liang H, Jiang H, Kang M, Wei X, Deng L, Shi Y. Phylogeographic structure of Heteroplexis (Asteraceae), an endangered endemic genus in the limestone karst regions of southern China. FRONTIERS IN PLANT SCIENCE 2022; 13:999964. [PMID: 36388513 PMCID: PMC9647136 DOI: 10.3389/fpls.2022.999964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Though the karst regions in south and southwest China are plant diversity hotspots, our understanding of the phylogeography and evolutionary history of the plants there remains limited. The genus Heteroplexis (Asteraceae) is one of the typical representative plants isolated by karst habitat islands, and is also an endangered and endemic plant to China. In this study, species-level phylogeographic analysis of the genus Heteroplexis was conducted using restriction site-associated DNA sequencing (RADseq). The genetic structure showed a clear phylogeographic structure consistent with the current species boundaries in the H. microcephala, H. incana, H. vernonioides, H. sericophylla, and H. impressinervia. The significant global (R = 0.37, P < 0.01) and regional (R = 0.650.95, P < 0.05) isolation by distance (IBD) signals among species indicate strong geographic isolation in the karst mountains, which may result in chronically restricted gene flow and increased genetic drift and differentiation. Furthermore, the phylogeographic structure of Heteroplexis suggested a southward migration since the last glacial period. Demographic analysis revealed the karst mountains as a refuge for Heteroplexis species. Finally, both Treemix and ABBA-BABA statistic detected significant historical gene flow between species. Significant historical gene flow and long-term stability of effective population size (Ne) together explain the high genome-wide genetic diversity among species (π = 0.05370.0838). However, the recent collapse of Ne, widespread inbreeding within populations, and restricted contemporary gene flow suggest that Heteroplexis species are probably facing a high risk of genetic diversity loss. Our results help to understand the evolutionary history of karst plants and guide conservation.
Collapse
Affiliation(s)
- Xianliang Zhu
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Hui Liang
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
- College of Life Science, Guangxi Normal University, Guilin, China
| | - Haolong Jiang
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Ming Kang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xiao Wei
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Lili Deng
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Yancai Shi
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| |
Collapse
|
8
|
Lin P, Yin H, Wang K, Gao H, Liu L, Yao X. Comparative Genomic Analysis Uncovers the Chloroplast Genome Variation and Phylogenetic Relationships of Camellia Species. Biomolecules 2022; 12:biom12101474. [PMID: 36291685 PMCID: PMC9599789 DOI: 10.3390/biom12101474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Camellia is the largest genus in the family Theaceae. Due to phenotypic diversity, frequent hybridization, and polyploidization, an understanding of the phylogenetic relationships between Camellia species remains challenging. Comparative chloroplast (cp) genomics provides an informative resource for phylogenetic analyses of Camellia. In this study, 12 chloroplast genome sequences from nine Camellia species were determined using Illumina sequencing technology via de novo assembly. The cp genome sizes ranged from 156,545 to 157,021 bp and were organized into quadripartite regions with the typical angiosperm cp genomes. Each genome harbored 87 protein-coding, 37 transfer RNA, and 8 ribosomal RNA genes in the same order and orientation. Differences in long and short sequence repeats, SNPs, and InDels were detected across the 12 cp genomes. Combining with the complete cp sequences of seven other species in the genus Camellia, a total of nine intergenic sequence divergent hotspots and 14 protein-coding genes with high sequence polymorphism were identified. These hotspots, especially the InDel (~400 bp) located in atpH-atpI region, had sufficient potential to be used as barcode markers for further phylogenetic analysis and species identification. Principal component and phylogenetic analysis suggested that regional constraints, rather than functional constraints, strongly affected the sequence evolution of the cp genomes in this study. These cp genomes could facilitate the development of new molecular markers, accurate species identification, and investigations of the phylogenomic relationships of the genus Camellia.
Collapse
Affiliation(s)
- Ping Lin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Correspondence: (P.L.); (X.Y.); Tel.: +86-571-63320229 (P.L.)
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Kailiang Wang
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Haidong Gao
- Genepioneer Biotechnologies Co., Ltd., Nanjing 210023, China
| | - Lei Liu
- Genepioneer Biotechnologies Co., Ltd., Nanjing 210023, China
| | - Xiaohua Yao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Correspondence: (P.L.); (X.Y.); Tel.: +86-571-63320229 (P.L.)
| |
Collapse
|
9
|
Huang X, Coulibaly D, Tan W, Ni Z, Shi T, Li H, Hayat F, Gao Z. The analysis of genetic structure and characteristics of the chloroplast genome in different Japanese apricot germplasm populations. BMC PLANT BIOLOGY 2022; 22:354. [PMID: 35864441 PMCID: PMC9306182 DOI: 10.1186/s12870-022-03731-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/04/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Chloroplast (cp) genomes are generally considered to be conservative and play an important role in population diversity analysis in plants, but the characteristics and diversity of the different germplasm populations in Japanese apricot are still not clear. RESULTS A total of 146 cp genomes from three groups of wild, domesticated, and bred accessions of Japanese apricot were sequenced in this study. The comparative genome analysis revealed that the 146 cp genomes were divided into 41 types, and ranged in size from 157,886 to 158,167 bp with a similar structure and composition to those of the genus Prunus. However, there were still minor differences in the cp genome that were mainly caused by the contraction and expansion of the IR region, and six types of SSR in which mono-nucleotide repeats were the most dominant type of repeats in the cp genome. The genes rpl33 and psbI, and intergenic regions of start-psbA, rps3-rpl22, and ccsA-ndhD, showed the highest nucleotide polymorphism in the whole cp genome. A total of 325 SNPs were detected in the 146 cp genomes, and more than 70% of the SNPs were in region of large single-copy (LSC). The SNPs and haplotypes in the cp genome indicated that the wild group had higher genetic diversity than the domesticated and bred groups. In addition, among wild populations, Southwest China, including Yunnan, Tibet, and Bijie of Guizhou, had the highest genetic diversity. The genetic relationship of Japanese apricot germplasm resources in different regions showed a degree of correlation with their geographical distribution. CONCLUSION Comparative analysis of chloroplast genomes of 146 Japanese apricot resources was performed to analyze the used to explore the genetic relationship and genetic diversity among Japanese apricot resources with different geographical distributions, providing some reference for the origin and evolution of Japanese apricot.
Collapse
Affiliation(s)
- Xiao Huang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Daouda Coulibaly
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Wei Tan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Zhaojun Ni
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Ting Shi
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Hantao Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Faisal Hayat
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Zhihong Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| |
Collapse
|
10
|
Li S, Liu SL, Pei SY, Ning MM, Tang SQ. Genetic diversity and population structure of Camellia huana (Theaceae), a limestone species with narrow geographic range, based on chloroplast DNA sequence and microsatellite markers. PLANT DIVERSITY 2020; 42:343-350. [PMID: 33134617 PMCID: PMC7584792 DOI: 10.1016/j.pld.2020.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 05/23/2023]
Abstract
Camellia huana is an endangered species with a narrow distribution in limestone hills of northern Guangxi and southern Guizhou provinces, China. We used one chloroplast DNA (cpDNA) fragment and 12 pairs of microsatellite (simple sequence repeat; SSR) markers to assess the genetic diversity and structure of 12 C. huana populations. A total of 99 alleles were detected for 12 polymorphic loci, and eight haplotypes and nine polymorphic sites were detected within 5200 bp of cpDNA. C. huana populations showed a low level of genetic diversity (n = 8, Hd = 0.759, Pi = 0.00042 for cpDNA, N A = 3.931, H E = 0.466 for SSRs), but high genetic differentiation between populations (F ST = 0.2159 for SSRs, F ST = 0.9318 for cpDNA). This can be attributed to the narrow distribution and limestone habitat of C. huana. STRUCTURE analysis divided natural C. huana populations into two groups, consistent with their geographical distribution. Thus, we suggest that five natural C. huana populations should be split into two units to be managed effectively.
Collapse
Affiliation(s)
- Shuang Li
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, College of Life Science, Guangxi Normal University, Guilin, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, China
| | - Shang-Li Liu
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, College of Life Science, Guangxi Normal University, Guilin, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, China
| | - Si-Yu Pei
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, College of Life Science, Guangxi Normal University, Guilin, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, China
| | - Man-Man Ning
- Longtan Nature Reserve Management Center, Hechi, China
| | - Shao-Qing Tang
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, College of Life Science, Guangxi Normal University, Guilin, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, China
| |
Collapse
|
11
|
Qi H, Sun X, Yan W, Ye H, Chen J, Yu J, Jun D, Wang C, Xia T, Chen X, Li D, Zheng D. Genetic relationships and low diversity among the tea-oil Camellia species in Sect . Oleifera, a bulk woody oil crop in China. FRONTIERS IN PLANT SCIENCE 2020; 13:996731. [PMID: 36247558 PMCID: PMC9563498 DOI: 10.3389/fpls.2022.996731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Tea-oil Camellia is one of the four woody oil crops in the world and has high ecological, economic and medicinal values. However, there are great differences in the classification and merging of tea-oil Camellia Sect. Oleifera species, which brings difficulties to the innovative utilization and production of tea-oil Camellia resources. Here, ISSR, SRAP and chloroplast sequence markers were analyzed in 18 populations of tea-oil Camellia Sect. Oleifera species to explore their phylogenetic relationships and genetic diversity. The results showed that their genetic diversity were low, with mean H and π values of 0.16 and 0.00140, respectively. There was high among-population genetic differentiation, with ISSR and SRAP markers showing an Fst of 0.38 and a high Nm of 1.77 and cpDNA markers showing an Fst of 0.65 and a low Nm of 0.27. The C. gauchowensis, C. vietnamensis and Hainan Island populations formed a single group, showing the closest relationships, and supported being the same species for them with the unifying name C. drupifera and classifying the resources on Hainan Island as C. drupifera. The tea-oil Camellia resources of Hainan Island should be classified as a special ecological type or variety of C. drupifera. However, cpDNA marker-based STRUCTURE analysis showed that the genetic components of the C. osmantha population formed an independent, homozygous cluster; hence, C. osmantha should be a new species in Sect. Oleifera. The C. oleifera var. monosperma and C. oleifera populations clustered into two distinct clades, and the C. oleifera var. monosperma populations formed an independent cluster, accounting for more than 99.00% of its genetic composition; however, the C. oleifera populations contained multiple different cluster components, indicating that C. oleifera var. monosperma significantly differs from C. oleifera and should be considered the independent species C. meiocarpa. Haplotype analysis revealed no rapid expansion in the tested populations, and the haplotypes of C. oleifera, C. meiocarpa and C. osmantha evolved from those of C. drupifera. Our results support the phylogenetic classification of Camellia subgenera, which is highly significant for breeding and production in tea-oil Camellia.
Collapse
Affiliation(s)
- Huasha Qi
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Xiuxiu Sun
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Wuping Yan
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Hang Ye
- Guangxi Key Laboratory of Special Non-Wood Forest Cultivation and Utilization, Improved Variety and Cultivation Engineering Research Center of Oil-Tea Camellia in Guangxi, Guangxi Forestry Research Institute, Nanning, China
| | - Jiali Chen
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Jing Yu
- College of Horticulture, Hainan University, Haikou, China
| | - Dai Jun
- Qionghai Tropical Crop Service Center, Qionghai, China
| | - Chunmei Wang
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Tengfei Xia
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Xuan Chen
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Dongliang Li
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Daojun Zheng
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, China
| |
Collapse
|
12
|
Li W, Zhang C, Guo X, Liu Q, Wang K. Complete chloroplast genome of Camellia japonica genome structures, comparative and phylogenetic analysis. PLoS One 2019; 14:e0216645. [PMID: 31071159 PMCID: PMC6508735 DOI: 10.1371/journal.pone.0216645] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 04/26/2019] [Indexed: 11/19/2022] Open
Abstract
Camellia is an economically, ecologically and phylogenetically valuable genus in the family Theaceae. The frequent interspecific hybridization and polyploidization makes this genus phylogenetically and taxonomically under controversial and require detailed investigation. Chloroplast (cp) genome sequences have been used for cpDNA marker development and genetic diversity evaluation. Our research newly sequenced the chloroplast genome of Camellia japonica using Illumina HiSeq X Ten platform, and retrieved five other chloroplast genomes of Camellia previously published for comparative analyses, thereby shedding lights on a deeper understanding of the applicability of chloroplast information. The chloroplast genome sizes ranged in length from 156,607 to 157,166 bp, and their gene structure resembled those of other higher plants. There were four categories of SSRs detected in six Camellia cpDNA sequences, with the lengths ranging from 10 to 17bp. The Camellia species exhibited different evolutionary routes that lhbA and orf188, followed by orf42 and psbZ, were readily lost during evolution. Obvious codon preferences were also shown in almost all protein-coding cpDNA and amino acid sequences. Selection pressure analysis revealed the influence of different environmental pressures on different Camellia chloroplast genomes during long-term evolution. All Camellia species, except C. crapnelliana, presented the identical rate of amplification in the IR region. The datasets obtained from the chloroplast genomes are highly supportive in inferring the phylogenetic relationships of the Camellia taxa, indicating that chloroplast genome can be used for classifying interspecific relationships in this genus.
Collapse
Affiliation(s)
- Wei Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Cuiping Zhang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Xiao Guo
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Qinghua Liu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Kuiling Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
13
|
Wang W, Schalamun M, Morales-Suarez A, Kainer D, Schwessinger B, Lanfear R. Assembly of chloroplast genomes with long- and short-read data: a comparison of approaches using Eucalyptus pauciflora as a test case. BMC Genomics 2018; 19:977. [PMID: 30594129 PMCID: PMC6311037 DOI: 10.1186/s12864-018-5348-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 12/03/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Chloroplasts are organelles that conduct photosynthesis in plant and algal cells. The information chloroplast genome contained is widely used in agriculture and studies of evolution and ecology. Correctly assembling chloroplast genomes can be challenging because the chloroplast genome contains a pair of long inverted repeats (10-30 kb). Typically, it is simply assumed that the gross structure of the chloroplast genome matches the most commonly observed structure of two single-copy regions separated by a pair of inverted repeats. The advent of long-read sequencing technologies should remove the need to make this assumption by providing sufficient information to completely span the inverted repeat regions. Yet, long-reads tend to have higher error rates than short-reads, and relatively little is known about the best way to combine long- and short-reads to obtain the most accurate chloroplast genome assemblies. Using Eucalyptus pauciflora, the snow gum, as a test case, we evaluated the effect of multiple parameters, such as different coverage of long-(Oxford nanopore) and short-(Illumina) reads, different long-read lengths, different assembly pipelines, with a view to determining the most accurate and efficient approach to chloroplast genome assembly. RESULTS Hybrid assemblies combining at least 20x coverage of both long-reads and short-reads generated a single contig spanning the entire chloroplast genome with few or no detectable errors. Short-read-only assemblies generated three contigs (the long single copy, short single copy and inverted repeat regions) of the chloroplast genome. These contigs contained few single-base errors but tended to exclude several bases at the beginning or end of each contig. Long-read-only assemblies tended to create multiple contigs with a much higher single-base error rate. The chloroplast genome of Eucalyptus pauciflora is 159,942 bp, contains 131 genes of known function. CONCLUSIONS Our results suggest that very accurate assemblies of chloroplast genomes can be achieved using a combination of at least 20x coverage of long- and short-reads respectively, provided that the long-reads contain at least ~5x coverage of reads longer than the inverted repeat region. We show that further increases in coverage give little or no improvement in accuracy, and that hybrid assemblies are more accurate than long-read-only or short-read-only assemblies.
Collapse
Affiliation(s)
- Weiwen Wang
- Research School of Biology, Australian National University, Canberra, Australia.
| | - Miriam Schalamun
- Research School of Biology, Australian National University, Canberra, Australia.,Institute of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - David Kainer
- Research School of Biology, Australian National University, Canberra, Australia
| | | | - Robert Lanfear
- Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
14
|
Xia M, Tian Z, Zhang F, Khan G, Gao Q, Xing R, Zhang Y, Yu J, Chen S. Deep Intraspecific Divergence in the Endemic Herb Lancea tibetica (Mazaceae) Distributed Over the Qinghai-Tibetan Plateau. Front Genet 2018; 9:492. [PMID: 30429869 PMCID: PMC6220444 DOI: 10.3389/fgene.2018.00492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/03/2018] [Indexed: 11/18/2022] Open
Abstract
Qinghai-Tibetan Plateau (QTP) is an important biodiversity hub, which is very sensitive to climate change. Here in this study, we investigated genetic diversity and past population dynamics of Lancea tibetica (Mazaceae), an endemic herb to QTP and adjacent highlands. We sequenced chloroplast and nuclear ribosomal DNA fragments for 429 individuals, collected from 29 localities, covering their major distribution range at the QTP. A total of 19 chloroplast haplotypes and 13 nuclear genotypes in two well-differentiated lineages, corresponding to populations into two groups isolated by Tanggula and Bayangela Mountains. Meanwhile, significant phylogeographical structure was detected among sampling range of L. tibetica, and 61.50% of genetic variations was partitioned between groups. Gene flow across the whole region appears to be restricted by high mountains, suggesting a significant role of geography in the genetic differences between the two groups. Divergence time between the two lineages dated to 8.63 million years ago, which corresponded to the uplifting of QTP during the late Miocene and Pliocene. Ecological differences were found between both the lineages represent species-specific characteristics, sufficient to keep the lineages separated to a high degree. The simulated distribution from the last interglacial period to the current period showed that the distribution of L. tibetica experienced shrinkage and expansion. Climate changes during the Pleistocene glacial-interglacial cycles had a dramatic effect on L. tibetica distribution ranges. Multiple refugia of L. tibetica might have remained during the species history, to south of the Tanggula and north of Bayangela Mountains, both appeared as topological barrier and contributed to restricting gene flow between the two lineages. Together, geographic isolation and climatic factors have played a fundamental role in promoting diversification and evolution of L. tibetica.
Collapse
Affiliation(s)
- Mingze Xia
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zunzhe Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Faqi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, China
| | - Gulzar Khan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Qingbo Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Rui Xing
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Yu Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jingya Yu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shilong Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, China
| |
Collapse
|