1
|
Camarero MC, Briegas B, Corbacho J, Labrador J, Gomez-Jimenez MC. Hormonal Content and Gene Expression during Olive Fruit Growth and Ripening. PLANTS (BASEL, SWITZERLAND) 2023; 12:3832. [PMID: 38005729 PMCID: PMC10675085 DOI: 10.3390/plants12223832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
The cultivated olive (Olea europaea L. subsp. europaea var. europaea) is one of the most valuable fruit trees worldwide. However, the hormonal mechanisms underlying the fruit growth and ripening in olives remain largely uncharacterized. In this study, we investigated the physiological and hormonal changes, by ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS), as well as the expression patterns of hormone-related genes, using quantitative real-time PCR (qRT-PCR) analysis, during fruit growth and ripening in two olive cultivars, 'Arbequina' and 'Picual', with contrasting fruit size and shape as well as fruit ripening duration. Hormonal profiling revealed that olive fruit growth involves a lowering of auxin (IAA), cytokinin (CKs), and jasmonic acid (JA) levels as well as a rise in salicylic acid (SA) levels from the endocarp lignification to the onset of fruit ripening in both cultivars. During olive fruit ripening, both abscisic acid (ABA) and anthocyanin levels rose, while JA levels fell, and SA levels showed no significant changes in either cultivar. By contrast, differential accumulation patterns of gibberellins (GAs) were found between the two cultivars during olive fruit growth and ripening. GA1 was not detected at either stage of fruit development in 'Arbequina', revealing a specific association between the GA1 and 'Picual', the cultivar with large sized, elongated, and fast-ripening fruit. Moreover, ABA may play a central role in regulating olive fruit ripening through transcriptional regulation of key ABA metabolism genes, whereas the IAA, CK, and GA levels and/or responsiveness differ between olive cultivars during olive fruit ripening. Taken together, the results indicate that the relative absence or presence of endogenous GA1 is associated with differences in fruit morphology and size as well as in the ripening duration in olives. Such detailed knowledge may be of help to design new strategies for effective manipulation of olive fruit size as well as ripening duration.
Collapse
Affiliation(s)
| | | | | | | | - Maria C. Gomez-Jimenez
- Laboratory of Plant Physiology, Universidad de Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| |
Collapse
|
2
|
Mejía-Mendoza MA, Garcidueñas-Piña C, Barrera-Figueroa BE, Morales-Domínguez JF. Identification and Profiling Analysis of microRNAs in Guava Fruit ( Psidium guajava L.) and Their Role during Ripening. Genes (Basel) 2023; 14:2029. [PMID: 38002972 PMCID: PMC10670931 DOI: 10.3390/genes14112029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
The guava (Psidium guajava L.) is a climacteric fruit with an accelerated post-harvest overripening. miRNAs are small RNA sequences that function as gene regulators in eukaryotes and are essential for their survival and development. In this study, miRNA libraries were constructed, sequenced and analyzed from the breaker and ripe stages of guava fruit cv. Siglo XXI. One hundred and seventy-four mature miRNA sequences from 28 miRNA families were identified. The taxonomic distribution of the guava miRNAs showed a high level of conservation among the dicotyledonous plants. Most of the predicted miRNA target genes were transcription factors and genes involved in the metabolism of phytohormones such as abscisic acid, auxins, and ethylene, as revealed through an ontology enrichment analysis. The miRNA families miR168, miR169, miR396, miR397, and miR482 were classified as being directly associated with maturation, whereas the miRNA families miR160, miR165, miR167, miR3930, miR395, miR398, and miR535 were classified as being indirectly associated. With this study, we intended to increase our knowledge and understanding of the regulatory process involved in the ripening process, thereby providing valuable information for future research on the ripening of guava fruit.
Collapse
Affiliation(s)
- Mario Alejandro Mejía-Mendoza
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes (UAA), Av. Universidad, #940, Ciudad Universitaria, Aguascalientes 20100, Mexico; (M.A.M.-M.); (C.G.-P.)
| | - Cristina Garcidueñas-Piña
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes (UAA), Av. Universidad, #940, Ciudad Universitaria, Aguascalientes 20100, Mexico; (M.A.M.-M.); (C.G.-P.)
| | - Blanca Estela Barrera-Figueroa
- Centro de Investigaciones Científicas, Laboratorio de Biotecnología Vegetal, Instituto de Biotecnología, Universidad del Papaloapan, Circuito Central #200, Parque Industrial, Tuxtepec 68301, Mexico;
| | - José Francisco Morales-Domínguez
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes (UAA), Av. Universidad, #940, Ciudad Universitaria, Aguascalientes 20100, Mexico; (M.A.M.-M.); (C.G.-P.)
| |
Collapse
|
3
|
Mejía-Mendoza MA, Garcidueñas-Piña C, Padilla-Ramírez JS, Soria-Guerra RE, Morales-Domínguez JF. Identification in silico and expression analysis of a β-1-4-endoglucanase and β-galactosidase genes related to ripening in guava fruit. J Genet Eng Biotechnol 2022; 20:3. [PMID: 34978628 PMCID: PMC8724366 DOI: 10.1186/s43141-021-00289-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Guava fruit softening is a crucial process during ripening and this process involves a number of enzymes that modifies the cell wall. Two of the enzymes that regulate this process are (a) the β-1, 4-endoglucanase 17 (BEG) which hydrolyze β-1, 4 bonds from cellulose and hemicellulose, and (b) β-galactosidase (BGA) that hydrolyzes pectin chains. Bioinformatics and expression analysis information on these genes is limited in guava fruit. RESULTS A fragment of a β-1, 4-endoglucanase 17 (PgE17), and another of a β-galactosidase (PgGa1) were identified. These sequences have a similarity of more than 85% with those reported in the NCBI database. In the guava genome, one homologous sequence was found for PgE17 in Chr 4 and two homologous to PgGa1: one in Chr 3 and the other one in Chr 6. Putative protein PgE17 contains part of the glyco_hydro_9 domain. Putative protein PgGa1 has a part of the glyco_hydro_35 domain. Phylogenetic analysis of PgE17 and PgGa1 revealed that both are highly conserved inside the Myrtaceae family. In silico expression analysis showed that both PgE17 and PgGa1 work in a coordinated way with other cell wall modifier enzymes. Expression of these genes was found in all the guava samples analyzed. However, the highest expression was found in the fruit in the breaking and ripe states. CONCLUSIONS A β-1, 4-endoglucanase 17, and β-galactosidase 1 sequences were identified. PgE17 and PgGa1 are expressed in all the plant tissues, and fruit ripening states. Although, the highest expression was on breaker and ripe states.
Collapse
Affiliation(s)
- Mario A Mejía-Mendoza
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes (UAA), Av. Universidad, #940, Ciudad Universitaria, C.P. 20100, Aguascalientes, Aguascalientes, México
| | - Cristina Garcidueñas-Piña
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes (UAA), Av. Universidad, #940, Ciudad Universitaria, C.P. 20100, Aguascalientes, Aguascalientes, México
| | - José S Padilla-Ramírez
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Campo Experimental Pabellón, KM 32.5. Carretera Aguascalientes-Zacatecas, C.P. 20660, Pabellón de Arteaga, Aguascalientes, Ags, México
| | - Ruth E Soria-Guerra
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí (UASLP), Av. Dr. Manuel Nava No. 6-Zona Universitaria, C.P. 78210, San Luis Potosí, S.L.P., México
| | - José Francisco Morales-Domínguez
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes (UAA), Av. Universidad, #940, Ciudad Universitaria, C.P. 20100, Aguascalientes, Aguascalientes, México.
| |
Collapse
|
4
|
Parra R, Gomez-Jimenez MC. Spatio-temporal immunolocalization of extensin protein and hemicellulose polysaccharides during olive fruit abscission. PLANTA 2020; 252:32. [PMID: 32757074 DOI: 10.1007/s00425-020-03439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Immunocytochemical and molecular analyses reveal that the disassembly of the cell wall may be mediated by changes in the level and subcellular location of extensin protein and hemicelluloses during olive-fruit abscission. Although cell-wall modification is believed to underlie the changes in organ abscission, information concerning the changes in cell-wall proteins and hemicellulose polysaccharides is still limited. The aim of this work was to analyze the spatio-temporal patterns of the distribution of different extensin proteins and hemicelluloses in the abscission zone (AZ) during natural ripe-fruit abscission in olive (Olea europaea L.). In this study, we employed immunogold labeling in the ripe-fruit AZ during olive AZ cell separation, using an expanded set of monoclonal antibodies that recognize different types of hemicelluloses (LM11, LM15, and LM21), callose (anti-(1,3)-β-D-glucan) and extensin (JIM19) epitopes, and transmission electron microscopy imaging. Our data demonstrate that AZ cell separation was accompanied by a loss of the JIM19 extensin epitopes and a reduction in the detection of the LM15 xyloglucan epitopes in AZ cell walls, whereas AZ cells were found to be enriched with respect to the xylan and callose levels of the cell wall during olive ripe-fruit abscission. By contrast, AZ cell-wall polysaccharide remodeling did not involve mannans. Moreover, in ripe-fruit AZ, quantitative RT-PCR analysis revealed that OeEXT1, OeEXT2, OeXTH9, and OeXTH13 genes were downregulated during abscission, whereas the expression of OeXTH1, OeXTH5, and OeXTH14 genes increased during abscission. Taken together, the results indicate that AZ cell-wall dynamics during olive ripe-fruit abscission involves extensin protein and hemicellulose modifications, as well as related expressed genes. This is the first study available demonstrating temporal degradation of extensin protein and hemicelluloses in the AZ at the subcellular level.
Collapse
Affiliation(s)
- Ruben Parra
- Department of Plant Physiology, Faculty of Science, University of Extremadura, Avda de Elvas s/n, 06006, Badajoz, Spain
| | - Maria C Gomez-Jimenez
- Department of Plant Physiology, Faculty of Science, University of Extremadura, Avda de Elvas s/n, 06006, Badajoz, Spain.
| |
Collapse
|
5
|
Transcriptome and Hormone Analyses Revealed Insights into Hormonal and Vesicle Trafficking Regulation among Olea europaea Fruit Tissues in Late Development. Int J Mol Sci 2020; 21:ijms21144819. [PMID: 32650402 PMCID: PMC7404322 DOI: 10.3390/ijms21144819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 01/23/2023] Open
Abstract
Fruit ripening and abscission are the results of the cell wall modification concerning different components of the signaling network. However, molecular-genetic information on the cross-talk between ripe fruit and their abscission zone (AZ) remains limited. In this study, we investigated transcriptional and hormonal changes in olive (Olea europaea L. cv Picual) pericarp and AZ tissues of fruit at the last stage of ripening, when fruit abscission occurs, to establish distinct tissue-specific expression patterns related to cell-wall modification, plant-hormone, and vesicle trafficking in combination with data on hormonal content. In this case, transcriptome profiling reveals that gene encoding members of the α-galactosidase and β-hexosaminidase families associated with up-regulation of RabB, RabD, and RabH classes of Rab-GTPases were exclusively transcribed in ripe fruit enriched in ABA, whereas genes of the arabinogalactan protein, laccase, lyase, endo-β-mannanase, ramnose synthase, and xyloglucan endotransglucosylase/hydrolase families associated with up-regulation of RabC, RabE, and RabG classes of Rab-GTPases were exclusively transcribed in AZ-enriched mainly in JA, which provide the first insights into the functional divergences among these protein families. The enrichment of these protein families in different tissues in combination with data on transcript abundance offer a tenable set of key genes of the regulatory network between olive fruit tissues in late development.
Collapse
|
6
|
Parra R, Paredes MA, Labrador J, Nunes C, Coimbra MA, Fernandez-Garcia N, Olmos E, Gallardo M, Gomez-Jimenez MC. Cell Wall Composition and Ultrastructural Immunolocalization of Pectin and Arabinogalactan Protein during Olea europaea L. Fruit Abscission. PLANT & CELL PHYSIOLOGY 2020; 61:814-825. [PMID: 32016408 DOI: 10.1093/pcp/pcaa009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Cell wall modification is integral to many plant developmental processes where cells need to separate, such as abscission. However, changes in cell wall composition during natural fruit abscission are poorly understood. In olive (Olea europaea L.), some cultivars such as 'Picual' undergo massive natural fruit abscission after fruit ripening. This study investigates the differences in cell wall polysaccharide composition and the localization of pectins and arabinogalactan protein (AGP) in the abscission zone (AZ) during cell separation to understand fruit abscission control in 'Picual' olive. To this end, immunogold labeling employing a suite of monoclonal antibodies to cell wall components (JIM13, LM5, LM6, LM19 and LM20) was investigated in olive fruit AZ. Cell wall polysaccharide extraction revealed that the AZ cell separation is related to the de-esterification and degradation of pectic polysaccharides. Moreover, ultrastructural localization showed that both esterified and unesterified homogalacturonans (HGs) localize mainly in the AZ cell walls, including the middle lamella and tricellular junction zones. Our results indicate that unesterified HGs are likely to contribute to cell separation in the olive fruit AZ. Similarly, immunogold labeling demonstrated a decrease in both galactose-rich and arabinose-rich pectins in AZ cell walls during ripe fruit abscission. In addition, AGPs were localized in the cell wall, plasma membrane and cytoplasm of AZ cells with lower levels of AGPs during ripe fruit abscission. This detailed temporal profile of the cell wall polysaccharide composition, and the pectins and AGP immunolocalization in the olive fruit AZ, offers new insights into cell wall remodeling during ripe fruit abscission.
Collapse
Affiliation(s)
- Ruben Parra
- Department of Plant Physiology, Faculty of Science, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Miguel A Paredes
- Department of Plant Physiology, Faculty of Science, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Juana Labrador
- Department of Plant Physiology, Faculty of Science, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Cláudia Nunes
- Department of Chemistry, University of Aveiro, Aveiro P-3810-193, Portugal
| | - Manuel A Coimbra
- Department of Chemistry, University of Aveiro, Aveiro P-3810-193, Portugal
| | - Nieves Fernandez-Garcia
- Department of Abiotic Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CSIC), Murcia, Spain
| | - Enrique Olmos
- Department of Abiotic Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CSIC), Murcia, Spain
| | - Mercedes Gallardo
- Department of Plant Physiology, University of Vigo, Campus Lagoas-Marcosende, s/n, Vigo 36310, Spain
| | - Maria C Gomez-Jimenez
- Department of Plant Physiology, Faculty of Science, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| |
Collapse
|
7
|
Inês C, Corbacho J, Paredes MA, Labrador J, Cordeiro AM, Gomez-Jimenez MC. Regulation of sterol content and biosynthetic gene expression during flower opening and early fruit development in olive. PHYSIOLOGIA PLANTARUM 2019; 167:526-539. [PMID: 30912149 DOI: 10.1111/ppl.12969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
Phytosterols are lipophilic membrane components essential not only for diverse cellular functions but also are biosynthetic precursors of the plant hormone, brassinosteroid (BR). However, the interaction between phytosterol and BR during early fleshy-fruit growth remains largely uncharacterized. In olive, phytosterols are important lipids because they affect oil quality, but phytosterol composition during flowering and early fruit development has not been explored. Here, we first investigated the temporal changes in phytosterol composition, and biosynthetic gene expression that occurred during olive flower opening and early fruit growth. Next, we analyzed the interrelationship between phytosterol and BR, whose levels we manipulated through the application of exogenous BRs (24-epibrassinolide, EBR) or a BR biosynthesis inhibitor (brassinazole, Brz). In this report, the profiling of phytosterol measurement revealed that β-sitosterol is the most abundant in olive reproductive organs. Our data demonstrate that both OeCYP51 and OeSMT2 genes are upregulated during floral anthesis in good agreement with the rise in cholesterol and β-sitosterol contents in olive flower. By contrast, the OeCYP51 and OeSMT2 genes displayed different expression patterns during early olive-fruit development. Furthermore, our data show that exogenous EBR enhanced the early olive-fruit growth, as well as the OeSMT2 transcript and β-sitosterol levels, but decreased the OeCYP51 transcript, squalene, campesterol and cholesterol levels, whereas the Brz treatment exerted the opposite effect. Overall, our findings indicate an up-regulation of β-sitosterol biosynthesis by BR at the transcriptional level during early olive-fruit growth, providing a valuable tool to unravel the physiological function of SMT2 in future studies.
Collapse
Affiliation(s)
- Carla Inês
- Plant Physiology, Faculty of Science, University of Extremadura, Badajoz, 06006, Spain
| | - Jorge Corbacho
- Plant Physiology, Faculty of Science, University of Extremadura, Badajoz, 06006, Spain
| | - Miguel A Paredes
- Plant Physiology, Faculty of Science, University of Extremadura, Badajoz, 06006, Spain
| | - Juana Labrador
- Plant Physiology, Faculty of Science, University of Extremadura, Badajoz, 06006, Spain
| | - António M Cordeiro
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., UEIS Biotecnologia e Recursos Genéticos, Elvas, 7351-901, Portugal
| | - Maria C Gomez-Jimenez
- Plant Physiology, Faculty of Science, University of Extremadura, Badajoz, 06006, Spain
| |
Collapse
|
8
|
Corbacho J, Inês C, Paredes MA, Labrador J, Cordeiro AM, Gallardo M, Gomez-Jimenez MC. Modulation of sphingolipid long-chain base composition and gene expression during early olive-fruit development, and putative role of brassinosteroid. JOURNAL OF PLANT PHYSIOLOGY 2018; 231:383-392. [PMID: 30390495 DOI: 10.1016/j.jplph.2018.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/04/2018] [Accepted: 10/18/2018] [Indexed: 05/21/2023]
Abstract
Sphingolipids are abundant membrane components and signalling molecules in various aspects of plant development. However, the role of sphingolipids in early fleshy-fruit growth has rarely been investigated. In this study, we first investigated the temporal changes in sphingolipid long-chain base (LCB) content, composition, and gene expression that occurred during flower opening and early fruit development in olive (Olea europaea L. cv Picual). Moreover, the interaction between sphingolipid and the plant hormone, brassinosteroid (BR), during the early fruit development was also explored. For this, BR levels were manipulated through the application of exogenous BRs (24-epibrassinolide, EBR) or a BR biosynthesis inhibitor (brassinazole, Brz) and their effects on early fruit development, sphingolipid LCB content, and gene expression were examined in olive fruit at 14 days post-anthesis (DPA). We here show that sphingolipid with C-4 hydroxylation and Δ8 desaturation with a preference for (E)-isomer formation are quantitatively the most important sphingolipids in olive reproductive organs. In this work, the total LCB amount significantly decreased at the anthesis stage, but olive sphingosine-1-phosphate lyase (OeSPL) gene was expressed exclusively in flower and upregulated during the anthesis, revealing an association with the d18:1(8E) accumulation. However, the LCB content increased in parallel with the upregulation of the expression of genes for key sphingolipid biosynthetic and LCB modification enzymes during early fruit development in olive. Likewise, we found that EBR exogenously applied to olive trees significantly stimulated the fruit growth rate whereas Brz inhibited fruit growth rate after 7 and 14 days of treatment. In addition, this inhibitory effect could be counteracted by the application of EBR. The promotion of early fruit growth was accompanied by the down-regulation of sphingolipid LCB content and gene expression in olive fruit, whereas Brz application raised levels of sphingolipid LCB content and gene expression in olive fruit after 7 and 14 days of treatment. Thus, our data indicate that endogenous sphingolipid LCB and gene-expression levels are intricately controlled during early fruit development and also suggest a possible link between BR, the sphingolipid content/gene expression, and early fruit development in olive.
Collapse
Affiliation(s)
- Jorge Corbacho
- Department of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Carla Inês
- Department of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Miguel A Paredes
- Department of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Juana Labrador
- Department of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Antonio M Cordeiro
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., UEIS Biotecnologia e Recursos Genéticos, Estrada de Gil Vaz, Apartado 6, 7351-901 Elvas, Portugal
| | - Mercedes Gallardo
- Department of Plant Physiology, University of Vigo, Campus Lagoas-Marcosende, s/n, 36310 Vigo, Spain
| | - Maria C Gomez-Jimenez
- Department of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain.
| |
Collapse
|
9
|
Inês C, Parra-Lobato MC, Paredes MA, Labrador J, Gallardo M, Saucedo-García M, Gavilanes-Ruiz M, Gomez-Jimenez MC. Sphingolipid Distribution, Content and Gene Expression during Olive-Fruit Development and Ripening. FRONTIERS IN PLANT SCIENCE 2018; 9:28. [PMID: 29434611 PMCID: PMC5790798 DOI: 10.3389/fpls.2018.00028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/09/2018] [Indexed: 05/03/2023]
Abstract
Plant sphingolipids are involved in the building of the matrix of cell membranes and in signaling pathways of physiological processes and environmental responses. However, information regarding their role in fruit development and ripening, a plant-specific process, is unknown. The present study seeks to determine whether and, if so, how sphingolipids are involved in fleshy-fruit development and ripening in an oil-crop species such as olive (Olea europaea L. cv. Picual). Here, in the plasma-membranes of live protoplasts, we used fluorescence to examine various specific lipophilic stains in sphingolipid-enriched regions and investigated the composition of the sphingolipid long-chain bases (LCBs) as well as the expression patterns of sphingolipid-related genes, OeSPT, OeSPHK, OeACER, and OeGlcCerase, during olive-fruit development and ripening. The results demonstrate increased sphingolipid content and vesicle trafficking in olive-fruit protoplasts at the onset of ripening. Moreover, the concentration of LCB [t18:1(8Z), t18:1 (8E), t18:0, d18:2 (4E/8Z), d18:2 (4E/8E), d18:1(4E), and 1,4-anhydro-t18:1(8E)] increases during fruit development to reach a maximum at the onset of ripening, although these molecular species decreased during fruit ripening. On the other hand, OeSPT, OeSPHK, and OeGlcCerase were expressed differentially during fruit development and ripening, whereas OeACER gene expression was detected only at the fully ripe stage. The results provide novel data about sphingolipid distribution, content, and biosynthesis/turnover gene transcripts during fleshy-fruit ripening, indicating that all are highly regulated in a developmental manner.
Collapse
Affiliation(s)
- Carla Inês
- Department of Plant Physiology, University of Extremadura, Badajoz, Spain
| | | | - Miguel A. Paredes
- Department of Plant Physiology, University of Extremadura, Badajoz, Spain
| | - Juana Labrador
- Department of Plant Physiology, University of Extremadura, Badajoz, Spain
| | | | - Mariana Saucedo-García
- Institute of Agricultural Sciences, Autonomous University of the State of Hidalgo, Tulancingo, Mexico
| | - Marina Gavilanes-Ruiz
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | |
Collapse
|