1
|
Chen M, Zhang Y, Du Z, Kong X, Zhu X. Integrative Metabolic and Transcriptomic Profiling in Camellia oleifera and Camellia meiocarpa Uncover Potential Mechanisms That Govern Triacylglycerol Degradation during Seed Desiccation. PLANTS (BASEL, SWITZERLAND) 2023; 12:2591. [PMID: 37514206 PMCID: PMC10385360 DOI: 10.3390/plants12142591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Camellia seed oil is a top-end quality of cooking oil in China. The oil quality and quantity are formed during seed maturation and desiccation. So far, it remains largely unresolved whether lipid degradation occurs and contributes to Camellia oil traits. In this study, three different Camellia germplasms, C. oleifera cv. Min 43 (M43), C. meiocarpa var. Qingguo (QG), and C. meiocarpa cv Hongguo (HG) were selected, their seed oil contents and compositions were quantified across different stages of seed desiccation. We found that at the late stage of desiccation, M43 and QG lost a significant portion of seed oil, while such an event was not observed in HG. To explore the molecular bases for the oil loss In M43, the transcriptomic profiling of M43 and HG was performed at the early and the late seed desiccation, respectively, and differentially expressed genes (DEGs) from the lipid metabolic pathway were identified and analyzed. Our data demonstrated that different Camellia species have diverse mechanisms to regulate seed oil accumulation and degradation, and that triacylglycerol-to-terpenoid conversion could account for the oil loss in M43 during late seed desiccation.
Collapse
Affiliation(s)
- Mingjie Chen
- International Joint Laboratory of Biology and High Value Utilization of Camellia oleifera in Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
- Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Zhenghua Du
- Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiangrui Kong
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China
| | - Xiaofang Zhu
- Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Xianyang Jingwei Fu Tea Co., Ltd., Xianyang 712044, China
| |
Collapse
|
2
|
He S, Ma R, Liu Z, Zhang D, Wang S, Guo Y, Chen M. Overexpression of BnaAGL11, a MADS-Box Transcription Factor, Regulates Leaf Morphogenesis and Senescence in Brassica napus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3420-3434. [PMID: 35261232 DOI: 10.1021/acs.jafc.1c07622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Previous studies have reported that SEEDSTICK/AGAMOUS-LIKE 11 (AtSTK/AtAGL11), a MADS-box transcription factor, plays important roles in many biological processes in Arabidopsis thaliana. However, the function of BnaAGL11, an AtAGL11 homologous gene from Brassica napus, in leaf development remains unknown. Here, we found that the ectopic expression of any copy of Bna.C09.AGL11, Bna.A03.AGL11, and Bna.A09.AGL11 in A. thaliana led to smaller and curly leaves and promoted leaf senescence. Consistently, the overexpression of Bna.C09.AGL11 in B. napus also caused smaller and curly leaves and accelerated leaf senescence. Furthermore, we demonstrated that Bna.C09.AGL11 controlled leaf morphogenesis by indirectly downregulating the genes of Bna.A01.DWF4 and Bna.C07.PGX3 and promoted leaf senescence by indirectly upregulating the genes of Bna.A04.ABI5, Bna.A05.ABI5, Bna.C04.ABI5-1, and Bna.C01.SEN4 and directly activating the transcription of Bna.C04.ABI5-2 and Bna.C03.SEN4 genes. Our results provide new insights into the underlying regulatory mechanism of BnaAGL11 during leaf development in B. napus.
Collapse
Affiliation(s)
- Shuangcheng He
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Rong Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zijin Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Da Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shixiang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingxun Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
3
|
Cheng C, Liu F, Sun X, Wang B, Liu J, Ni X, Hu C, Deng G, Tong Z, Zhang Y, Lü P. Genome-wide identification of FAD gene family and their contributions to the temperature stresses and mutualistic and parasitic fungi colonization responses in banana. Int J Biol Macromol 2022; 204:661-676. [PMID: 35181326 DOI: 10.1016/j.ijbiomac.2022.02.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/29/2022] [Accepted: 02/06/2022] [Indexed: 11/30/2022]
Abstract
Fatty acid desaturase (FAD) plays important roles in plant growth and development and plant defense processes. In this study, we identified 27 MaFAD genes from the banana genome. According to the amino acid sequence similarities, their encoded proteins could be classified into five subfamilies. This classification is consistently supported by their gene and protein structures, conserved motifs and subcellular localizations. Segmental duplication events were found to play predominant roles in the MaFAD gene family expansion. Thirty miRNAs targeting MaFADs were identified and many hormone- and stress-responsive cis-acting elements and transcription factor binding sites (TFBSs) were identified in their promoters, indicating that the MaFADs expression regulation was very complicated. Gene expression analysis showed that some MaFADs showed significant differential expression in response to high and low temperature. FocTR4 influenced greatly the expression of several MaFADs and greatly induced the fatty acid (FA) accumulations in roots. Although S. indica showed no significant influence on the expression of most MaFADs, it could greatly alleviate the influence of FocTR4 on several MaFADs and FA biosynthesis. Our study revealed that MaFADs contributed greatly to the responses of high and low temperature stresses and mutualistic and parasitic fungi colonization in banana.
Collapse
Affiliation(s)
- Chunzhen Cheng
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China; College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Fan Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xueli Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Bin Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiapeng Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xueting Ni
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chunhua Hu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Guiming Deng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zheng Tong
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yongyan Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China; College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Peitao Lü
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
4
|
Yan M, Jin X, Liu Y, Chen H, Ye T, Hou Z, Su Z, Chen Y, Aslam M, Qin Y, Niu X. Identification and evaluation of the novel genes for transcript normalization during female gametophyte development in sugarcane. PeerJ 2021; 9:e12298. [PMID: 34721982 PMCID: PMC8532975 DOI: 10.7717/peerj.12298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/21/2021] [Indexed: 11/23/2022] Open
Abstract
Background Sugarcane (Saccharum spontaneum L.), the major sugar and biofuel feedstock crop, is cultivated mainly by vegetative propagation worldwide due to the infertility of female reproductive organs resulting in the reduction of quality and output of sugar. Deciphering the gene expression profile during ovule development will improve our understanding of the complications underlying sexual reproduction in sugarcane. Optimal reference genes are essential for elucidating the expression pattern of a given gene by quantitative real-time PCR (qRT-PCR). Method In this study, based on transcriptome data obtained from sugarcane ovule, eighteen candidate reference genes were identified, cloned, and their expression levels were evaluated across five developmental stages ovule (AC, MMC, Meiosis, Mitosis, and Mature). Results Our results indicated that FAB2 and MOR1 were the most stably expressed genes during sugarcane female gametophyte development. Moreover, two genes, cell cycle-related genes REC8 and CDK, were selected, and their feasibility was validated. This study provides important insights into the female gametophyte development of sugarcane and reports novel reference genes for gene expression research on sugarcane sexual reproduction.
Collapse
Affiliation(s)
- Maokai Yan
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Xingyue Jin
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuzhou, China
| | - Yanhui Liu
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuzhou, China
| | - Huihuang Chen
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuzhou, China
| | - Tao Ye
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuzhou, China
| | - Zhimin Hou
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuzhou, China
| | - Zhenxia Su
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuzhou, China
| | - Yingzhi Chen
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Mohammad Aslam
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Yuan Qin
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China.,Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fuzhou, China
| | - Xiaoping Niu
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
5
|
Kazaz S, Barthole G, Domergue F, Ettaki H, To A, Vasselon D, De Vos D, Belcram K, Lepiniec L, Baud S. Differential Activation of Partially Redundant Δ9 Stearoyl-ACP Desaturase Genes Is Critical for Omega-9 Monounsaturated Fatty Acid Biosynthesis During Seed Development in Arabidopsis. THE PLANT CELL 2020; 32:3613-3637. [PMID: 32958563 PMCID: PMC7610281 DOI: 10.1105/tpc.20.00554] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/04/2020] [Accepted: 09/16/2020] [Indexed: 05/20/2023]
Abstract
The spatiotemporal pattern of deposition, final amount, and relative abundance of oleic acid (cis-ω-9 C18:1) and its derivatives in the different lipid fractions of the seed of Arabidopsis (Arabidopsis thaliana) indicates that omega-9 monoenes are synthesized at high rates in this organ. Accordingly, we observed that four Δ9 stearoyl-ACP desaturase (SAD)-coding genes (FATTY ACID BIOSYNTHESIS2 [FAB2], ACYL-ACYL CARRIER PROTEIN5 [AAD5], AAD1, and AAD6) are transcriptionally induced in seeds. We established that the three most highly expressed ones are directly activated by the WRINKLED1 transcription factor. We characterized a collection of 30 simple, double, triple, and quadruple mutants affected in SAD-coding genes and thereby revealed the functions of these desaturases throughout seed development. Production of oleic acid by FAB2 and AAD5 appears to be critical at the onset of embryo morphogenesis. Double homozygous plants from crossing fab2 and aad5 could never be obtained, and further investigations revealed that the double mutation results in the arrest of embryo development before the globular stage. During later stages of seed development, these two SADs, together with AAD1, participate in the elaboration of the embryonic cuticle, a barrier essential for embryo-endosperm separation during the phase of invasive embryo growth through the endosperm. This study also demonstrates that the four desaturases redundantly contribute to storage lipid production during the maturation phase.
Collapse
Affiliation(s)
- Sami Kazaz
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Guillaume Barthole
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Frédéric Domergue
- Université de Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33882 Villenave d'Ornon, France
- CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, 33882 Villenave d'Ornon, France
| | - Hasna Ettaki
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Alexandra To
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Damien Vasselon
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Delphine De Vos
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Katia Belcram
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Sébastien Baud
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
6
|
Hui WK, Zhao FY, Wang JY, Chen XY, Li JW, Zhong Y, Li HY, Zheng JX, Zhang LZ, Que QM, Wu AM, Gong W. De novo transcriptome assembly for the five major organs of Zanthoxylum armatum and the identification of genes involved in terpenoid compound and fatty acid metabolism. BMC Genomics 2020; 21:81. [PMID: 31992199 PMCID: PMC6986037 DOI: 10.1186/s12864-020-6521-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Background Zanthoxylum armatum (Z. armatum) is a highly economically important tree that presents a special numbing taste. However, the underlying regulatory mechanism of the numbing taste remains poorly understood. Thus, the elucidation of the key genes associated with numbing taste biosynthesis pathways is critical for providing genetic information on Z. armatumand the breeding of high-quality germplasms of this species. Results Here, de novo transcriptome assembly was performed for the five major organs of Z. armatum, including the roots, stems, leaf buds, mature leaves and fruits. A total of 111,318 unigenes were generated with an average length of 1014 bp. Additionally, a large number of SSRs were obtained to improve our understanding of the phylogeny and genetics of Z. armatum. The organ-specific unigenes of the five major samples were screened and annotated via GO and KEGG enrichment analysis. A total of 53 and 34 unigenes that were exclusively upregulated in fruit samples were identified as candidate unigenes for terpenoid biosynthesis or fatty acid biosynthesis, elongation and degradation pathways, respectively. Moreover, 40 days after fertilization (Fr4 stage) could be an important period for the accumulation of terpenoid compounds during the fruit development and maturation of Z. armatum. The Fr4 stage could be a key point at which the first few steps of the fatty acid biosynthesis process are promoted, and the catalysis of subsequent reactions could be significantly induced at 62 days after fertilization (Fr6 stage). Conclusions The present study realized de novo transcriptome assembly for the five major organs of Z. armatum. To the best of our knowledge, this study provides the first comprehensive analysis revealing the genes underlying the special numbing taste of Z. armatum. The assembled transcriptome profiles expand the available genetic information on this species and will contribute to gene functional studies, which will aid in the engineering of high-quality cultivars of Z. armatum.
Collapse
Affiliation(s)
- Wen-Kai Hui
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fei-Yan Zhao
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing-Yan Wang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Yang Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| | - Jue-Wei Li
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu Zhong
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hong-Yun Li
- Agricultural Technology Extension Center in Yantan District, Zigong, 643030, China
| | - Jun-Xing Zheng
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liang-Zhen Zhang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qing-Min Que
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ai-Min Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| | - Wei Gong
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
7
|
Kuang S, Fan X, Peng R. Quantitative proteomic analysis ofRhodococcus ruberresponsive to organic solvents. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1533432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Sufang Kuang
- Department of Bioengineering, College of Life Science, Jiangxi Normal University, Nanchang, PR China
| | - Xin Fan
- Department of Bioengineering, College of Life Science, Jiangxi Normal University, Nanchang, PR China
| | - Ren Peng
- Department of Bioengineering, College of Life Science, Jiangxi Normal University, Nanchang, PR China
| |
Collapse
|